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ABSTRACT:

The quality of environmental perception is of great interest for localization tasks in autonomous systems. Maps, generated from the
sensed information, are often used as additional spatial references in these applications. The quantification of the map uncertainties
gives an insight into how reliable and complete the map is, avoiding the potential systematic deviation in pose estimation. Mapping
3D buildings in urban areas using Light detection and ranging (LiDAR) point clouds is a challenging task as it is often subject to
uncertain error sources in the real world such as sensor noise and occlusions, which should be well represented in the 3D models for
the downstream localization tasks. In this paper, we propose a method to model 3D building façades in complex urban scenes with
uncertainty quantification, where the uncertainties of windows and façades are indicated in a probabilistic fashion. The potential
locations of the missing objects (here: windows) are inferred by the available data and layout patterns with the Monte Carlo (MC)
sampling approach. The proposed 3D building model and uncertainty measures are evaluated using the real-world LiDAR point
clouds collected by Riegl Mobile Mapping System. The experimental results show that our uncertainty representation conveys the
quality information of the estimated locations and shapes for the modelled map objects.

1. INTRODUCTION

Environmental perception is critical in autonomous driving-
related studies. The received environmental information is
stored as maps; they can be HD-Maps, acquired with high
geometric and semantic accuracy, 2D truncated signed-distance
field (TSDF) maps or 3D representations such as 3D-City mod-
els or even represented in terms of 3D point clouds directly.
These maps serve as spatial references to an autonomous sys-
tem and help the system to understand unknown urban envir-
onments in the localization and navigation tasks. In terms of
3D-City models, the automated reconstruction from laser scan-
ning point clouds in urban scenes is widely studied in the geo-
informatics and remote sensing fields. It is still a challenging
task due to the complexity of the available 3D building facade
layouts, missing data, e.g. due to occlusions, and the sensor
noise in the collected LiDAR point clouds (Li et al., 2017).
These problems inevitably lead to imperfections of the maps,
with potential spatial or semantic uncertainties in the recon-
structed city models. The uncertain impacts will also propagate
to the downstream localization accuracy in autonomous driv-
ing scenarios, and affect the safety in navigation and collision
avoidance. Thus, a proper measure or representation of the map
uncertainties should be defined and help to convey the inform-
ation about the map quality to localization applications.

The quantification of uncertainty is studied in many different
research fields, such as simultaneous localization and mapping
(SLAM), GNSS positioning and navigation, etc. It is often
about point cloud registration or pose estimation of the ego-
vehicle, but there is no sufficient exploration for the accuracy of
the environment references, such as 3D city models and trun-
cated signed-distance field (TSDF) maps. Ambiguous envir-
onment information, occlusions and noise in point clouds may
∗ Corresponding author

occur as uncertainty sources in the reference map (Maken et
al., 2021). In a 3D City model, the most critical components
for autonomous systems are buildings. Although there exist
plenty of methods for 3D building parsing or modelling (Li
et al., 2017, Zhou and Gong, 2018, Xu and Stilla, 2021), the
quality measure of the mapping process is absent. E.g., a 3D
CityGML format usually does not contain quality measures,
and only the LoD may give an indication of geometric quality.
In the existing methods, the quality of the image point clouds
can be assessed by the uncertainty of stereo matching, while the
range-based LiDAR points can only have a general assessment
according to the sensor errors (Xu and Stilla, 2021). The valid-
ation and evaluation results for the models are often not feasible
to be used directly as uncertainty measures in applications. If
the uncertainties of maps are neglected and maps are treated
as perfect references, it is likely to impose systematic errors in
pose estimation, e.g., deviation of the whole trajectory.

To tackle this problem, the uncertainty and completeness of a
map based on LiDAR point clouds can be described in a prob-
abilistic fashion. Probabilistic methods capture different un-
certainty sources and provide the probability distribution of the
potential spatial locations and/or semantic labels of the map ob-
jects. Probabilistic approaches are already applied in plenty of
uncertainty research (Di et al., 2021, Feng et al., 2021, Paz
et al., 2020). For example, Di et al., (2021) estimated Gaus-
sian Process (GP) posterior in incremental multi-robot map-
ping, where the regression is over a 2D TSDF map. For se-
mantic labels, Feng et al., (2021) inferred the uncertainty in
bounding box labels of object detection and defined a new rep-
resentation of the probabilistic bounding box through a spatial
uncertainty distribution. Paz et al., (2020) constructed a probab-
ilistic semantic map in bird’s eye views in urban driving envir-
onments. These methods either focus on 2D maps or semantic
object labels. A detailed spatial uncertainty representation of
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3D maps for urban scenes is still of great interest to explore.

This paper proposes a method to generate 3D city maps with
probabilistic uncertainty representations, which can be feasibly
validated and incrementally updated with new measurements.
The goal is not a ”perfect” building model, but a representation
of the geo-objects in terms of elements and their uncertainty
measures, including unknown occluded parts. In this work, we
focus on the uncertainty of 3D building models, especially the
locations and orientations of the façade planes and windows –
the most critical map objects for localization tasks. In particu-
lar, the uncertainties of windows are modelled with likelihood
distributions and the inference of the occluded parts is also ap-
proximated. Therefore, a 3D building model with the optimal
estimates of the façade positions and orientations, as well as
the window existence is generated as our environment repres-
entation. The locations and shapes of the map objects will be
mapped with the probability of their potential spatial distribu-
tions. For the façade modelling, the parametric Gaussian Mix-
ture Model (GMM) approach and the non-parametric Gaussian
Process (GP) approach are both studied and compared. The un-
certain sources like occlusions and measurement noise are in-
cluded in the uncertainty representation. Similar to the previous
work (Zou and Sester, 2021), also the shape of occlusions (i.e.
unknown object regions) will be computed and stored as addi-
tional information. The detection confidence and the ambigu-
ities of the windows are modelled with a logistic function-based
method. Furthermore, the occluded regions are also inferred
with available information using Monte Carlo (MC) methods.

The rest of the paper is structured as follows; In Section 2, the
overall workflow is briefly introduced, and we demonstrate the
details of the façade and window modelling with uncertainty
measures. This is followed by experimental results and the eval-
uation presented in Section 3. Finally, in Section 4, we present
our conclusions and the outlook for future work.

2. METHOD

2.1 Overview

The proposed uncertainty representation focuses on the facades
and windows in 3D building models based on the LiDAR point
clouds. To build up 3D building models, the overall work-
flow contains pre-processing, façade segmentation, local frame
transformation, and detailed façade elements modelling, similar
to the previous work (Zou and Sester, 2021). In pre-processing,
the alignment of the point clouds, pre-classification and indi-
vidual building segmentation are conducted on the raw LiDAR
point clouds. The segmentation of the façades is then performed
by the RANSAC algorithm. For each façade, a local 2.5D frame
based on the orientation of the major façade plane is construc-
ted for the points in this cluster. In the local frame, the façade
depth model and window uncertainty model will be estimated.

2.2 Facade Model

To determine the façade orientation and the local frame, Prin-
ciple Component Analysis (PCA) is utilized to extract the nor-
mal of the plane. We treat the third component of the PCA
result as the orientation of the façade, i.e. it is the direction of
the depth and the basis of the local frame we consider for the
subsequent processing. Note that the normal vector of the plane
obtained from PCA will be set to the direction pointing towards
the sensor, by comparing with the average normal values of all
points measured on the façade.

Figure 1. Depth layers depicted by Gaussian components: the
red Gaussian component represents the plane of the red points
while the blue one depicts the blue plane. The red Gaussian has a
higher prior probability π1 than the blue one π2. Note that there
are some other small depth planes, such as the one where window
casings are located. They are not all shown here.

2.2.1 Gaussian Mixture Model (GMM): On each façade,
GMM is used to decompose and cluster the façade points to
different depth layers. i.e., a depth plane is treated as a Gaussian
distribution with a certain weight in GMM. The mathematical
equation of a GMM reads:

p(d|θ) =
K∑
i=1

πiN (d|µi, σi), (1)

where d is the depth value of a point, K is the number of Gaus-
sian components; θi = {πi, µi, σi} is a set of GMM parameters
for the i-th depth layer – πi is the prior probability or weight,
meaning the importance of the component; µi and σi are the
mean and standard deviation of the Gaussian distribution. The
optimal parameters of GMM are derived by maximizing the
log-likelihood, as shown in the equation:

L(θ|D) =

N∏
n

K∑
i

πiN (dn|µi, σi), (2)

θ∗ = argmax
θ

log(L(θ|D)), (3)

where L(θ|D) is the likelihood and N is the number of data
points. In practice, to overcome the analytically unsolvable
problem in the mixture model, Expectation Maximization (EM)
algorithm is applied. The details are omitted here for brevity.

The depth layers are characterized by the trained GMM, and the
points are assigned to different Gaussian components accord-
ing to their depth values, as shown in Figure 1. The point set in
each Gaussian component is supposed to be located on the same
depth plane, whose shape constraints are extracted by the alpha-
shape algorithm. In this way, the building façade can be repres-
ented by the GMM parameters and the boundary points of each
planar patch. The expected position of the façade plane as well
as the potential uncertainty are represented by the mean value
µi and the standard deviation σi. The random sensor noise is
captured by the standard deviation of each Gaussian compon-
ent. The undesired effects of the outliers and inhomogeneous
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density of the point cloud can be suppressed in the estimation
process.

The Gaussian component with the highest prior probability πi
is the principal façade plane with the majority of points. The
local frame is then refined by PCA results only on the point set
of the principal plane. These points are selected by the depth
values inside the 99.7% confidence interval, i.e. 3σ:

|d− µm| < 3 ∗ σm, (4)

where µm, σm are the expectation and standard deviation of the
principal Gaussian component. When the distance between the
point and the principal façade plane is larger than 3 ∗ σm, the
points will not count for the computation of the principal façade
orientation.

2.2.2 Gaussian Process (GP): As illustrated above, the
GMM is a parametric approach, depicting the dominant planar
parts of the building façades. Since there remain some non-
planar or irregular elements, a non-parametric approach can be
applied to better model buildings. In this work, the façade sur-
face and uncertainty modelling using a GP approach is intro-
duced. GP is a popular non-parametric method for non-linear
modelling, describing a joint Gaussian distribution over a con-
tinuous variable domain. Here, the GP is defined over the space
domain; the depth value of each location is a random variable,
with its own mean and standard deviation, and the correlation
of the depth variables over two different locations is indicated
by their covariance. Thus, a GP is specified by two key com-
ponents, i.e. its mean function µ(x) and covariance (kernel)
function k(x,x

′
).

According to the marginalization and conditional properties of
the multivariate Gaussian distribution, the posterior distribution
of the façade surface model can be obtained with the prior as-
sumption and the training data. With the prior probability as
d = f(x) ∼ N (µ0(x), k0(x,x

′
)), if the noisy measurements,

y = f(x)+ε, are given as the training samples {X,y}, the pos-
terior mean and covariance of a predicting case {x∗, y∗} can be
derived as (Rasmussen, 2003):

µ(x∗) = µ0(x∗) + kT∗ (KN + σ2
ηI)
−1(y − µ0(X)), (5)

k(x∗,x
′
∗) = k0(x∗,x

′
∗)− kT∗ (KN + σ2

ηI)
−1k

′
∗ + σ2

η, (6)

where X = {xn}N ,y = {yn}N , the prior mean µ0(x) is usu-
ally set to zero, [k∗]N = k0(X, x∗) and [k

′
∗]N = k0(X, x

′
∗)

are the prior covariance between the N input training points
and the predicting points. The Gaussian kernel function is used
here as the prior covariance function k0(x,x

′
). σ2

η denotes
the uncertainty introduced by the random measurement noise
ε ∼ N (0, σ2

η).

In this way, the posterior mean function depicts the expectation
of our façade surface while the corresponding variance repres-
ents the uncertainty of the estimation at each location. Figure 2
shows a 1D example for the surface expectation and the uncer-
tainty bound (95% confidence interval). Compared to GMM,
the GP approach is more flexible with fewer geometrical con-
straints. This property facilitates a more accurate description of
irregular surfaces and small depth differences. Nevertheless, it
yields a weakness in modelling explicit regularities. The res-
ults of the GP and GMM methods will be further evaluated and
discussed in Section 3.

Figure 2. 1D example for the façade modelling: ση = 2 cm.

Since LiDAR points are discretely distributed in the 3D space,
the density of the points is another measure to evaluate the in-
tegrity of the plane estimation. GP can capture the density ef-
fect in its uncertainty representation. If we assume a wall is a
watertight plane, most of the windows appear as holes on the
plane. When a region is measured with very sparse points, it
may seem like a hole as well. Thus, the density is also closely
related to the window modelling and will be analyzed implicitly
in the window modelling process in the next subsection.

2.3 Window Model

Window detection and modelling have been explored by many
existing approaches (Brenner and Ripperda, 2006, Nguatem et
al., 2014, Tuttas and Stilla, 2011, Mesolongitis and Stamos,
2012, Li et al., 2017), covering the research focus such as the
window location estimation, shape reconstruction and window
pattern analysis. However, the uncertainties of these estim-
ates are not provided, e.g. how accurate the window edge is
or how confident we are in the detection results. In this pa-
per, the window detection results are firstly specified with ini-
tial detection confidence, which will then be elaborated by the
probabilistic uncertainty model – a combination of several lo-
gistic functions. It provides the likelihood distributions for the
possible window areas, quantifying the uncertainties of the win-
dows, i.e., the detection confidence, uncertain shapes and vague
boundaries. Also, with the analysis of the window patterns,
occluded or non-measured windows are inferred by the Monte
Carlo method, and can be updated and refined once the new
measurements are available. Note that the potential update is
based on our assumption that the data of a 3D city model can
be incrementally acquired and updated.

2.3.1 Window Detection: A window object is estimated
with the most probable polygon shape (assumption: rectangles),
as well as a likelihood distribution for potential window space.
The first step is the window detection over the space. A hole-
based detection method is applied here, as the windows usually
appear as holes on façades in the LiDAR data. The horizontal
and vertical lines of the hole boundaries are extracted and com-
prise several candidate rectangles, as illustrated in Figure 3a.
For each candidate, initial detection confidence is influenced by
the following factors: the number of undesired façade points in-
side the rectangle (Figure 3b), the projection of the ceiling point
(laser ray penetrates the window and hits on the ceiling) on the
vertical façade plane as shown in Figure 3c, and the weighted
intersection over union (IoU) of the hole and the assumed rect-
angle; the ceiling point projection increases the weight of the
projected area. The confidence is calculated by:
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(a) Rectangle group (b) Nf and N∩

(c) Ceiling points and
the projection as weights

Figure 3. The generation of the window candidates.

c =
(N(∩,weighted) −Nf )

N(∪,weighted)
(7)

where N(∩,weighted) is the weighted area of intersection of the
candidate rectangle and the hole, while N(∪,weighted) is the
weighted area of union. Nf is the undesired area with façade
points inside the rectangle. It will be affected by the density of
façade points. The candidate with the highest detection confid-
ence is selected as the detected window shape.

2.3.2 Window Uncertainty Quantification: The detection
confidence of a window is a rather simple measure for the entire
window object, not considering the inhomogeneous uncertainty
of the window space, e.g. we are less confident in the borders
between the window and wall than the more central window
area. To have an insight into the continuous spatial uncertainty
of whether the space is a part of a window or not, the uncer-
tainty of the window object can be further quantified with the
probability based on the detection results. This is achieved by
the combined model of four logistic functions, with the assump-
tion that the edges of a window have higher uncertainty than the
center parts; the uncertainty does not change much inside a win-
dow. In each direction (horizontal or vertical), the combination
of two logistic distributions is computed individually and then
integrated with the other, as the uncertainties of the horizontal
edges are independent of the vertical ones. The mathematical
equation of the logistic distributions in either horizontal or ver-
tical direction reads as follows:

F (x;β, γ) =
1

1 + e−γ(x−β)
, (8)

L(x) = c ∗ (F (x;β1, γ1)− F (x;β2, γ2)), (9)

where F (x;β, γ) is the logistic distribution model, β is the sig-
moid’s midpoint, denoting the position, γ is the logistic growth
rate or the steepness of the curve, indicating the drastic uncer-
tainty change around the borders in this case. L(x) is the com-
bination of two logistic distributions, with the prior confidence
value c derived from the previous window detection step. The
difference |α1−α2| between the α values of two logistic distri-
butions denotes the width or height information of the corres-
ponding window.

In Figure 4a, an instance of the horizontal likelihood distribu-
tion for the window area is shown, where the steep curves de-
note the uncertainty of the window borders, as more ambiguity
of being the window hole or the watertight façade surface is
present here. In contrast, the likelihood does not change much

(a) Horizontal likelihood (b) 2D window distribution

(c) Detected windows (d) Overall window distribution

Figure 4. The uncertainty of windows.

in the middle part, with the value specified as the initial detec-
tion confidence. The horizontal and vertical distributions will
be multiplied to construct a 2D window likelihood distribution,
as shown in Figure 4b. Figure 4c and 4d demonstrate the over-
all detected windows and the corresponding uncertainty mod-
els, respectively. Redder colors denote a higher probability of
being a window area. In the window distribution model, the
width, height, and location information are represented by the
parameters of the logistic distributions.

2.3.3 Layout Pattern Analysis: The initial hole-based de-
tection is not perfect, as some windows with curtains do not ap-
pear as holes. Furthermore, it is also difficult to detect the win-
dows in occluded areas. Therefore, the window layout can be
exploited to infer the missing windows from the existing data.
As a man-made structure, the layout of windows usually has a
certain repetitive or symmetric pattern, which can be captured
by the autocorrelation analysis in the horizontal and vertical dir-
ections. Note that the autocorrelation result will be checked to
confirm the presence of the global repetitive pattern. i.e. the
frequency is in a reasonable range; the repetitive period should
not be larger than 1/3 of the entire facade width or height and
should not be smaller than 20 cm; the expected interval obtained
from autocorrelation should not be rejected by the statistical
test concerning the actual distances of two adjacent windows.
Otherwise, the repetitive pattern will not be detected. If the re-
petitive frequency is successfully analyzed by autocorrelation,
the output will be the distance expectation between two adja-
cent windows in the horizontal and/or vertical direction. The
standard deviation of the window intervals is obtained based on
the differences between the interval expectation and the actual
distances of two adjacent windows. Thus, the window layout
pattern provides information about the potential location of the
neighboring window, quantified by the probability, as illustrated
in Figure 5. The conditional probability reads as:

p(xw|x0, yw = y0) = N (xw|x0 ± µx, σx), (10)

p(yw|y0, xw = x0) = N (yw|y0 ± µy, σy), (11)

where (x0, y0) is the coordinate of a given window center, the
point (xw, yw) is the center of a neighboring window, which can
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be located on the left/right/up/down side. {µx, σx, µy, σy} are
the distance expectation and standard deviation in the horizontal
and vertical directions.

Figure 5. The probabilistic distribution of the distance to the
neighboring window on the right.

2.3.4 MC Inference: Considering the obtained window
distributions as prior knowledge of the window presence, an
inference of the missing windows can be performed, with the
analyzed window pattern. The MC approach and a “particle”
idea are employed here to calculate the posterior probabil-
ity of being a window area. A window distribution charac-
terized by the parameters of logistic functions is seen as a
*particle* with the features θw = {x, y, c, w, h, γ1, γ2, γ3, γ4},
where {x, y} are the position coordinates of the window cen-
ter, c is the initial confidence, {w, h} are the width and height,
and {γ1, γ2, γ3, γ4} are the growth rates of four logistic func-
tions in horizontal (left/right) and vertical (up/down) direc-
tions. Sampling a window particle from the prior distribution,
the location probability of a new window particle conditioned
on the sampled window particle is used for inferring the pos-
terior probability of the overall window distribution with the
MC approach. Provided with new measurements, the distribu-
tions can be validated and refined. The unweighted window
“particles” will be updated with weights according to the new
data - window areas measured with new facade points get smal-
ler weights. The new window detection results from the new
data will also be integrated with the existing weighted window
particles. The outputs of the update or correction are a set of
weighted “particles”. Given window patterns, a MC inference
can be applied to the updated outputs again.

Figure 6 is an example of a façade with large occlusions, where
the windows shadowed by the occlusions or with curtains are
not detected. With the repetitive pattern, they are inferred with
the corresponding likelihood. Figure 6a shows the resulting
window distributions while Figure 6b presents the inference,
where the redder or warmer color suggests a higher probab-
ility to be windows. Therefore, the missing windows in oc-
cluded areas can be inferred with certain likelihood. Given a
specific likelihood threshold, the points with the likelihood at
the threshold value compose the new shape boundary.

(a) Prior window distribution (b) Posterior inference

Figure 6. The inference of the occluded windows.

Building Model
RMSE
(cm)

Points in
confidence

interval

Log
likelihood

A
GMM (5 planes) 3.7 88.3% 243910

GP 1.9 97.1% 553720

B
GMM (1 plane) 23.5 59.8% -110764

GP 6.2 89.5% 207921

C
GMM (2 planes) 6.0 87.0% 139012

GP 0.7 99.6% 54450

Table 1. Evaluation of the errors and uncertainties.

(a) GMM depth plane (A) (b) GP posterior expectation (A)

(c) GMM depth plane (B) (d) GP posterior expectation (B)

(e) GMM depth plane (C) (f) GP posterior expectation (C)

Figure 7. Examples of the modelled façades.

3. EXPERIMENTS

To evaluate the proposed uncertainty representation of 3D
building models, comprehensive experiments are conducted on
the 3D Lidar datasets collected from the Riegl Mobile Mapping
System VMX 250 in Hannover, Germany. In a pre-processing
step, the LiDAR point clouds are aligned and classified into in-
terested geo-objects and only building points are investigated.

In the experiments, the noise σ2
η is set to the point cloud align-

ment noise 2 cm. The hyper-parameters in the Gaussian kernel
of GP are learned by log-likelihood maximization.

Table 1 compares the modelling errors as well as the fitting
goodness of the uncertainty representations for GMM and GP.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n)

Figure 8. The uncertainty models and prior detected results of windows: (a), (b), (c), (d), (e) are the prior detected windows and the
rectangles denote the prior shapes of the windows. (f), (g), (h), (i), (j) are the corresponding window uncertainty models, where warmer
colors represent higher likelihood of being window areas. (k), (l), (m), (n) illustrate the inferred likelihood of occluded or non-measured
windows; note that they are shown with different shades of blue.

Root Mean Square Error (RMSE) is used to evaluate the dif-
ferences between the estimated surface depth and the test data.
The percentage of the points inside the 95% confidence inter-
val and the log-likelihood values are utilized for evaluating the
goodness of the uncertainty fitting. Log-likelihood is a relative
measure for the uncertainty evaluation and can only be com-
pared for the same case, as it is affected by the number of testing
points. The larger log-likelihood values indicate better fitness of
the uncertainty. As shown in the table, GP has smaller RMSEs
than GMM. In general, the uncertainty quantification of GP is
also better than GMM. However, GP as a non-parametric ap-
proach needs much more storage and computational cost, which
grow drastically with increasing training data. E.g. for a façade
with around 20 000 points, the prediction time of GP is around
10 ms per testing point while it is 10−2 ms for GMM. GP is
also more sensitive to outliers than GMM. The two parametric
and non-parametric methods can be combined to yield better
mapping accuracy in the future.

Figure 7 shows qualitative results of the modelled façades,
where different colors (blue to red) denote the depth inform-
ation. Warmer colors represent protrusions while colder col-
ors denote extrusions. Note that in building B, only one depth
plane is extracted with the GMM-based method due to some
small elements with only a few LiDAR points but various dis-
tances to the major plane. They are modelled improperly with
one GMM component, with a large standard deviation and a
mean value quite close to the major plane, making it hard to
distinguish from the major plane. There are five and two depth
layers segmented in Building A and C, respectively. As the
GP approach treats the façade as a watertight surface, the holes

including occlusions and windows are modelled with depth val-
ues, with large uncertainty. This can be further processed by the
window uncertainty models to determine the information about
the existence of the windows.

Window areas are detected and distinguished from the occluded
areas with the proposed method in Section 2. Façades with
large occlusions are investigated and the detected prior window
shapes and the quantified uncertainties are shown in Figure 8.
The higher likelihood is denoted by warmer/redder colors. As
shown, the uncertain ambiguous window boundaries are mod-
elled by lower likelihood values. The prior window detection
results are strongly affected by the occlusions and point cloud
density. As mentioned in Section 2, if the repetitive pattern
is recognized, a MC inference based on the window layout is
implemented. The results of facades with typical repetitive pat-
terns are shown in Figure 8. Note that repetitive patterns are
not detected in all the examples in Figure 8. E.g., only a ver-
tical repetitive pattern is recognized for Figure 8d, while there
is no repetitive pattern recognized in the example of Figure 8e,
thus it is also not represented in the third row of Figure 8. The
occluded windows are inferred with higher likelihood if there
are more neighboring windows - e.g. as clearly visible in the
second window of the third row in Figure 8k; still, in the other
rows, the occluded windows are hypothesized and shown with
different shades of blue.

4. CONCLUSIONS

In this paper, the 3D building modelling with the quantification
of the uncertainty for façades and windows is demonstrated.
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The uncertainty measures are designed and investigated with
probabilistic methods. GMM and GP are utilized for modelling
the building façade surfaces, where their own advantages and
drawbacks are illustrated with the experimental results and un-
certainty evaluation. Compared to the parametric GMM, GP is
more flexible with a better mapping accuracy but more sensit-
ive to the outliers and it requires expensive computation cost.
Also, the uncertainty quantification for the window existence
and shapes based on logistic models is proposed, where both
the global detection confidence and local uncertainty change of
a window object are represented. The potential inference of the
occluded window areas is performed by the MC approach.

In the future, the GP and GMM methods can be combined
to model the façade to obtain an efficient and accurate map.
This can be achieved by using the GMM for planar parts of the
facade, and the GP for elements on the facade, which cannot be
modelled by a simple plane. To solve the expensive storage and
computation problems of the GP approach, low-rank approx-
imations and sparse techniques can be applied. For a window
model, since the prior window detection results are hole-based,
the detection is sensitive to occlusions and the point density.
A more elegant learning-based window detection approach can
replace the current detection method as the prior window in-
formation. The MC approach relies on repetitive structures of
the windows. Further investigations will be conducted to also
allow different kinds of regularities. Furthermore, in the future,
the use of the models including their uncertainties for localiza-
tion tasks will be discussed and evaluated.
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