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ABSTRACT: 

Digital three-dimensional (3D) reconstruction of objects has many applications in computer vision, archaeology, and the 

entertainment industry. Digital 3D reconstruction can be used to preserve the appearance of valuable historical artifacts; it can be 

used to track the pose of an object in the images, and it can facilitate object modelling. 3D reconstruction of objects in the past has 
been achieved using many sensors such as cameras and laser-strip scanners. Monocular camera-based object 3D modelling can be 

categorized into sparse feature detector/descriptor-based and dense silhouette-based approaches. Feature-based methods identify 

distinctive features on the objects (captured from many images). In contrast, silhouette-based methods only require a distinguishable 

boundary between the object and the background. Silhouette-based methods have the advantage that in the controlled setups, a 

special background can be designed to be distinguishable from the object of interest; therefore, uniquely identifiable textures on the 
object’s surface are not required. Despite their advantages, silhouette-based probabilistic reconstruction remains a challenge. This 

article proposes a new probabilistic approach using 3D occupancy grids for the silhouette-based digital reconstruction of an object. 

The proposed method is designed to be usable with monocular cameras and achieves an accurate reconstruction using only sixteen 

images. Compared to similar silhouette-based volumetric approaches, the voxels are not discarded immediately during the 

reconstruction, and the occupancy grid mapping continuously changes the occupancy probability of the voxels with each new image 
included. 

* Corresponding author 

1. INTRODUCTION

Object 3D digital reconstruction has been a topic of interest for 
many years. 3D reconstruction can preserve valuable historical 

and archaeological artifacts in digital format (Van Nguyen et 

al., 2021). In the entertainment industry, it can accelerate 3D 

modelling (Statham, 2020). More recently, it has been utilized 

to track targets using images (Majcher and Kwolek, 2020).  
Objects in the past have been reconstructed digitally using 

different types of sensors and setups (e.g., stereo-pair, sensor 

array) such as laser-strip scanners (Curless and Levoy, 1996), 

monocular cameras (Pollefeys et al., 1999), RGB-D cameras 

(Anasosalu, 2013), multiple stereo-pairs (Peng et al., 2015), and 
structured light (Ullah et al., 2020). Among the different types 

of sensors, cameras can preserve the appearance of the object 

(e.g., colour, texture). Further, using a monocular camera 

compared to multi-camera and stereo setups can reduce the cost 

of the equipment if the accuracy of the reconstruction can meet 
the requirements for the application.  

Digital reconstruction methods using a monocular camera can 

be categorized into feature point detector/descriptor-based 

(Fang et al., 2020) and silhouette-based methods 

(Bandyonadhyay et al., 2019).  
Feature point detector/descriptors identify and correspond 

distinctive points on the object. These special feature points can 

be external markers (Hou, 2022) or uniquely identifiable 

textures on the object’s surface (Ummenhofer and Brox, 2013). 

Feature detection/descriptor algorithms such as Scale Invariant 
Feature Transformation (SIFT) (Lowe, 2004) and Speeded-up 

Robust Features (SURF) (Bay at el., 2006) are amongst the 

methods used for automated feature point detection. In contrast 

to detecting features on the objects, silhouette-based 

reconstruction depends on a distinguishable boundary between 

the object (foreground) and the background.  
Silhouette-based 3D reconstruction has several advantages over 

feature detector/descriptor methods. Among these advantages is 

that silhouette-based reconstruction can be used for objects that 

do not naturally have a textured surface but can be 

distinguished from their background (e.g., using an object’s 
colour). In controlled setups (such is the case with this paper), 

the background can be specifically designed to be distinctive 

from the object (foreground). The second advantage of 

silhouette-based 3D reconstruction is that it provides a denser 

representation of the object of interest compared to the feature 
detector/descriptors approach.  

Silhouette-based 3D reconstruction can be used to represent an 

object using several different modelling techniques. For 

example, objects can be represented using explicit 

parameterization (Esteban and Schmitt, 2004), B-splines (Wong 
and Cipolla, 2001), level-sets (Whitaker, 1998), and voxel-

based volumes (Potmesil, 1987). The method proposed in this 

paper uses the voxel-based volumetric representation of the 

object, which has the advantage that it can represent arbitrary 

solid objects easier (Tosovic, 2002).  
Despite the advantages, silhouette-based reconstruction has its 

drawbacks. One such drawback is that silhouette-based 3D 

reconstruction is limited to the visual hull of an object 

(Laurentini, 1994). The visual hull might not capture the 

concavities on the surface of an object (Lee and Yilmaz, 2010). 
The second difficulty is a probabilistic representation of the 

silhouettes. In most past literature work, voxels were removed 

or kept during the reconstruction of the silhouette, and the 

decision to remove pixels is deterministic (Mulayim et al., 

2003, Kim et al., 2007, Gouiaa and Meunier, 2014, 
Bandyonadhyay et al., 2019). These approaches can be 
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successful if the objects can be accurately segmented from the 

background in each image. Such accuracy might not be possible 
in every condition. For example, room illumination conditions 

can pose difficulties in detecting the entire foreground area in 

one or several consecutive images, leading to permanently 

discarding object voxels. The alternative approach to the 

deterministic removal of the pixels is to build a probabilistic 
voxel-based representation of the object (De Bonet and Viola, 

1999, Bhotika et al., 2002, Franco and Boyer, 2005, Vogiatzis 

and Hernández, 2011, Kolev et al., 2014). While these methods 

can improve the deterministic approach, most rely on global 

(non-iterative) optimization to fit the best 3D model to all the 
images. Therefore, adding new images to improve the model’s 

accuracy would require solving a large optimization problem 

again. Also, the methods in the past were designed for stereo-

pair or multiple cameras.  

The proposed method of this paper avoids removing any voxels 
during the reconstruction by formulating voxel-based 

volumetric silhouette modelling as a well-known mapping 

technique of 3D occupancy grids (Elfes, 1989). In the 

occupancy mapping, the voxels are all assigned to an 

occupancy value that can vary with the introduction of each 
new image. This iterative process creates a possibility of 

detecting missed foreground pixels in several views (but still 

detected in some other images). To the best of the author’s 

knowledge, occupancy grids for accurate 3D reconstruction of 

the object using silhouettes with a monocular camera have not 
been proposed in the past.  

Compared to the previous silhouette-based methods, projecting 

the voxels onto the image is avoided in the proposed approach. 

Such projection should be applied to all the voxels inside the 

bounding volume; since it is unknown which voxels belong to 
foreground/background segments. Conversely, in this paper, the 

pixels are back-projected to rays, intersecting a virtual 

bounding box designated around the object. The intersected 

segment of the ray is divided into equally spaced points. 

Finally, these points are assigned to the closest voxels. Since 
foreground pixels are detected in the image, it is possible to 

only back project the corresponding rays. The remaining voxels 

can be assumed to correspond to background pixels without 

intersection with any rays. 

For the purpose of the experiment, it is assumed that the 
orientation of the monocular with respect to the object of 

interest is known in each new frame. This assumption is 

reasonable when a turntable with an accurate rotation angle is 

utilized to capture the images from the object of interest.  

The images of the experiments are captured using Raspberry Pi 
Camera Module 2, which is a very low-cost sensor compared to 

high-end metric cameras. The number of images captured from 

this sensor for each reconstruction is sixteen.  

 

2. METHODOLOGY 

2.1 Overview 

The proposed methodology relies on four major steps. Initially, 

the pose of the monocular camera with respect to the rotating 

platform is calculated using the first image. In the second step, 

a background/foreground segmentation is built. These two steps 
are performed only once as an offline stage. The third step 

involves intersecting the back-projected rays passing through 

the camera centre with the virtual box. Finally, in the fourth 

step, the occupancy values of the voxels are updated. These last 

two steps are performed iteratively for each new image 
captured from the object.  

2.2 Camera Pose Estimation 

In the first step, the pose of the monocular camera with respect 
to the turntable is calculated. In order to find this pose, the 

homography between the first image and the turntable’s plane 

is estimated. A four-point algorithm is used to derive this 

homography (Hartley and Zisserman, 2009). See Figure 1 for 

the illustration, where the virtual grid points (blue points) on 
the turntable’s plane are projected (using the homography) onto 

the first image. The red and green colours denote the x and y 

axes in the world frame (the black point corresponds to the 

frame’s centre). These axes are attached to the object (they 

rotate as the object rotates), and the object is reconstructed in 
this frame.  

The estimated homography can be decomposed to find the 

translation and the rotation matrix of the monocular in the first 

view. Assuming that the intrinsic calibration parameters of the 

camera are known, the method in (Zhang, 2000) can be used for 
the decomposition. The camera’s subsequent relative poses (to 

the object’s frame) are calculated using the known accurate 

angle of rotation of the turntable. Figure 2 illustrates this for 

sixteen camera frames (red, blue, and green colours denote the 

x, z and y axes). The axes are scaled such that the distance from 
the centre of the platform to each corner represents 1 unit. The 

first view in Figure 2 corresponds to the image in Figure 1. The 

blue points are in the x-y plane of the world frame, 

corresponding to the blue points in Figure 1(the number of 

points is reduced in Figure 2 for clear illustration).  
 

 
Figure 1. Illustration of homography-based projection. Blue 

points are the projection of the world coordinates in the x-y 

plane. Red and blue points are the x and y axes in the world 

frame. The black point is the centre of the world frame. 

 

 
Figure 2. Sixteen camera poses are shown in the world frame. 

First-view corresponds to the image in Figure 1. 
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2.3 Foreground and Background Segmentation 

Fisher’s linear discriminant function (Fisher, 1936) is used to 
segment the background and the foreground. This approach can 

be considered a supervised classification method. The training 

for this function required as few as twelve points (each for 

foreground and background) in the first image. Once the 

training is achieved, the resultant discriminant function can be 
applied to the subsequent images.  

Figure 3 demonstrates applying the discriminant function to the 

first and seventh images in one of the datasets collected for the 

experiments. Black and white colours correspond to the 

background/foreground segments, respectively. The 
segmentation is mostly successful in both frames, even though 

the training is only achieved using very few points (and in the 

first image). Several falsely detected foreground pixels can be 

seen in Figure 3 (see white pixels at the lower left). However, 

the reconstruction area is limited to a virtual bounding box 
around the object in the experiments. Therefore, false positives 

such as these pixels are not included in the reconstruction. 

Besides false positives, there also exist false negatives (see 

black pixels on the cup’s handle). One reason for the missing 

foreground pixels can be due to the illumination conditions. 
The errors due to the illumination might not be persistent in the 

same points on the object as the platform rotates. The results of 

3D reconstruction in section 3 confirm this. 

 

 
Figure 3. Examples of the binary images of the background 

and foreground segments 
 

2.4 Virtual Box Intersection 

In the third step, image pixels are back-projected to the scene 

and intersected with a virtual bounding box defined around the 

object. Back-projected rays that pass through the virtual box are 
assigned to the closest voxels. In the following, a simple 

algorithm to achieve this is explained.  

Equation 1 shows a point r  on the back-projected ray where x  

is the homogenous image pixel coordinates; P+  is the pseudo 

inverse of the camera matrix, and C is the camera’s perspective 

centre in the world coordinate frame. Using Plücker’s line 

representation, a line ( L ) passing through the perspective 

centre and the point r  on the ray is shown in (2) (where 'C  is 

the transpose of C ). To find the intersection of this line with 

the planes (
iM ) of the virtual box, (3) can be utilized (Hartley 

and Zisserman, 2009). If a line passes through the virtual box, it 

must intersect this box at two special points; denoted as “entry” 

and “exit” points. Intersected points can be tested using the two 

conditions shown in (4) and (5), where outU  and inU  are the 

sets of the points outside and inside the virtual box, 

respectively. X +  and X −  are defined in Equations 6 (a and b), 

where ( )d L  denotes the direction of the line and   is a small 

value.  
 

( )r P x C += +      (1) 

 
' 'L rC Cr= −       (2) 

, {1...6}i iX LM M=      (3) 

 

( )out inX U X U X+ −   →  is an exit point  (4) 

 

( )out inX U X U X− +   →  is an entry point (5)

  

( ), ( )X X d L X X d L + −= + = −         (6.a, 6.b) 

 

2.5 Occupancy Grid Update 

The estimated entry and exit points can be used to select points 

on each ray that is inside the bounding box. These points are 
then assigned to the closest voxels. In the last step of the 

proposed methods, the algorithm uses a formalization of the 

occupancy grid approach (Choset et al., 2005) to update the 

value of each voxel. The update equation is shown in (7), where 

the occupancy probability is denoted as p , and the logit 

function is denoted as l . The random variables representing the 

map, observations and the camera’s pose are denoted as m , z , 

and s  respectively. The observations are the pixels with binary 

values (see Figure 3). The superscript index k  denotes the 

entire sequence starting from the initial state. The subscript 

index denotes only the last state.  

The term on the left-hand side in (7) is the logit of the posterior 

of the occupancy grid. The terms on the right-hand are (in 
order), logit of the update, prior, and initial map probabilities. 

The initial term is 0, which corresponds to assigning an 

occupancy probability of 0.5 to each voxel. The prior term of 

the step k  is the same as the posterior of 1k − . The last term 

(update) will be different for the foreground and the 

background pixels shown in (8) (where F  and B  denote the set 

of foreground and background pixels). Based on Equation 8, 

the associated map voxels will be assigned to a higher 
occupancy value (than 0.5) for a foreground pixel. Conversely, 

voxels associated with background pixels will be assigned to a 

lower occupancy value.  

 
1 1( ( | , )) ( ( | , )) ( ( | , )) ( ( ))k k k k

k kl p m z s l p m z s l p m z s l p m− −= + −   (7) 

 

( | , ) 0.55

( | , ) 0.45

k k k

k k k

z F p m z s

z B p m z s

 → =


 → =

   (8) 

 

The four steps of the proposed algorithm are summarized in 

Figure 4. Camera pose detection and building 

background/foreground detector are performed as offline steps. 

In the online step, occupancy grids are built iteratively. In 
addition, a threshold can be used to designate the voxels with a 

higher probability as the 3D reconstruction of the object.  

 

 
Figure 4. Flowchart of the proposed method 
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3. RESULTS 

We have tested the accuracy of the proposed method using 
three image sets from different objects. For the first dataset, 

sixteen images are captured using a monocular camera. Figure 

5 shows examples of the first set (four images are shown of the 

total sixteen images).  

The calibration parameters of the camera are derived using a 
planar checkerboard and ©MATLAB’s calibration toolbox. The 

relative translations and the rotations between the monocular 

camera and the turntable are calculated using the homography 

decomposition method (see section 2.2). The foreground pixels 

are detected (see section 2.3), and corresponded rays are 
intersected with a virtual box (see section 2.4). One in every 2 

pixels is back-projected. However, for higher accuracy, all the 

pixels can be included, which would increase the memory 

requirements.  

The dimensions of the virtual box for the first experiment are 
261241217 (in x, y and z axes). These dimensions are 

varied slightly in each direction to accommodate the size 

variation of the object in the second and third experiments.  

An example of the intersected virtual box around the object for 

one image is shown in Figure 6, where occupied and 
unoccupied cells are in blue and red colours (the scale of this 

figure is unit world frame). The foreground rays are back-

projected to more than one point. These include all the points 

along the path from the entry to exit points. 

 

 
Figure 5. Example images from the first experiment 

 

 
Figure 6. Back-projected object voxels in the virtual box. Each 

ray intersects the virtual box at many points. See the entry 

voxels in the front and some of the exit points on the top and 

side of the virtual box. 

The occupancy grid voxels have a value between zero to one, as 

they are probabilities. A threshold can be set to only keep 
certain voxels with a higher probability value. This threshold is 

found experimentally in this article, but its value does not vary 

significantly between the experiments. For the first example, 

the threshold is set to 0.92. The reconstructed 3D model for the 

first set is shown in two views in Figures 7 and 8. The accuracy 
of the reconstructed model is compared to measurements 

obtained from the object using a calliper (with 0.02mm 

accuracy). The first measurement taken is the average radius of 

the object’s base as 9.7 centimetres (cm). The second 

measurement is taken from the top to the base height of the 
object, and the value reported is 10.9 cm. The corresponding 

distances are calculated in the reconstructed model as 9.9 cm 

and 10.6 cm, respectively.  

 

 
Figure 7. Reconstructed model (view 1) 

 

 
Figure 8. Reconstructed model (view 2) 
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As it was the main objective of this paper, the proposed method 

provides a complete probabilistic silhouette map in the 
reconstruction process. Figure 9 (b) shows the 3D probability 

map projected onto the z-y plane (The image of the object is 

shown in Figure 9 (a) as the reference). Since many voxels 

projects to one point, the maximum occupancy probability is 

used for the depictions. The thresholds in Figures 9 (c-f) are set 
to 0.96, 0.92, 0.91, and 0.8. Lowering the probability threshold 

will include more pixels with lesser occupancy probability, and 

the object looks to be scaled (see Figure 9 (f)). The change in 

the threshold has more effect in the y-direction compared to the 

z-direction (the object looks more scaled in the y-direction). A 
possible solution to increase the difference between the 

occupancy values of the object and non-object voxels is to use 

more images from new viewpoints. For this experiment, if an 

image is acquired with the camera placed above the object, 

voxels that fall beyond the object’s base will receive a lower 
occupancy probability. 

 

 
Figure 9. Illustration of the effect of varying thresholds on the 

object reconstruction. Figure 9 (a) shows the image of the 

object. Figure 9 (b) is the projected probability map onto the z-

y plane. Figures 9 (c-f) correspond to the threshold values of 
0.96, 0.92, 0.91 and 0.8. 

 

Example images from the second set are shown in Figure 10. 

To further explore the effect of the varying threshold on the 

model, reconstruction using three threshold values is shown in 
Figure 11 (a, b, and c correspond to the threshold values of 

0.91, 0.94 and 0.96). The area of the most interest for the 

discussion is highlighted inside the red box. The lower 

threshold includes the missed voxels on the cup’s handle (see 
Figures 11 (a) and 11 (b)). However, for the threshold value of 

0.96, some of the voxels on the cup’s handle are missing due to 

segmentation errors. A possible source of the error can be the 

high surface reflection on the cup’s handle in some of the 

images.  
Further reconstruction errors can be seen as the additional 

voxels on the top of all three models, which are not present on 

the object (Figure 11 (d)). The reason for this error is that the 

images captured do not observe the top section of the object 
(see images in Figure 10). Figure 12 shows a final model of the 

object where these voxels are removed manually.  

The accuracy of the reconstruction is measured using several 

distances collected from the object and the reconstructed 

model. The reconstruction error is defined as the average of the 
absolute difference between the ground truth and the 

reconstruction measurements. These errors are reported as 0.15 

cm, 0.4cm and 1.2 cm for 0.91, 0.94, and 0.96 thresholds, 

respectively.  

 

 
Figure 10. Example images from the second experiment 

 

 
Figure 11. A comparison of the reconstruction accuracy for 

different thresholds. Figures 11 (a), 11 (b), 11 (c) correspond to 

the threshold values of 0.91, 0.94, and 0.96. Figure 11 (d) 
shows the image of the object as the reference. 

 

 
Figure 12. Final reconstructed model (second experiment) 
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The last experiment is performed using the object shown in 

Figure 13. A utility of the proposed probability reconstruction 
is the ability to incorporate the knowledge that can improve the 

accuracy of the final reconstruction. Such knowledge can be 

regarding the illumination of the room and/or a prior initial 

model of the object. In this experiment, the turntable includes 

extremities (highlighted inside the box in the image in Figure 
14). These extremities block parts of the foreground at certain 

angles and reduce the occupancy values of the corresponding 

voxels. Since the occupancy grid method is iterative, it is 

possible to combine two or more already reconstructed models 

without any requirement to recalculate the original occupancy 
grids. While the turntable issue can be avoided with 

professional and expensive equipment, the iterative process of 

the occupancy grid can also provide a solution to accommodate 

other possible sources of error (e.g. errors due to illumination). 

 

 
Figure 13. Example images from the third experiment 

 

In Figure 14, two reconstructions are compared to each other. 

The reconstruction in Figure 14 (a) is built with the initial 
sixteen images. The model lacks voxels in the highlighted box 

region. A secondary reconstruction is built using another 

sixteen images captured at a higher camera angle where the 

extremity is not blocking the view. This secondary model is 

registered to the initial model using an Iterative Closest Point 
algorithm (Chen and Medioni, 1992). The probability values of 

the second model are utilized as the update term in Equation 7. 

The prior is the occupancy probability map of the initial model. 

The result is shown in Figure 14 (b), and it can be seen that the 

model has improved the accuracy of the initial reconstruction in 
the box.  

 

 
Figure 14. Comparison of the two reconstructed models. 

Figures (a and b) correspond to the initial and improved 
models. The area inside the box in the image shows the 

turntable extremity, which is a source of error. 

 

The accuracy of the registration is very important in the quality 

of the final combined reconstruction. Unfortunately, the errors 
in the registration introduce distortions in the final model. The 

two views selected as samples of the final reconstruction in 

Figure 15 correspond to the secondary reconstruction alone.  

 
Figure 15. Two views of the reconstructed model (third 

experiment) 

 

The reconstruction model has been compared to the Computer-

Aided Design (CAD) in Figure 16. This CAD model was used 

to 3D print the object, and therefore it is an accurate 
representation of the object. Figure 16 (a) shows the selected 

view of the reconstruction. The mesh model of the 

reconstruction, the ground-truth model, and the superimposed 

models are shown in Figures 16 (b), 16 (c), and 16 (d), 

respectively.  
 

 
Figure 16. Comparison of the reconstruction and ground-truth 

model. Figures (a-d) show the reconstructed voxel-based 

modelled, mesh model, ground-truth model, and superimposed 

models, respectively. 

 

 

4. CONCLUSIONS AND FUTURE WORK 

In this paper, a new method for probabilistic silhouette-based 

3D reconstruction is proposed. The proposed method utilizes 

the known mapping method of occupancy grids. Due to the 

iterative process of the occupancy grid-based reconstruction, 
new images can be incorporated into the reconstruction without 

the requirement to process the previous images again. 

Most methods of silhouette-based reconstruction methods have 

utilized volumetric voxel-based representation. These 

approaches project the voxels in the bounding box onto the 
image plane. Instead, in this paper, it is proposed to back 

project only the foreground pixels, which helps detect the 
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voxels with higher occupancy probability. The remainder of the 

voxels is assigned to lower occupancy probability without 
further computations. 

The estimated accuracy of the proposed method is in the range 

of a few millimetres for the first two experiments. In the third 

experiment, the reconstruction model is compared to the CAD 

model of the object, where it exhibits an accurate representation 
of the object. This accuracy was achieved using a low-cost 

monocular camera and sixteen images per experiment.    

The utility of the probabilistic reconstruction method has been 

discussed in this paper. The proposed probabilistic 

reconstruction provides a complete occupancy posterior of the 
bounding volume box. This posterior can be visualized to help 

find the weaknesses in the reconstruction. For example, if the 

objective is to maximize the difference between the occupancy 

value of the object and non-object voxels, the posterior can 

provide insights into where to localize the camera for new 
images. Further, it is demonstrated more than one 

reconstruction can be combined to mitigate certain errors. The 

requirements for this combination are registration between the 

reconstructed models and one occupancy grid update step. 

In this article, the update term is assigned to a fixed value. This 
approach is based on the assumption that each observation can 

be assigned to either background or foreground 

deterministically. However, it is possible that different parts of 

the object’s surface have a different level of saliency from the 

background. A more robust approach is to incorporate the 
uncertainty in the segmentation in assigning probability values 

for the voxels. 
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