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ABSTRACT: 
 
Dense point clouds acquired with a mobile laser scanning system (MLS) device become usual raw data for different surveyor 
applications: topographic maps, 3D models, road inventories, risk assessment of vegetation on road or railroads. Thanks to important 
evolutions in technologies, MLS devices became powerful and very popular. In the meantime, the need for point cloud automatic 
processing tools is growing. However, the available tools have not yet reached a sufficient level of maturity. Using MLS point clouds 
to produce topographic maps, BIM model or other deliverables, requires very often manual vectorization (or digitalization) work. In 
the road context, the transition from point cloud to road map that consists in delineating curb or road edges, road markings, pole, trees, 
facades etc. is currently performed manually. To reduce these time-consuming operations, several solutions have been proposed in the 
literature. In this paper we present the first results of a method consisting in vectorizing urban point cloud scene. The originality of this 
work is to propose a global approach aiming to detect and vectorize simultaneously multiple objects. The developed algorithm uses 
cross-section analysis to detect road curbs and vertical objects. The first results are promising, since an F-score higher than 80% has 
been reached, even before applying road logic rules or additional knowledge. The detection and extraction of vertical objects including 
facades, trees, and poles, is more challenging but the detections also present a recall greater than 85%. 
 
 

1. INTRODUCTION 

Mobile Laser Scanning (MLS) became a very popular technique 
to obtain, on large areas, dense points clouds associated with 
panoramic images (Ma et al., 2018). This acquisition technique 
is very fast and secured in an urban or rural road context 
compared to conventional surveying techniques with which the 
surveyor acquires only the points of interest. Usually, these raw 
data do not constitute the final product. Topographic map, 3D 
building models or other deliverables require to process the raw 
data captured with MLS devices. Detection and modeling of 
objects based on MLS data are time consuming operations 
because they are mostly performed manually. In this paper, the 
operation so-called “vectorization” consists in delineating road 
features in the point cloud so that they can be represented in a 
topographic map. Linear objects such as curbs or guardrails are 
described with 3D polylines whereas punctual objects like 
streetlamps or trees are defined by their insertion point in 3D on 
the ground. 
 

2. RELATED WORKS 

Point cloud processing has received increasing attention, 
especially since the successful application of Deep-Learning 
(DL) methods in the domain of image processing. However, the 
application of DL techniques to 3D point clouds is still an open 
research topic. Different approaches have been proposed in the 
literature and are briefly summarized in the following 
paragraphs. If a large amount of works is based on DL, more 
conventional approaches continue to be proposed and show also 
great performances. 
 
A huge problem usually related in the literature dealing with 
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MLS dense point clouds is the lack of natural spatial structure in 
the data. Different approaches have been proposed in order to 
define spatial relationships between points. In this part, we first 
describe the DL approaches and then focus on conventional 
methods. 
 
2.1 Learning-based methods 

2.1.1 Image-based methods: To benefit from the great 
results of Convolutional Neural Networks (CNN)  on 2D images, 
Boulch et al. (2018) proposed to generate screenshots of point 
clouds and then perform a semantic segmentation using SegNet 
(Badrinarayanan et al., 2017). Finally, the semantic labels are 
reprojected on the points, knowing the positions and orientation 
of the snapshots. The number of required screenshots and their 
position is critical to perform an exhaustive segmentation of the 
scenes. The back projection of the labels from the screenshots to 
the point cloud is also a touchy operation. Error transmission can 
occur during back propagation of the label for two reasons: 
semantic segmentation errors are amplified during the 
reprojection. Moreover, multiple labels can be affected to the 
same point according to different screenshots. We can also notice 
that this approach doesn’t really exploit the point cloud as 3D 
data as a voxel can be. 
 
2.1.2 Voxel-based methods: This data structure is a 3D 
generalization of 2D pixels in images. The voxelization consists 
in transforming point cloud into a 3D grid. Zhou and Tuzel 
(2018) performed feature extraction and boundary box prediction 
for object recognition using an end-to-end trainable deep learning 
network based on a voxel grid structure. 
Meng et al. (2019) combine a regular voxel grid and Radial Basis 
Function (RBF) to improve the learning capabilities and a 
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variational auto-encoder with group convolution to perform point 
cloud segmentation.  
This data structure requires a huge amount of computing memory 
and leads to a loss of details equivalent to a spatial sub-sampling 
that smooths all details smaller than the voxel size. 
 
2.1.3 Point-based methods:  PointNet (Qi, Su, et al., 2017) 
and its multiscale improvement PointNet++ (Qi, Yi, et al., 2017) 
constitute the first neural networks able to deal with raw point 
clouds. Using shared Multi-Layer Perceptrons (MLPs), it learns 
pointwise features that allow classification and segmentation 
tasks. A lot of published work are based on this pioneer work but 
all of them can only handle a fixed number of points at the same 
time. That limitation makes the use of PointNet or PointNet++ 
for high density and large-scale point clouds very difficult. To 
deal with it, RandLA-Net (Hu et al., 2021) particularly use a 
random sampling technique, that reduces the need for memory 
and computation time. A specific local feature aggregation 
module is also described to compensate the loss of key features 
during the sampling step. We also note a recent proposal with 
lightweight Neural Networks (Puang et al., 2022). 
 
Convolutional approaches such as KPConv proposed by Thomas 
et al. (2019) also deal directly with raw points. The authors define 
a rigid and deformable convolution operation. The weights of the 
kernel are localized in the Euclidean space. The kernel spatial 
continuity defined in a radius neighborhood allows to operate 
directly on the points without any other data structure. 
 
2.1.4 Other structures 
Landrieu and Simonovsky (2018) present a graph-based method 
for semantic segmentation. Basics shapes of the point cloud 
called “superpoints” constitute the vertices of the graph while the 
edges describe relationships between them. This structure allows 
a great reduction of the point cloud dimensionality while 
preserving local geometric complexity. 
We can also cite lattice structures, as proposed in Alexandru 
Rosu et al. (2020). The sparse permutohedral lattices required 
less memory and computation since the simplices are only 
allocated if they are associated with point describing a surface of 
interest. Compared with a voxel approach, this structure allows 
to process larger scale point clouds. 
 
2.2 Conventional approaches 

As introduced before, most of the DL approaches have not solved 
the point cloud processing problem yet and that’s why 
conventional methods are still proposed and used. Actually, the 
neighborhood definitions and features extraction are currently 
too limited to reach the goal of 3D interpretation and 
vectorization of complex point cloud scenes. Two categories can 
be considered among the conventional methods: a) the scan line 
structure-based approaches and b) works that aim to realize road 
features inventory. Contrary to DL that aim to perform a full 
classification or segmentation of point clouds, these approaches 
focus on one or more specific objects. 
 
2.2.1 Scanline-based approach: This data structure is linked 
to the acquisition process with rotative lidar heads that usually 
equip MLS devices.  A scan-line is a set of points that are almost 
align along a straight line because they were acquired during the 
same spin of the lidar head. The scan-line structure is illustrated 
in figure 1. Most of the time, the scan-lines are oriented with a 
45-degrees angle to the road direction. They are independent 
from the acquisition speed or point density and constitute a 
simple 2-dimensionnal structure. 
Honma et al. (2019) propose a scanline-based technique that 

allows to segment flat zones, such as roads or sidewalks from 
irregular zones like curbs, facades, vegetation, or poles. 
Using the same data structure, Yao et al. (2021) segment the road 
pavement with a height threshold along the scanline. In a second 
step, the authors threshold the intensity of the rasterized 
pavement’s points using (Bradley and Roth, 2007) adaptative 
thresholding method to segment road markings. Gézero and 
Antunes (2019) propose an automated curb break lines extraction 
process. 

 
 

 

 

 

Figure 1 : scan-line obtained by MLS acquisition after Yao et al. 
(2021) 

2.2.2 Road Features Inventory:  
Some studies focus on a specific object. Usually, the proposed 
method depends on the nature and geometry of the search object. 
For instance, Safaie et al. (2021) propose a method using 
horizontal cross sections to locate and extract geometric 
properties of trees (trunks et foliage heights and diameters). Gao 
et al. (2020)  describe a workflow using a modified DBSCAN 
clustering method for the extraction of guardrails in an urban 
context. Rodríguez-Cuenca et al. (2015) propose an approach to 
detect and delineate street curbs from MLS 3D point cloud data 
using a raster approach. Mi et al. (2021) propose another 
procedure on the same topic. A “supervoxel” generation enable 
to extract curb candidates, then a modified Euclidian clustering 
method allows to obtain long and linear clusters. The curbs are 
vectorized using Bezier curve fitting and Kalman filter is 
employed to complete road boundaries. Balado et al. (2020) 
propose a hybrid method using point cloud and panoramic 
images to realize a traffic sign inventory. They observe that 
without using the images, the classification of all the type of signs 
is not achievable. 
 
Other studies propose workflows to detect simultaneously 
multiple road features. Umehara et al. (2021) for example, 
propose a two-step approach. In the first step, after a 
segmentation of the ground, buildings and utility lines, the 
remaining point cloud is divided into individual road features. In 
a second time, using a snapshot of the individual clusters, their 
natures are identified using YOLO v3. Justo et al. (2021) present 
an automatic solution for the inventory of traffic signs and 
guardrail. The method allows to generate IFC model of the road 
using predefined 3D customizable models. In a previous work, 
Barçon and Picard  (2021) propose two different workflows 
aiming to extract road features from MLS data. The first one 
describes a process that extracts and vectorizes pole like objects 
in an urban context, whereas the second one performs the 
extraction of road markings and guardrails in a high-way 
environment. 
 
In this part, the cited methods are very varied. Each of them 
focusses on one or a few objects and their outcomes are different 
(inventory, IFC model, 3D points or polylines). Therefor the 
proposed methods are diverse (raster, supervoxel, hybrid point 
cloud and image…). This show that point cloud processing is an 
active research topic and no standard or preferred method already 
exist. It also shows that DL isn’t the only approach to deal with 
point clouds, especially if the outcome isn’t a segmentation or 
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classification. Some tendencies can be noticed, the use of 
horizontal slices for tree or pole-like objects or the use of 
horizontal ortho image for road marking detection. Unlike these 
studies, our goal requires global approach that can perform a 
vectorization as exhaustive as possible of all the objects in a point 
cloud scene. 
 

3. DATASET 

The tests are performed on a very dense point cloud captured 
along a Parisian Street with a Riegl VMX-450 MLS device. The 
point cloud used for the experiments covers an area of 75 x 26 m 
and contains 50 Mo points with a density around 64000 points 
per square meter. As the MMS device is equipped with two lidar 
heads oriented differently and the streets are scanned in both 
ways, the scan-line approach cannot be used. The dataset presents 
a typical road environment with trees, streetlamps, parked cars, 
facades, curbs, and other urban furniture. Screenshots of the 
dataset are presented in Figure 8. 
 

4. PROPOSED APPROACH 

As explained in the introduction, the goal of this work is to create 
a fully automatic processing chain for a systematic identification 
and vectorization of road features in an urban scene. The objects 
of interest are structural elements of streets, curbs or roads edges, 
facades, poles, and trees. The approach is entirely based on point 
clouds, without using sensors features or panoramic images, and 
should allow a large-scale use. As the objective is to perform a 
point cloud vectorization, a subsampling of the data is not being 
considered for now, as it can lead to a loss of details. 
 
4.1 Data structure 

To perform the vectorization of road features, the first obstacle 
encountered is the lack of natural spatial structure as mentioned 
in section 2. Therefore, it is very difficult to vectorize a point 
cloud directly in 3D space. It implies to detect (object 
recognition) and then extract or select one or more specific 3D 
position(s) on each object. A great challenge is that those precise 
points might be missing in the point cloud due to low density or 
occlusions. 
That is why we propose to study the point cloud in three steps 
using multiple representations of the point clouds. For a given 
area, regular cross-sections, and a Bird-Eye-View (BEV) are 
generated as intermediary data.  The choice of raster structures is 
obviously comfortable because we can take benefit from well-
known and proven image processing tools. This structure also 
allows to visualize and evaluate the processing steps quickly and 
easily. We consider that using only BEV or cross-sections 
obtained from point cloud is insufficient to properly process the 
3D point clouds. 
 
4.1.1 Cross-sections are needed to finely observe vertical 
objects such as curb, poles, facades, guardrails, trees. It allows to 
handle vertical superpositions and to estimate objects heights. 
The best way to define the cross-sections is to orient them 
orthogonally to the street direction. Using that orientation, the 
street structure decomposition is easy to perform because street 
cross-sections are almost always identical. This specific 
orientation also allows to reduce the geometrical distortions 
associated with the further projections (section 4.3). 
The use of external data such as open-source national streets 
databases appears to be the simpler and more efficient way to 
properly define and orient the cross-sections. Polylines in this 
database provide the direction of the road, from which the 
orthogonal direction is used to realize cross-sections. This data 

source is considered as more robust than the car trajectory which 
can include a lot of variations, such as loops, lane changes or 
multiple passes. It must be noticed that the cross sections are not 
relying on the sensors features such as GPS time or scan angles 
as it is the case in scan-line approaches (Gézero and Antunes, 
2019; Honma et al., 2019; Yao et al., 2021) 
 
4.1.2 Bird-Eye-Views provide a general overview of the area 
and counterbalance the loss of information associated with the 
study of independent cross-sections. It permits to complete the 
object detection because it allows a better detection of planar 
object such as road markings or manhole covers. 
 
The BEV also represents a very helpful base map for the final 
step of the workflow that consists in a compilation of the cross-
sections and BEV predictions. The alignment and correlation of 
the detected basic predictions will lead to the creation of 3D 
polylines and 3D points corresponding to the road features. In 
order to compute this final vectorization, a spatial and statistical 
study will be performed. The rules will enable to delete false 
positives and to perform some further detections to improve the 
recall. 
This paper mainly focusses on the first step involving the study 
of the street-cross sections. Next steps will be described in 
upcoming articles. 
 
4.2 Point cloud orientation 

As mentioned in section 4.1.1, an open-source national streets 
database is used to locate the cross sections perpendicularly to 
the road. For that purpose, the point cloud is oriented such as the 
Y axis corresponds to the direction of the road. The cross section 
corresponds therefor to the (XOZ) plan as shown in Figure 2. 

 
Figure 2: Reference system used for orienting the point cloud 
and consequently the cross sections 

4.3 Generation of regularly spaced cross-sections 

Considering the street-oriented point clouds, a profile is a 
projection on the (XOZ) plane of the points having a Y 
coordinate according to a defined interval. The optimal thickness 
of the point cloud is a compromise between the following 
statement: 
- A thinner interval reduces objects’ width, especially if 

they’re not aligned with the road direction or presenting a 
curved profile, like curved curbs, making the identification 
and vectorization step easier. An example of shape distortion 
is the planter in Figure 3. 

- A larger interval implies that more points are available to 
describe each object and make the vectorization easier. 

- Larger intervals also allow to reduce the impact of density 
variations. 

Regarding the dataset presented in Figure 0, a 5 cm profile 
thickness has been defined for the profile. A cross-section is 
considered every 5 cm along the road direction. This high spatial 
sampling frequency allows to maximize the number of 
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evaluations of the algorithm on the available dataset. 
The pixel size has been fixed to 1cm to limit the smoothing of the 
point cloud. Choosing a small pixel size also allow to enhance 
the precision of the final outcomes, considering the pixelwise 
treatment and estimations.  
 
4.4 Segmentation of vertical and horizontal image features 

As illustrated in Figure 3, a cross-section is an almost empty 
image. To avoid misclassifications, several steps have been 
considered to reduce the noise and acquisition artifacts. For this 
purpose, different features have been extracted such as point 
density, point intensity and covariance features, 2D linearity 
!!"!"
!"

 and orientation (angle) of the first eigenvector. We also 

considered the two dominant orientations of a neighborhood. 
Using those features and considering the labelled reference data, 
criteria have been searched to realize a first raw selection of the 
desired points. These attempts were unsuccessful for multiple 
reasons. The principal one is due to the density variations that 
complicates the extraction of a satisfying 2D neighborhood. The 
size of the neighborhood is also critical. It should be large enough 

to include a sufficient number of points but not too large, to 
remain sensitive to small structures or geometries. 
 
After investigation, it can be observed that the orientation of the 
neighborhood, called 𝜃, is considered as the most robust and 
meaningful feature on the profile for our purpose. 𝜃 is used to 
distinguish points belonging to vertical or horizontal surfaces and 
to adapt the further process. After thresholding using the natural 
45° threshold, a gaussian mixture model is then applied to refine 
and smooth the segmentation of the pixels. The result of this 
segmentation is color-coded in Figure 3. 
 
4.4.1 Raw vectorization of the CC: After the previous step, 
pixels on the image belong to one of 2 classes, vertical or 
horizontal objects. Points of each class are subdivided into local 
clusters using the DBSCAN algorithm (Martin et al., 1996). For 
the clarity of the description, we describe the process applied to 
the points describing horizontal surfaces. The process is adapted 
for the vertical elements by performing an inversion of the axis. 
In order to improve the clustering process to finely distinguish 
horizontal clusters with different elevations, biased coordinates 

are introduced. The Z coordinates are multiplied by 4 for the 
horizontal points. 
Then each cluster is skeletonized and vectorized. For each 
horizontal cluster, a sliding window along the X axis determine 
the median value of the Z coordinate of the clusters and leads to 
the creation of a raw polyline. This technique has several 
advantages: it is robust, simple and does not require any prior 
knowledge at this time. 
 
4.4.2 Ground/non-ground segmentation: Considering the 
set of horizontal raw polylines obtained in previous step, a 
segmentation into ground/non ground classes is proposed using 
following considerations:  

- Ground can be approximated as a 1-dimensional vector 
with a length equal to the profile width (along X axis). 

- The set of horizontal polylines is sorted depending on 
their elevation. The first element, so the one with the 
smaller elevation among the whole set is added by 
default. It fills the corresponding X extent of the 1-
dimensional vector describing the ground altitude. 
The following polylines complete the ground profile 
one by one, if they do not overlap with the existing 

parts. In other words, we assume that the ground can 
be simplified as the combination of the lower polylines 
for each X position of the profile. 

In most of the cases in an urban context, this simplification is 
verified. 
The obtained elevation isn’t continuous because the ground is 
described by polyline portions at this stage. An interpolation is 
made between available parts. Even if this operation introduces 
approximations, dealing with continuous data is necessary for the 
following steps, because a derivation of the ground profile must 
be carried out to detect the areas of interest. 
 
4.4.3 Extraction of areas of interest: This subsection 
presents the selection of different areas of interest that may 
contain the searched objects. 

1. By intersection 
Having an estimation of the ground profile and a set of vertical 
objects, intersections are searched. Considering a buffer of 10 cm 
from the ground profile each intersection with vertical polylines 
is analyzed. If the vertical polyline has an elevation range less 
than 25 cm, it’s supposed to be a curb, if not, it is considered as 

Figure 3: Classification of the points belonging to a cross-section into vertical (green) and horizontal (red) surfaces. 
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unclassified (three, façade, pole…).  

2. By derivation 
To complete the search of areas of interest, the derivation of the 
ground profile is calculated and then thresholded. The defined 
threshold allows to select significant elevation shift 
corresponding to curb jump around 15 cm. Local peaks are then 
considered as potential locations for curbs. 
  
4.5 Vectorization of curb-like elements 

Having a list of position for potential curbs, the vectorization can 
be started in each of these areas and is performed in 3 steps. If 
the sigmoid curve fitting is convincing (paragraph 4.5.2), the 
vectorization is saved. 
 
4.5.1 Sigmoid curve fitting: Inspired by Zhou and 
Vosselman (2012), the vectorization of curbs is based on a curve 
fitting process between the points and a sigmoid function 
parametrized as shown in equation 1. 
 

𝑓(𝑥) = 𝑍#$% +
&

'()!"($!%)
          (Eq. 1) 

With  
- 𝑍!"# : minimum altitude of the curb 
- 𝑟: elevation range of the curb 
- 𝑏: position of the inflection point 
- 𝑎: sharpness of the edges 
- 𝑥: position against the X axis of the profile 

This parametrization without prior defined intervals for the 
parameters, allows a great flexibility. The function is fittable to 
any straight-line orientation, and of course, to a curb profile 
regardless of its height or orientation. 
For each area of interest, all the points in a 30x30 pixels square 
are used as input data for the curve fitting (in black on Figure 4). 
The conditioning of the problem (inverse of an exponential) 
requires normalizing the input data in the [0;1] interval along 
both X et Z axis. The final values of the parameters are obtained 
later, during a “denormalization” step. 
The regression is performed using a RANSAC estimator (relative 
residual threshold of 10%, 300 max trial, square error loss, and 
the inlier data should represent at least 70 % of the data). 
 

 
 

 

 

 

 

 

4.5.2 Filtering of the area of interest: The areas of interest 
are then filtered using the fitted parameters 𝑍!"#, 𝑟, 𝑎, and 𝑏. 
The proposed filters are the following: 

- The inflexion point parametrized by 𝑏 should be in the 
neighborhood. In other terms, the elevation jump 
should be in the defined 30x30 pixels neighborhood. 

- The 𝑟 value corresponding to the elevation shift of the 
curb should be greater than 6 cm. 

- The 𝑎 parameter should be greater than 9 unless the 
detected slope isn’t sufficient to characterize a curb. 

- The 𝑎 parameter should be lower than 40 unless the 
curve is “too sharp” to describe a curb. 
 

4.5.3 Vectorization: Each remaining zone of interest is now 
classified as a curb. Curbs are vectorized with two points as 
shown in Figure 4. 
The X position of these two points correspond to the extremum 
of the second derivative of the sigmoid function using the 
optimum parameters. This X position might not correspond to 
any of the point in the profile, due to occlusions for instance. In 
order to choose an existing point, a search is started to find the 
nearest point available. This search is constrained as follows: The 
research radius increases one pixel at a time, until at least one 
point is reached. If multiple points are available, the minimum or 
maximum elevation value is chosen considering the searched 
point is the bottom or top point of the curb. In this way there is 
no risk for the algorithm to vectorize missing parts of an object. 
 
4.6 Vectorizing vertical objects 

4.6.1 Vertical raw vectorization filtering. If the ground 
surfaces are solid and opaque, vertical objects may be transparent 
(glass façade) or reflective (street signs). Generally, their shape 
is not well defined and trail points can appear. That’s why vertical 
polylines delivered from the raw vectorization (section 4.4.1) are 
smoothed using a median filter of size 5 to reduce the noise. 
 
4.6.2 Vectorization of vertical objects using ground 
intersection. Each remaining vertical polyline is vectorized as a 
segment using a straight-line equation and a RANSAC estimator. 
Very often, the vertical objects are incomplete on the profiles, 
due to occlusions. It is also recurrent that the lowest part of 
facades is missing (cf. Figure 5). To deal with this situation, a 
point of intersection between the segment and the ground profile 
is computed. The ground profile is extrapolated by 50 cm on each 
side to compute a projected intersection in low points areas where 
the ground profile has not been completed. 

 
Figure 5: Facade vectorization with missing parts. 

4.6.3 Filtering: To be considered as a potential vertical road 
feature, each vertical segment should respect the following 
conditions: 

- The elevation range should be greater than 50 cm. 
- The angle between the Z axis and the segment should 

be less than 15°. 
- The distance between the ground profile and the lower 

part of the segment should be less than 100 cm. 
The vectorized point is the intersection point calculated between 
the ground and the segment. The estimated heigh of the object 
are especially stored for further treatments. 
 

5. ASSESSMENT 

5.1 Reference data 

The 1401 profiles have been vectorized manually using “an 

Figure 4: Vectorization of a curb with sigmoid curve fitting. 
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interactive application” created for this purpose. This program 
displays the successive profiles and automatically position the 
cursor according to the previous validated vectorization. The user 
is invited to correct the position, validate, or cancel the 
vectorization for the displayed profile. It allows to quickly 
generate reference data. The manually vectorized road features 
are the curbs and staircase steps, facades, poles, trees, and wall 
or fence. 
 
5.2 Evaluation method 

The automatic vectorization is compared to the reference 
vectorization for each profile. The references are associated with 
the closest automatic vectorization. A maximum search distance 
of 10 cm is used. Within this tolerance, the automatic 
vectorization is accepted as a True Positive (TP). If a reference is 
not associated with any automatic result, it’s a False Negative 
(FN). If an automatic result does not correspond to any reference, 
it is considered as a False Positive (FP). 
In a second step, some further evaluations are performed on the 
TP. The shift along X and Y as well as the 2D distance between 
reference and obtained prediction is computed. 
 

6. RESULTS 

The image approach facilitates the visualization of intermediate 
and final results. However, the presented evaluation method is 
needed to perform a global evaluation and to have quantified 
indicator. 
 
6.1 Quantitative results 

The evaluation method is applied to the 1401 profile, the results 
are presented in the Table 1 and Table 2 to quantify the quality 
of the vectorization. 
 
6.1.1 Curb detection and vectorization 
The obtained results for this dataset are very satisfying and 
encouraging. We notice a potential bias between the manual and 
automatic vectorization for the bottom point. This could be 
caused by the fact that the automatic algorithm only vectorizes a 
positive pixel. This constraint is not respected in the reference 
data. 

TP = 1246 FP = 312 FN = 296 
Recall = 80.8% Precision = 80.0% F-score = 80.4% 

 
Bottom point Top point 

Δ𝑋 
(cm) 

ΔY 
(cm) 

Distance 
(cm) 

Δ𝑋 
(cm) 

ΔY 
(cm) 

Distance 
(cm) 

Mean 
-0.3 -0.9 1.9 -0.0 -0.1 1.6 

Median 
-0.2 -1.0 1.9 0.0 -0.0 1.6 

Standard deviation 
1.4 1.4 1.2 1.4 1.3 1.3 

Table 1: Quantitative results for curb vectorization. 

The mean and median distance between prediction and reference 
data are less than 2 cm (2 pixels), corresponding to the order of 
magnitude of the point cloud noise on a solid surface. This also 
corresponds to the user vectorization accuracy estimated between 
1 and 2 pixels. 
6.1.2 Vertical objects detection and vectorization 
Quantitative results for vertical object vectorization are reported 
in Table 2, which presents a high number of FP. This bad score 
is explained by the lack of filtering as soon as the criteria listed 
in section 4.6.3 are fulfilled. 

In fact, classify vertical object just using one profile in which they 
appear is a challenging task. Shapes of different objects might 
look very similar without further context. For example, anti-
parking posts and car doors, or façades and electric poles can 
have respectively the same dimensions. The classification of 
those objects will be performed in further processing steps using 
the BEV and “road logic rules”. 
The statistics of the shifts between manual and automatic 
vectorization does not reveal any bias. 
 

TP = 1124 FP = 1203 FN = 186 
Recall = 85.8% Precision = 48.3% F-score = 61.8% 

 
Δ𝑋 (cm) ΔY (cm) Distance (cm) 

Mean 
-0.2 0.0 0.5 

Median 
0 0 0 

Standard deviation 
1.6 0.1 1.5 

Table 2: Quantitative results for vertical object vectorization. 

6.2 Computing time  

The following computation times are given for a laptop with the 
following specifications: Intel i7-10750H @2.6GHz CPU, 32 Go 
RAM. 
The first operation consists in generating a profile and compute 
per point neighborhood orientation and save it as a file. It takes 3 
seconds per profile. As the vectorization of the profiles are 
independent processes, they can be parallelized. With 4 processes 
in parallel, the vectorization of a profile takes 3,2 second in 
average. 
 
6.3 Qualitative results 

Some of the labelled data come from the user’s knowledge and 
user’s analysis rather than from a purely geometrical recognition. 
That’s why a 100% score is not feasible. The great majority of 
the FP for vertical object is associated with cars or vegetation. 
These false detections will be refined in further steps. Poles and 
facades are globally well detected. Their vectorization is 
sometimes imperfect due to noise or acquisition artifacts (trails 
at the edges, glass surface noise…) (Figure 7). 

 
Figure 6: Examples of vectorization results. a) Bad vectorization 
for a brush generating 2 FP (curb and vertical object); b) 
Successful vectorization of staircase steps; c) FP generated by a 
car’s door.  
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Figure 7: Some vectorization results, a streetlamp (right) and a 
tree (left). 

7. DISCUSSION 

At this time, a complete critical review can not be performed 
because only the first stage of the global approach consisting in 
the study of street cross-section has been evaluated. Indeed, the 
processing steps using the BEV and the application of the “road 
logic rules” are under progress. Nonetheless, some first remarks 
can be done on this first study. 
 
Whereas the 2D treatment of the point cloud using profile is 
comfortable in term of data structure, the challenges raised by the 
point cloud are always present on the images: density variations, 
noise, occlusions, etc. The extraction of pixelwise features is 
complicated because contrary to a “normal” image, the profile 
image is mostly empty. 
To deal with these challenges, some interpolations and 
extrapolations are locally performed. The majority of the criteria 
and hypothesis made in this study are based on basic geometric 
considerations (continuity of the ground, orientation, 
superposition) and on order of magnitude (dimension of the 
objects, distance between them…). 
 
The sigmoid curve fitting has the advantage to be adjustable to a 
lot of situations. The optimized parameters allow to discuss the 
nature of the points. However, in very noisy areas or in partial 
occlusion situations, the curve fitting results could be incorrect 
and lead to misclassifications. It could be noticed that the curb 
detection and vectorization provide very good results on curb and 
staircase steps (Figure 6b and Figure 7) even if the point density 
is relatively low. In light of the results of the curb detection, the 
usage of the sigmoid curve fitting is validated. 
 
As mentioned before, vertical objects’ detection is very simple 
and not very constrained. Any dense vertical surface is detected, 
leading to a lot of FP. The vectorization of those elements is 
difficult due to the varying width of the object on the profile. As 
visible in Figure 7 , the trunk is incomplete and the width 
inconstant. The obtained vectorization corresponds to the left 
side of the trunk (the right was not visible from the scanner). On 
the same figure, the streetlight is vectorized on its axis.  
 
At this time, no prior knowledge has been introduced yet, set 
aside from the geometry of the curb modelized as a sigmoid 

function. The oriented profiles could allow to introduce a notion 
of a typical profile. The proposed approach is flexible and can be 
enhanced later.  
Several iterations of vectorization can also be envisaged in which 
the results of the previous and further profiles could be used to 
refine the detection and vectorization of the current profile. In 
this way, the continuity and linearity of the object can be used as 
prior knowledge. 
 

8. CONLUSION AND PERSPECTIVES 

This paper described a general approach for the inventory and 
vectorization of road features from point cloud scenes. An 
algorithm has been developed to detect and vectorize curbs and 
vertical objects from MLS point cloud in an urban environment. 
This algorithm only constitutes one stage of the global approach. 
It consists in the structuration and study of the point cloud scene 
using vertical cross-sections. The usage of cross-sections 
oriented perpendicularly to the road direction allows to manage 
vertical superpositions and to finely deal with objects having a 
vertical amplitude. The presented results are promising. Some 
parameters tuning can be done to enhance them. In the future, a 
set of road rules describing spatial relationships between road 
features in a knowledge database will allow to improve the 
overall process performances. As describe in 4.1.2 the BEV 
image processing will also complete the cross-sections’ results.  
 

 

 
Figure 8: Point cloud obtained by MMS in an urban area. Top 
and bottom point of curb in red; Vertical object projections 
on the ground in green. 
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