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ABSTRACT: 

 

3D building reconstruction using Earth Observation (EO) data (aerial and satellite imagery, point clouds, etc.) is an important and 

active research topic in different fields, such as photogrammetry, remote sensing, computer vision and Geographic Information 

Systems (GIS). Nowadays 3D city models have become an essential part of 3D GIS environments and they can be used in many 

applications and analyses in urban areas. The conventional 3D building reconstruction methods depend heavily on the data quality 

and source; and manual efforts are still needed for generating the object models. Several tasks in photogrammetry and remote 

sensing have been revolutionized by using deep learning (DL) methods, such as image segmentation, classification, and 3D 

reconstruction. In this study, we provide a review on the state-of-the-art machine learning and in particular the DL methods for 3D 

building reconstruction for the purpose of city modelling using EO data. This is the first review with a focus on object model 

generation based on the DL methods and EO data. A brief overview of the recent building reconstruction studies with DL is also 

given. We have investigated the different DL architectures, such as convolutional neural networks (CNNs), generative adversarial 

networks (GANs), and the combinations of conventional approaches with DL in this paper and reported their advantages and 

disadvantages. An outlook on the future developments of 3D building modelling based on DL is also presented. 
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1. INTRODUCTION 

Although 3D city models have initially been used for 

visualization purposes; they have been increasingly utilized in a 

variety of domains and tasks, such as collaborative urban 

planning, population density analysis, mobile 

telecommunication applications, solar potential assessments, 

disaster management, 3D navigation, and environmental 

simulations (Biljecki et al., 2015). Researchers have been 

investigating methodson the automatic 3D reconstruction of 

buildings from Earth Observation (EO) data and their modelling 

for three decades (Haala and Kada, 2010). There are several 

manual steps involved in 3D reconstruction in traditional 

methods, including image pre-processing, 3D point cloud 

extraction, data fusion, and texture mapping. Thus, cumulative 

errors occur in the process and cause inaccurate semantic 

features in the reconstruction of 3D shapes that seriously affect 

their quality (Liu et al., 2021). Thanks to the availability of 

benchmark datasets, such as the airborne images and laser 

scanner data by ISPRS WGIII/4 (Rottensteiner et al., 2014, 

Rottensteiner et al., 2012), it has been possible to comparatively 

evaluate various methods for the segmentation of urban objects 

and also the 3D reconstruction of buildings.  

 

In the last decades, city models were produced either manually 

by photogrammetry operators from aerial imagery or by using 

conventional methods (non-Machine Learning methods). The 

conventional 3D building reconstruction methods can be 

categorized as model-driven and data-driven methods. The 

model-driven methods aim to match the geometry of the roof 

generated from digital surface models (DSMs), e.g. point 

clouds, with the roof types in a library (Henn et al., 2013). 

Using this approach, it can be ensured that the reconstructed 

roof model is topologically correct; but problems may occur if 

there is no candidate for the roof shape in the library. Moreover, 

model-driven methods utilize a limited number of pre-defined 

shapes given in the model libraries, which reduces the 

production accuracy. In addition, complex roof structures may 

not be modelled. In data-driven methods, a DSM (often in the 

form of a point cloud) is utilized as primary data source and the 

models are generated from this data as a whole without focusing 

on any particular parameter. In the data-driven approach, the 

main problem is that the extracted segments may not be 

intersected successfully leading to topological or geometrical 

errors. The data-driven methods are usually not robust and 

highly sensitive to noise in the data. Due to the noise sensitivity 

of data-driven methods, data pre-processing is an essential step 

to avoid incorrect results. 

 

The way the geospatial domain operates is changing 

fundamentally as a result of Artificial Intelligence (AI) (Döllner, 

2020). Deep learning (DL) methods, in particular, 

Convolutional Neural Networks (CNNs) have been the game 

changers for several tasks related to photogrammetry and 

remote sensing in recent years. The recently developed DL 

methods have potential to overcome the limitations of 

conventional 3D city modelling and building reconstruction 

methods. 
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3D building construction using DL is a relatively new research 

area studied during the last years with few publications on this 

topic. The DL approaches achieved state-of-the-art results in 

classification, segmentation, and change detection using EO 

data when compared to the conventional methods and there are 

already published review articles on these topics (Ma et al, 

2019; Hoeser and Kuenzer, 2020; Heipke and Rottensteiner, 

2020). As DL gains popularity in different fields, new areas of 

application will emerge in the future. 

 

DL based 3D reconstruction has become increasingly feasible 

with the rapid development of 3D building models and the 

availability of many different 3D shapes in recent years.  DL 

models can be trained to learn 3D shapes and their features, 

characteristics and details. Wichmann et al. (2018) presented 

RoofN3D, a new 3D point cloud training dataset that can be 

used to train machine learning (ML) and DL models for a 

variety of tasks in the context of 3D building reconstruction. An 

overview of the timeline of the development of commonly used 

machine learning (ML) algorithms and the DL methods is given 

in Figure 1. 

 

 
 

Figure 1. Timeline of the development of DL and commonly 

used ML algorithms (modified after Cao et al., 2018). NN: 

neural network; BP: backpropagation; DBN: deep belief 

network; SVM: support vector machines; AE: auto-encoder; 

VAE: variational AE; GAN: generative adversarial network; 

XGBoost: Extreme Gradient Boost; WGAN: Wasserstein GAN  

 

In this paper, based on the recent advancements in the field and 

considering the increasing interest in the community; we aim at 

providing an overview of methods and state-of-the-art 

applications for DL-based 3D building reconstruction with a 

focus on object generation. The remainder of this paper is 

structured as follows: Section 2 gives a brief overview of 

conventional (non-DL) 3D building reconstruction methods. 

Section 3 presents a summary of ML methods used in 3D 

building reconstruction. The state-of-the-art DL method studies 

according to method types are given in Section 4. Discussions 

and conclusions are provided in the final section together with 

future directions. 

 

 

2. CONVENTIONAL METHODS 

3D building reconstruction is still largely based on conventional 

methods and algorithms (i.e., non-DL-based). Two 

comprehensive reviews on conventional urban reconstruction 

methods were presented by Musialski et al. (2013) and Halaa 

and Kada (2010). Sub-surface growing is an example to 

conventional methods for 3D building reconstruction (Kada and 

Wichmann, 2012). Nan and Wonka (2017) proposed a data-

driven method, Polyfit, for reconstructing lightweight polygonal 

surfaces from point clouds. By combining the Random Sample 

consensus (RANSAC) method (Fischler and Bolles, 1981) with 

contextual knowledge, Malihi et al. (2018) have developed a 

novel two-level segmentation scheme for generating 3D 

building models from point clouds derived from UAV 

photogrammetry. LoD1 building models can be automatically 

constructed with the combination of 2D building footprints and 

digital surface models (DSMs) (Buyukdemircioglu and 

Kocaman, 2018). Model-driven approaches can also be used for 

semi-automatic reconstruction of 3D city models in LoD2 using 

stereo aerial imagery (Buyukdemircioglu et al. (2018) as 

depicted in Figure 2. 

 

 
 

Figure 2. LoD2 city model of Cesme, Turkey reconstructed 

with a semi-automatic method (Buyukdemircioglu et al., 2018) 

 

3D building models can be generated from different EO data 

types such as aerial imagery, UAV imagery, satellite imagery, or 

point clouds using conventional approaches such as rule-based 

methods (Xie et al., 2021), model-driven methods, or data-

driven methods. One of the fast and widely used reconstruction 

method for 3D city models is to extrude building footprints. 

Another automatic 3D building reconstruction method based on 

half-spaces in LoD2 was proposed by Bizjak et al. (2021). Their 

proposed algorithm performed reconstruction on the ISPRS 

benchmark dataset with RMSE of 1.31m and completeness 

level of 98.9%, respectively. Drešček et al. (2020) presented an 

approach for 3D building reconstruction using an unmanned 

aerial vehicle (UAV) photogrammetric point cloud based on an 

extract, transform, load (ETL) solution. A data-driven and 

algorithmic solution to the automatic reconstruction of 3D 

buildings at LoD2 from UAV point clouds was presented by 

Murtiyoso et al. (2020).  
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RANSAC has been a popular method used with 3D point 

clouds. Li and Wu (2020) generated 3D models of complex 

buildings automatically using incomplete point clouds with 

RANSAC and topological-relation constraints. A RANSAC-

based multi primitive reconstruction (MPR) method was 

proposed by Li and Shan (2022) to segment a compound 

boundary into predefined primitives and determine their 

parameter values from the point clouds.  

 

Automatic generation of high detailed LoD3 models is still a 

challenging topic for researchers. These models can be 

generated manually and combined with automatically generated 

3D city models in different LoDs (Buyukdemircioglu and 

Kocaman, 2020). An automatic workflow for reconstructing 3D 

building models in LoD1 and LoD2 based on 2D building 

footprints and LiDAR (Light Detection and Ranging) point 

cloud was developed by Peters et al. (2021). Their approach 

was used to reconstruct 10 million buildings in the Netherlands.  

 

3. MACHINE LEARNING METHODS 

In this Section, an overview of the ML methods other than the 

DL-based methods (e.g., random forests, SVM, etc.) used in 

literature for reconstructing 3D building models is given. Dehbi 

et al. (2016) developed weighted attribute context-free grammar 

rules for 3D building reconstruction. The weighted context-free 

grammar was inferred using SVMs from input-output pairs as 

structured data; and Markov Logic Networks (MLNs) was used 

to reconstruct the 3D buildings as a statistical relational learning 

method. 

 

In their study, Biljecki et al. (2017) have shown that building 

models also can be automatically reconstructed without 

elevation data by using the random forest method. The proposed 

method predicts the height of buildings based on the footprints 

and building attributes and then extrudes the footprints to 

generate 3D models. As a result, they have reached a mean 

absolute error of 0.8 m in the inferred heights. Biljecki and 

Dehbi (2019) demonstrated that it is possible to predict the roof 

types from lower LoD (i.e., LoD0 and LoD1) datasets and to 

generate LoD2 models without roof measurements. They 

achieved an accuracy of 85% of the roof type from sparse data 

using a multiclass classification and 92% accuracy in predicting 

whether a roof is flat or not.  

 

Park and Guldmann (2019) reconstructed LoD1+ building 

models with ML-based point cloud classification methodology 

that assigns LiDAR points to different classes, extracts the 

points reflecting a rooftop surface, and uses those points to 

estimate building heights. The ML methods can also be used to 

reconstruct multi-temporal (4D) city models. Farella et al. 

(2021) presented a methodology for reconstructing buildings in 

4D using ML algorithms and historical information. Using 

digitized historical city maps and information about actual city 

conditions, they were able to reconstruct multi-temporal 3D 

representations of two urban city centres using different 

regression algorithms for inferring missing building heights. 

 

4. DEEP LEARNING METHODS 

Through DL, the computational models consisting of multiple 

layers of processing can learn the representations of data at 

multiple abstraction levels (LeCun et al., 2015). According to 

Liu et al. (2021), there are two main problems with 

conventional 3D reconstruction methods. First, they involve 

multiple manual designs that can lead to the accumulation of 

errors but can hardly learn semantic features of 3D shapes 

automatically. Secondly, they are highly dependent on the 

quality and content of images, as well as a precisely calibrated 

camera. The DL-based 3D reconstruction methods overcome 

these bottlenecks by automatically learning 3D shape semantics 

from images or point clouds using deep networks.  

 

Different DL architectures have been used in the literature for 

3D building reconstruction from EO data (aerial imagery, UAV 

imagery, satellite imagery, point clouds, etc.). In this section, 

we have investigated convolutional neural networks (CNNs), 

generative adversarial networks (GANs), and the combinations 

of DL methods with conventional methods in detail for realizing 

this task. Here, the DL-based methods are explained in a 

separate section due to their increasing popularity and the 

availability of reference datasets. 

 

4.1 Convolutional Neural Networks 

CNNs (Simonyan and Zisserman, 2014) allow to learn the 

characteristics of images at various levels using convolution and 

pooling operations, which is an extremely useful DL model for 

image classification and reconstruction. They can also be used 

for 3D building reconstruction from EO data. A DL approach 

was proposed by Wang and Frahm (2017) for performing a 

single-view parametric reconstruction of buildings based on 

satellite imagery by parametrizing buildings as 3D cuboids. 

CNNs also can be used for the procedural reconstruction of 

buildings. Using Neural Procedural Reconstruction (Zeng et al., 

2018), 3D points were mapped into CAD (Computer-aided 

design)-quality models with procedural structures inferred by 

sequences of shape grammar rules. An interactive tool was 

developed by Nishida et al., (2018), with which users can 

generate a grammar automatically from a single image of a 

building with the help of CNNs for procedural modeling of 

buildings. Alidoost et al. (2019) developed a DL architecture 

for detecting buildings from a single aerial image. Using the 

proposed method, the 3D reconstruction of buildings with a 

variety of shapes and complexity was achieved with root mean 

square error (RMSE) values of 3.43 m and 1.13 m for the 

predicted normalized DSM (nDSM), respectively. To generate 

block-like city models using depth maps, Agoub et al. (2019) 

developed a pipeline based on multiple CNNs with an encoder-

decoder architecture. A view of the reconstructed buildings of 

Manhattan area in their study is given in Figure 3. 

 

 
 

Figure 3. Automatically reconstructed building models of 

Manhattan area using CNN (Agoub et al., 2019) 

 

Based on a Y-shaped CNN (Y-Net), a modern DL-based 

framework was proposed by Alidoost et al. (2020) for automatic 

detecting, localizing, and estimating building heights 

simultaneously from a single aerial image for LoD2 building 

reconstruction. A multi-task, multi-feature learning framework 
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was presented by Mahmud et al. (2020) for modeling a building 

in 3D from a single overhead image. Using this approach, the 

authors generate 2D building outline proposals, a pixel-by-pixel 

heightmap, a modified signed distance function (BPSH), and 

pixel-by-pixel semantic labels; and then produce 3D models of 

each building. Another example of CNN applied to a specific 

grid structure was presented by Knyaz et al. (2020), where CNN 

was used for automatic semantic segmentation of wire structures 

and overcoming the limitation of photogrammetric processing 

applied to the 3D reconstruction of complex grid structures. The 

roof structure lines can be used for reconstructing 3D building 

models. Muftah et al. (2021) used a CNN-based method for 

classifying and segmenting roofs based on aerial imagery for 3D 

building reconstruction in LoD2. The Deep Roof Definer 

network proposed by Qian et al., (2022) uses satellite imagery 

to generate roof structure lines using a detail-oriented DL 

network.  

 

4.2 Generative Adversarial Networks 

GANs were proposed by Goodfellow et al. (2014). A generator 

and a discriminator are the main parts of a GAN. The generators 

are mostly utilized to learn the distribution of real images, 

resulting in more realistic-looking images and fooling the 

discriminator. Discriminator involves judging the generated 

images either as real or fake. As part of the generation modeling 

process, GAN-based methods introduce the adversarial 

discriminator, which implicitly learns the similarities and 

differences between 3D shapes and can therefore identify 

occluded or missing portions (Liu et al., 2021). 

 

By applying a Conditional GAN (cGAN), Bittner et al. (2018a) 

presented an automatic processing method for better-quality 

LiDAR-like DSMs with refined 3D building shape extraction 

from noisy DSMs. They used stereo half-meter resolution 

satellite imagery to create three-dimensional surfaces models 

and refine building shapes in LoD2 (Bittner et al., 2018b). In 

their next study, Bittner et al (2019), produced good-quality 

DSMs that show a full, accurate level of detail that is similar to 

LoD2-like building forms, as well as assign an additional object 

class label to every pixel. GANs can also be used for 

automatically reconstructing building models in LoD1 (Beer, 

2019). FrankenGAN (Kelly et al., 2018) proposed a network for 

modeling realistic geometric and texture information on large-

scale mass models of coarse buildings with examples as guides, 

users can add realistic details to large-scale models. Qian et al. 

(2021) presented Roof-GAN, a network that generates 

structured geometry of residential roof structures as a 

combination of roof primitives. A sample view of generated 

roof models by Roof-GAN is given in Figure 4. 

 

 

 
 

Figure 4. An overview of GAN-based reconstruction of 3D roof 

models using Roof-GAN with 2,3,4 and 5 primitives (left to 

right) (Qian et al., 2021) 

 

4.3 Combination of DL-based and Conventional Methods 

Rectified linear unit neural network (ReLu-NN) is another DL 

network that was used for the classification and reconstruction 

of building from airborne laser scanning point cloud data 

(Zhang et al., 2018). Using 3D CNNs, a deep Q-network and a 

residual recurrent neural network (RNN), Zhang and Zhang 

(2018) developed a deep reinforcement learning framework for 

parsing the semantics of large-scale 3D point clouds and 

reconstructing 3D building models. In another study, an end-to-

end system for reconstructing urban 3D buildings from 

WorldView-3 multiview satellite imagery using DL was 

demonstrated by Leotta et al. (2019) by segmenting buildings 

and bridges and reconstructing low polygon 3D textured mesh 

models. Satellite imagery-derived point clouds were used by Xu 

et al. (2020) to build an automated DL-guided 3D 

reconstruction framework that distinguishes the shape of 

building roofs in complex and noisy scenes. 

 

The study by Yu et al. (2021) introduced a new fully automatic 

3D building reconstruction pipeline based on DL that can 

automatically construct building models at LoD1 from multi-

view aerial images without any assistance from the other data 

sources. In a recent study, Gui and Qin (2021) presented a DL-

based approach for reconstructing the LoD-2 models using data 

derived from very-high-resolution multi-view satellite stereo 

images. Several steps were involved in their proposed method 

including instance-level building segment detection, initial 

building polygon extraction, building polygon decomposition 

and refinement, basic model fitting, and merging. In their study, 

Kapoor et al. (2019) proposed a four-step approach for 

generating 3D city models from historical images using DL. 

Another automatic 3D building model reconstruction workflow 

was proposed by Partovi et al. (2019). The workflow was 

composed of several steps, including DL-based building 

boundary extraction, decomposition, classification of roof types 

based on images, and computation of initial roof parameters for 

3D model fitting.  

 

Teo (2019) proposed a DL approach (i.e. Fully Convolutional 

Network- FCN) to detect initial building regions from LiDAR 

data and automatically reconstruct 3D prismatic building 

models from 3D LiDAR data. With the integration of 3D BAG 

CityJSON and floor plan images, Kippers et al. (2021) proposed 

a new automatic DL-based method for constructing building 

models. An automatic 3D building reconstruction in LoD1 that 

consists of three main parts, DSM generation, Deep learning-

based 2D building footprint generation, and 3D building 

reconstruction proposed by Yu et al. (2020). Another study by 

Li et al. (2021) demonstrated a novel method for reconstructing 

3D building models with accurate roofs, facades, footprints, and 

height from monocular remote sensing images. In their study, 

Zhao et al. (2021) developed a novel 3D reconstruction 

framework based on an off-nadir satellite image. Their approach 

consists of three parts: Scale-ONet for model reconstruction, 

Optim-Net for model scale optimization, and Model-Image 

match for restoring reconstructed scenes. The holistic primitive 

fitting method (Zhang et al., 2021) was also used along with 

PointNet++ (Qi et al., 2017) for 3D building reconstruction 

from point clouds. Another three-step 3D building 

reconstruction approach using deep implicit fields and point 

clouds was proposed by Chen et al. (2021). The DL methods 

also can be combined with GIS for reconstructing 3D city 

models from high-resolution satellite imagery (Pepe et al., 

2021). 
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5. CONCLUSIONS 

3D city models and digital twins are being produced and used 

more popularly by all over the world. Producing these models 

requires a great deal of data, processing, and expertise. 

Conventional methods for 3D building reconstruction have 

certain limitation, such as efficient reconstruction of large 

numbers of buildings at city scale. Typically, conventional 

methods cannot produce fully automatically; and several steps 

must be performed manually by users. In addition, data pre-

processing is essential. Conventional methods could generate 

incorrect model geometry with noisy data since they are often 

not robust and sensitive to noise. 

 

The DL methods have been more successful than conventional 

methods in many fields. Additionally, more and more city 

models and EO data are becoming publicly available. With the 

advancements in computer hardware, especially GPU 

technology, the DL is becoming more popular in various fields. 

With the growing popularity of 3D DL libraries such as 

PyTorch3D (Ravi et al., 2020), Tensorflow3D (Google 

Research, 2021) and Nvidia Kaolin (Nvidia, 2021), DL studies 

using 3D data will become more popular after their success in 

2D image studies. 3D DL libraries can directly learn the 3D 

object models to reconstruct the model. As a result, 3D city 

models and buildings can be automatically generated without 

having to rely on any specific roof libraries.  

 

Using the DL methods, different tasks such as building 

detection, building segmentation, footprint extraction and 3D 

reconstruction can be performed consecutively on different data 

sets and a full automation may be possible. Many countries and 

municipalities are offering 3D city models in different LoDs 

through open data portals. The data of different 3D city models 

or DSMs can be used to train the DL models and to automate 

the production. Consequently, global-applicable models can be 

produced with a higher level of accuracy. Furthermore, deep 

learning can also be used to automatically extract roof segment 

lines from aerial or satellite imagery, which can then be used to 

generate a 3D model of the building. 

 

With the availability of EO data, the city models and point 

clouds, city-scale automatic 3D reconstruction with DL 

methods will be a research topic that will be actively studied in 

the coming years, especially semantic 3D city models. It may 

even be possible to produce global models that are not specific 

to a particular area if millions of building data are used to train 

a DL model. In the next few years, it is also expected that open-

source 3D DL libraries such as PyTorch 3D, Tensorflow3D, and 

Nvidia Kaolin will facilitate the 3D reconstruction and enable 

more research. 
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