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ABSTRACT: 

 

Drone technology has shown the potential to act as the middle ground between satellite, light aircraft, and terrestrial or in-situ 

methods. However, featureless terrain such as water poses a challenge when it comes to drone mapping. The main challenge is 

identifying matching points to combine overlapping images into a single dataset. In particular, because traditional methods such as 

Structure from Motion (SfM) is dependent on tie point collection, its usage over featureless terrain is almost impossible. In solving 

this problem, we propose that the use of Direct Georeferencing (DG) in registering images be explored as a potential method and we 

propose a method for correcting errors due to tilt with low-cost IMUs. This study first assesses the accuracy of direct georeferencing 

using low-cost Inertial Measurement Units (IMU) and Global Navigational Satellite System (GNSS) providing analysis of the error 

sources associated with direct georeferencing and then demonstrates new approaches to minimize them. To best simulate a water 

type environment or surface for the initial studies, a drone survey was conducted on flat farmland and a POSE analysis was 

performed. We then processed the images using direct georeferencing and then compared our error minimisation method to standard 

Bundle Block Adjustment with GCPs and again with no GCPs. Results showed that using the method proposed in this study helped 

reduce the Mean Absolute Error associated with direct georeferencing by 54%. These initial results show a clear potential for 

mapping over inland water using direct georeferencing. 
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1. INTRODUCTION 

Featureless terrain can be described as a terrain with the absence 

of ground features. For example, water can be described as 

featureless terrain and one that is most difficult to map in 

photogrammetry due to its dynamic nature and homogenous 

appearance (Knaeps et al., 2019). Mapping featureless terrain is 

challenging due to the absence of or limited amount of ground 

features that can act as a tie point for surface reconstruction. As 

a result, tie point matching always fails in surface reconstruction 

for these environments. A recent study by Maravilla et al. 

(2019) which mapped the water column to estimate chlorophyll 

using a drone reported that the images that were captured over 

the water without shoreline were not calibrated using a classical 

bundle adjustment, as a result creating a hole in the orthoimage.  

 

However, mapping water bodies for measurement of water 

quality parameters such as turbidity, Total Suspended Solids 

and chlorophyll-a are essential for good water management. The 

most widely used methods for water monitoring are in-situ 

measurements at sparse scales or medium resolution satellite 

imagery (Amanollahi et al., 2017; Chen and Quan, 2012; 

Hafeez et al., 2019; Isenstein and Park, 2014) to high-resolution 

satellite imagery (Du et al., 2018; Huovinen et al., 2019; 

Kupssinskü et al., 2020). However, studies have revealed that 

these approaches have many limitations. The in-situ 

measurement approach is time-consuming (Gholizadeh et al., 

2016), labour intensive (Dlamini et al., 2016), costly (Keller et 

al., 2018), cannot be performed frequently and importantly the 

required spatial coverage cannot be achieved (Gholizadeh et al., 

2016). Satellite images struggle to provide the level of detail 

needed for small scale water pollution assessment (Wu et al., 

2019). The spatial resolution of satellite images does not 

provide the finer detail that the drone dataset provides. The finer 

details are essential for detecting patterns of water pollution. 

Moreover, with increased temporal resolution ( several times 

each day) from drones, a rapid response to water pollution 

outbreaks is also possible (Wu et al., 2019) and this facilitate an 

understanding of the stages of the outbreaks (Kubiak et al., 

2016). Furthermore, due to low temporal frequencies of satellite 

images, they are often unavailable at required intervals. The 

user rarely has any control over the satellite (except when they 

have purchased satellite tasking) and they cannot develop an 

acquisition plan to reduce environmental impacts on image 

quality such as solar illumination effect. For example, Harmel et 

al. (2018) explained that the viewing geometry of the Sentinel-2 

satellite makes it vulnerable to sun glint contamination, which is 

the specular reflection of light from the water surface which 

causes bright pixel values. The Sentinel-2 platform operates at a 

near-nadir viewing angle where sun glint is likely to occur. In 

some cases, sun glint can render an image over water unusable, 

causing the entire water surface to be characterized with bright 

pixel values.  

 

Also, studies have shown that the probability of acquiring 

cloud-free data is influenced by region and month, further 

affecting its suitability (Corbane et al., 2020; Robinson et al., 

2019; Wu et al., 2021). In Ireland in particular, frequent cloud 

cover over most parts of the year limits the use of satellite 

imagery (Dwyer, 2012). Moreover, the problem is exacerbated 

with satellites like Landsat 8 due to its longer revisit cycle of 

16-days.  
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According to Cahalane et al. (2017), at a lower altitude, surveys 

from manned aircraft platforms such as aeroplanes and 

helicopters are very expensive, slow to mobilise and typically 

not applicable for regular surveys. The advance of drone 

technology has changed all of this and has shown potential in 

acting as a middle ground between satellite, manned aircraft, 

and terrestrial in-situ methods. Drones provide very high spatial 

resolution (1cm-3cm) datasets, operate below the cloud cover, 

and so provide cloud-free data in near real-time. Although it has 

proven potential for terrestrial applications, most obviously for 

topographic mapping (Suo et al., 2018; Syetiawan et al., 2020) 

and agriculture (Guan et al., 2019; Vanbrabant et al., 2019), 

issues concerned when mapping over water bodies are much 

less understood and these pose many challenges to enable the 

collection of accurate and reliable data. The main challenge is 

identifying matching points to combine overlapping images into 

an accurate orthomosaic.  

Drone photogrammetry has benefitted from a fast automation 

process using structure-from-motion technology (SfM) which is 

a traditional and widely used method in computer vision for 

reconstructing a 3D surface by identifying identical points 

(called tie points) between overlapping images (Losè, 

Chiabrando and Tonolo, 2020; González-Jaramillo, Fries and 

Bendix, 2019; Vitti et al., 2019; Iglhaut et al., 2019). The SfM 

process starts by extracting and matching tie points from 

overlapping images using algorithms such as the scale-invariant 

feature transform (SIFT). When sufficient tie points are 

identified, a bundle block adjustment (BBA) is performed to 

calibrate the camera to produce the exterior orientation 

parameters and a sparse 3D point cloud of the surface. In this 

step, the user can completely rely on the Global Navigation 

Satellite System (GNSS) and the Inertial Measurement Unit 

(IMU) onboard or manually add Ground Control Points (GCPs) 

to improve the accuracy. The final step is to generate the Digital 

Surface Model (DSM) and the orthomosaic. However, because 

the SfM method is critically dependent on feature detection and 

matching, its usage over water is almost impossible. This is 

because water has a dynamic featureless surface, resulting in 

poor performance when using feature detectors such as SIFT, 

and also precludes the collection of manual tie points. In solving 

this problem, we propose that the use of Direct Georeferencing 

(DG) in stitching images over water can be a potential method. 

DG can be described as a method that measures the position and 

orientation of an airborne sensor and thereby directly 

determinates the exterior orientation parameters without any 

additional image-based measurements (eg. GCPs) (Ekaso et al., 

2020; Lo et al., 2015). This method utilizes the drone’s Global 

Position System (GPS) and onboard IMU. The GPS measures 

the latitude, longitude, and altitude, while the IMU sensor 

captures the angular values for  Roll, Pitch, and Yaw of the 

drone. The GPS and the IMU data are used to transform the raw 

image into an accurate orthogonal representation of the ground 

thereby making it possible for the measurement of distance, 

positions and area. The major difference between the DG and 

SfM is that the former does not rely on tie points to create the 

orthomosaic.  

Although there have been many successful applications of 

cameras from drones in mapping terrestrial environments, there 

is a clear gap in the knowledge of their suitability over inland 

waters. This study shows the (i) initial result on direct 

georeferencing using a low-cost IMU and GNSS and providing 

analysis of the associated error sources and (ii) demonstrates 

new approaches for correcting image displacement due to tilt.  

 

2. MATERIALS AND METHODS 

2.1 Sensor and Platform 

 

A Bluegrass VTOL (Vertical Take-Off Landing) drone 

manufactured by Parrot was used to acquire dataset imagery 

over the test site. The Bluegrass has a Skycontroller, a Sequoia 

multispectral sensor and a Sunshine sensor. The sunshine sensor 

records the ambient illumination from the sun and is used in 

calibrating the images. The Sequoia sensor has two important 

features: the IMU and GNSS, as can be seen in Figure 1. This 

helps in the precise geotagging of images. The IMU has an 

accuracy of 0.5o for Pitch and Roll and 1.0o for Yaw and a 

GNSS accuracy of ± 1.5 m for the horizontal and vertical plane 

(Sekrecka et al., 2020). The Sequoia camera is mounted beneath 

the Bluegrass at an angle of 15o and is not mounted on a self-

levelling gimbal. Table 1 below gives a detailed description of 

the Parrot sequoia specifications. 

 

Item  Description  

Multispectral camera 

Camera type  Global shutter 

Bands Green (530-570 nm),  

Red (640-680 nm),  

Red-edge (730-740 nm)  

Near Infrared (770-810 nm) 

Focal Length 3.98 mm 

Pixel size 3.75 μm 

Image size 1280×960 pixel 

Camera pixel 1.2 megapixel 

Radiometric 

resolution 

16-bits 

Front-facing 

camera 

FHD (1080p) 

RGB camera 

Camera type  Rolling shutter 

Focal length 4.88 mm 

Pixel size 1.34 μm 

 

Table 1. Parrot Sequoia specifications 

 

 

Figure 1. An illustration of the Parrot Bluegrass with (A) the 

Sequoia camera visible underneath and (B) the sunshine sensor 

visible in a top-down view  
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2.2 Image Acquisition 

For determining the performance of DG using the Sequoia 

camera for UAV-based digital orthomosaic generation over 

water, flat farmland was selected as a comparable test site. This 

test area was ideal as it allowed the placement of GCPs for 

accurate ground truth measurement and was selected as the best 

available approximation of the flat water surface. The variation 

in elevation was measured and identified as less than 1.6m. A 

drone survey was carried out using the Pix4dCapture app – this 

app enables autonomous flight by allowing drones to fly 

following a designated path/waypoint with the pilot supervising 

operations. A total of 6 flights lines were flown, which covered 

an area of 10.8ha, as shown in Figure 2. An overlap of 70% for 

both across and along track was specified and the flying height 

was set at 120m, which produced a Ground Sampling Distance 

(GSD) of 11.3 cm per pixel.  The total number of images 

captured for the survey was 72 with 30 GCPs recorded using a 

Trimble 5800 GPS receiver with an accuracy of  ±50mm. The 

GCPs were recorded in the Irish Transverse Mercator (ITM). 

 

Figure 2. (A) Grid mission flight plan for the drone survey and 

(B) distribution of 30 GCPs across the field   

2.3 Processing of the Drone Data Using Pix4D 

The initial 3D reconstruction to provide benchmark data of the 

surface was done using Pix4D software version 4.6.4. The 

image processing followed the usual workflow: image 

alignment and camera calibration, tie point extraction, bundle 

block adjustment (BBA), generation of dense point clouds, 

DSM and creation of orthomosaic (Franzini et al., 2019; 

Maravilla et al., 2019; Teppati Losè et al., 2021). Two 

orthomosaics were generated: an orthomosaic without GCPs 

and orthomosaic with GCPs. The orthomosaic with the GCPs 

was generated using 10 GCPs and the output was validated 

using the remaining 20 GCPs.  

2.4 Direct Georeferencing  

For reconstructing a 3D surface using photogrammetry 

methods, there is the need for a model which can project from a 

3D scene to an image as shown in Figure 3.  

 

Figure 3. A flow diagram showing the Direct Georeferencing  

process of reconstructing 2D surface 

2.4.1 Extrinsic Parameters: This defines the pose of the 

camera, i.e., the spatial position (X,Y, Z) and attitude (φ,θ, ψ) of 

the camera during exposure. This forms what is popularly 

known as the Extrinsic Orientation Parameters (EOP). It 

transforms from the world or object coordinate system Wo into 

the camera system CC . This can be achieved in two steps 

according to Förstner and Wrobel (2016): 

1. Rotation: the rotation is performed by three 

independent parameters       

     𝐶𝑏
𝑛=Rz(ψ).Ry(θ).Rx(φ)                 (1)       

2. Translation of the object coordinate system Wo 

through the projection centre O with three coordinates                  

  𝑍 = [𝑋𝑂, 𝑌𝑂, 𝑍𝑂]𝑇 as parameters.                     

Adopting the equation from Bäumker and Heimes (2002), the 

extrinsic rotation matrix is given by the equation 

𝑀𝑒𝑥𝑡 = ( 𝑅𝑤
𝑐   𝑡𝑤

𝑐 ) = (

𝑟11 𝑟31 𝑟13

𝑟21 𝑟31 𝑟23

𝑟31 𝑟32 𝑟33

  
𝑡𝑥
𝑡𝑦
𝑡𝑧

 )             (2) 

The Yaw (ψ), Pitch (θ) and Roll (φ) transformation matrix is 

then determined by three consecutive rotation matrices in the 

following order: (1) Roll- rotation around the X-axis (2) Pitch – 

rotation around the Y-axis (3) Yaw- rotation around the Z-axis. 

The combination of the three rotations create the following 

orthogonal transformation matrix: 

𝐶𝑏
𝑛 = Rz(ψ).Ry(θ).Rx(φ)                                                     (3) 

(
cos 𝜓 −sin 𝜓 0
sin 𝜓 cos 𝜓 0

0 0 1

) (
cos 𝜃 0 sin 𝜃

0 1 0
−sin 𝜃 0 cos 𝜃

) (

1 0 0
0 cos 𝜙 − sin 𝜙
0 sin 𝜙 cos 𝜙

)             

=  (

cos 𝜓 cos 𝜃 cos 𝜓 sin 𝜃 sin 𝜙 − sin 𝜓 cos 𝜙 cos 𝜓 sin 𝜃 cos 𝜙 + sin 𝜓 sin 𝜙
sin 𝜓 cos 𝜙 sin 𝜓 sin 𝜃 sin 𝜙 + cos 𝜓 cos 𝜙 sin 𝜓 sin 𝜃 cos 𝜙 − cos 𝜓 sin 𝜙 ⋮

− sin 𝜃 cos 𝜃 sin 𝜙 cos 𝜃 cos 𝜙
) 

 

 In the context of photogrammetry Omega (ω), Phi (ϕ) and 

Kappa (κ) are required to transform a vector from an image 

coordinate system B to the object system E. The rotation 

transformation matrix 𝐶𝐵
𝐸  is defined by counter-clockwise 

rotation angles ω, ϕ and κ: 

𝐶𝐵
𝐸 : = Rx(ω).Ry(ϕ).Rz(κ)                                                  (4) 
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= (
1 0 0
0 cos 𝜔 −sin 𝜔
0 sin 𝜔 cos 𝜔

) (
cos 𝜑 0 sin 𝜑

0 1 0
−sin 𝜑 0 cos 𝜑

) (
cos 𝜅 −sin 𝜅 0
sin 𝜅 cos 𝜅 0

0 0 1
)            

(
cos 𝜑 cos 𝜃 − cos 𝜑 sin 𝜅 sin 𝜑

cos 𝜔 sin 𝜅 + sin 𝜔 sin 𝜑 cos 𝜅 cos 𝜔 cos 𝜅 − sin 𝜔 sin 𝜑 sin 𝜅 − sin 𝜔 cos 𝜑
sin 𝜔 sin 𝜅 − cos 𝜔 sin 𝜑 cos 𝜅 sin 𝜔 cos 𝜅 + cos 𝜔 sin 𝜑 sin 𝜅 cos 𝜔 cos 𝜑

) 

After computation of the rotation matrix =  

𝐶𝐵
𝐸 = (

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

   )                                                      (5) 

Omega, Phi and Kappa angles can be extracted using the 

System PATB formulas: 

𝜔 = 𝑎𝑟𝑐𝑡𝑎𝑛2 (
−𝑟23

𝑟33
)    𝜑 = 𝑎𝑟𝑐𝑠𝑖𝑛(𝑟13)   𝜅 = 𝑎𝑟𝑐𝑡𝑎𝑛2 (

−𝑟12

𝑟11
)      (6) 

 

2.4.2 Intrinsic Parameters: The intrinsic parameters describe 

the interior orientation of the camera. They are parameters 

needed to model the geometry and the physics of the camera, 

namely; the focal length (f), principal points (𝐶𝑥, 𝐶𝑦) and any 

parameter used to model lens distortion ( K1, K2, K3,P1, P2). 

The combination of the parameters will result in the following 

transformation matrix: 

𝐾 = (
𝑓𝑥 0 𝐶𝑥

0 𝑓𝑦 𝐶𝑦

0 0 1

)                                                            (7) 

 

2.5 Processing of Images and Analysis 

The image processing was done by implementing all the 

mathematical equations in Python. Various open-source 

libraries were used, for example, the images were projected to 

the ground plane using libraries such as the OpenCV and 

Micasense Python libraries. The data manipulation and analysis 

of the pose were carried out using Pandas and NumPy. The data 

was visualized and plotted using Matplotlib. The statistical 

analysis conducted included Mean Absolute Errors, residual 

analysis and standard deviation.  

2.6 Image Displacement Correction  

Despite IMU, gimbals, and other stabilizing equipment, in 

practice, it is impossible to maintain the optical axis of a drone 

camera truly vertical (Wolf et al., 2014) and images from low-

cost drones without a self-stabilizing gimbal are most affected 

by tilt. In photogrammetry, different types of images can be 

captured during a survey, namely; nadir/near nadir, low tilt, 

high tilt and oblique imagery. When the camera axis is truly 

vertical or there is a small unintentional tilt which is less than 

1o, the image can be categorized as a nadir/near nadir image 

(Wolf et al., 2014). For low tilt images, the tilt of the camera 

axis is equal to or not more than 3o (Wolf et al., 2014). On the 

other hand, images captured with the camera axis 

unintentionally tilted more than 3o can be considered as high 

tilt. According to Verykokou and Ioannidis, (2018), images that 

are captured with the camera axis intentionally inclined more 

than 5o can be classified as oblique images. In 3D image 

reconstruction, the procedures suitable for analysing nadir/near 

nadir images can be used for low tilted images without serious 

consequences. However, this cannot be said for high tilted and 

oblique images. This is because, in such images, certain errors 

are introduced as a result of the tilt. For example, in a high tilted 

and oblique photograph taken at a certain height, the GNSS 

recording by the drone (GP) and the Ground Principal Point 

(GP’) do not match as shown in Figure 4. This happens because 

when the camera's optical axis tilts away from the vertical, the 

Ground Principal Point changes. This causes a shift between the 

GNSS and the Ground Principal Point. This shift is primarily 

strong in images that have high tilt angles. In correcting the 

displacement due to tilt, this study proposes a formula that 

measures the shift in distance between GP and GP’on a flat 

terrain. In theory, a rotation in one axis affects the direction of 

the following axis. For example, a degree tilt in Roll will have a 

greater effect on the Y coordinates and a smaller effect on the X 

coordinate. While a degree change in Pitch will have a greater 

effect on the X coordinate and a smaller effect on the Y 

coordinate (Stam, 2010). This shift can be mathematically 

calculated for flat terrain using the law of Sine rule, given that 

we already know the flight height and the attitude from the 

IMU. The shift can be measured in X and Y using the equation 

(8) and (10). Subsequently, the image can be corrected using the 

shift values in X and Y.    

𝑏𝑥 = ℎ ∗ tan(𝑃𝑖𝑡𝑐ℎ)                                               (8) 

𝑏𝑥1 = 𝑋 + (ℎ ∗ tan(𝑃𝑖𝑡𝑐ℎ))                                   (9)              

𝑏𝑦 = ℎ ∗ tan(𝑅𝑜𝑙𝑙)                                                 (10) 

𝑏𝑦1 = 𝑌 − (ℎ ∗ tan(𝑅𝑜𝑙𝑙))                                     (11)                  

𝑏𝑥𝑦 = √(𝑏𝑥)2 + (𝑏𝑦)2                                            (12)    

 

where   bx is the shift value in X between GP and GP’ 

 by is the shift value in Y between GP and GP’ 

 bx1 and by1 is the X and Y coordinate for the shifted 

 image 

 h is the flying height and  

 bxy is the shift distance between GP and GP’ 

 

Figure 4. An illustration of a tilt angle. The image (left) shows 

an image taken when the drone is tilted at an angle which causes 

a mismatch between the ground principal point and the ground 

GNSS  and vice-versa for the right image. 
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3. RESULTS AND DISCUSSION 

3.1 Planimetric Accuracy Assessment of Direct 

Georeferencing and Bundle Block Adjustment (BBA)  

To analyse the effectiveness of the DG approach in mapping 

inland water, the accuracy of the approach must be measured 

against established photogrammetric methods such as BBA. To 

assess the planimetric accuracy of the Sequoia camera for BBA 

and DG approach, flat farmland was used as a test site to 

compare orthomosaics created using BBA with/without GCPs 

and DG. From the analysis, different accuracies were reported 

for the three approaches. The Mean Absolute Errors (MAE) 

calculated for each test were 0.14m,1.55m and 18.93m for BBA 

with GCPs, BBA with no GCPs and DG respectively, as shown 

in Figure 5. The result indicates that both the BBAs obtained 

acceptable accuracy for topographic mapping, however, as 

expected, the BBA with GCPs performed best. The DG 

approach recorded a high MAE and thus, the initial accuracy 

result would not result in a suitable orthomosaic. According to 

Yuan and Zhang (2008), in order to improve the accuracy of 

DG, the sources and effects of errors need to be recalled first. 

The accuracy of the DG is determined by the GNSS and IMU, 

the stability of the platform and the accuracy of the system 

calibration (Costa and Mitishita, 2019; Grejner-Brzezinska, 

2001; Mian et al., 2016). Hence, any error in the interior and 

exterior orientation parameters will directly affect the MAE of 

DG. This can be seen in Figure 5 where the high recorded 

MAEs directly coincide with periods of high Pitch angle.  

 

Figure 5. Analysis of Mean Absolute Errors (MAE)  for 

positional accuracy using direct georeferencing before the 

proposed correction, BBA with GCPs and BBA with no GCPs 

 

3.2 Analysis of the Sources of Errors Associated with Direct 

Georeferencing  

The Sequoia camera is mounted beneath the Parrot Bluegrass at 

an angle of 15o and is not mounted on a self-levelling gimbal. 

The forward motion of the Parrot Bluegrass means the drone 

tilts downwards. Due to the 15o inclination of the camera, and as 

a feature of the drone to approximate a gimbal, the drone needs 

to pitch 15o down for the Sequoia camera to be perfectly 

horizontal. Our test demonstrates that images captured at the 

beginning and end of each flightline contained high MAE and 

high mean pitch values of 33m and 19o respectively. This is 

because, at the beginning and end of every flightline, the drone 

is stationary, thus hovering to take the first and last pictures. 

The Bluegrass then becomes almost perfectly horizontal and the 

Sequoia camera is then inclined at 15o.  

From the result, the mean angular ratings for the Pitch, Roll and 

Yaw were 6.7o, 5.5o and 88.2o respectively. Also, the standard 

deviation was calculated at 6.4o, 1.5o, 1.9o for Pitch, Roll and 

Yaw respectively. Adopting the definition of the types of 

images from Verykokou and Ioannidis, (2018) and Wolf et al., 

(2014), analysis of the 6 flight lines was done for the survey. 

The result revealed that 5.5% of the images were nadir/near 

nadir images, 41.6% were low tilted images and 52.9% were 

high tilted images. This implies that the majority of the images 

acquired contained tilt distortions and therefore require 

applications of our tilt correction methodology. Also, a recent 

study from Otsuka et al., (2018) explained that high wind speed 

and flight speed can increase the pitch angle of multirotor 

drones. Most importantly, it will influence the viewing angles of 

cameras that are not mounted on a self-levelling gimbal. In our 

study, it can be inferred that the wind speed had very little 

influence on the variations in the angular measurement. This is 

because the ground wind speed recorded during the survey did 

not exceed 1.6m/s, however, according to Otarola et al. (2019), 

wind speed increases by up to 0.25m/s per every 10m of 

altitude. Using the 0.25m/s factor, the wind speed calculated for 

the survey at 120m was 3m/s. This means that the wind speed 

was within the recommended range of <3.3m/s as suggested by 

Doukari et al. (2019).  However, the flight speed (12m/s) could 

have had an impact on the IMU measurements.  

 

 

Figure 6. Attitude angles in Pitch, Roll and Yaw measured from 

the IMU  

 

3.3 Direct Georeferencing Exterior Orientation Analysis 

Test 

In order to evaluate the suitability of the attitude angles for DG,  

each attitude angle was plotted in a line graph in Figure 7. The 

refined Omega, Phi and Kappa from BBA with GCPs was used 

as the benchmark to compare the attitude angles of BBA 

without GCPs and DG.  In order to do analytical 

photogrammetry, the Pitch, Roll and Yaw were converted to 

Omega, Phi and Kappa respectively. The result showed that the 

residual error for Omega (ω) angle for the BBA without GCP 

and direct georeferencing were 0.09o and 1.38o respectively. 

Also, the residual error for the Phi (ϕ) angle was 0.13o and 0.77o 

for BBA without GCP and direct georeferencing respectively. 

The highest recorded residual error was the Kappa (κ) angle 

which was 0.16o and 4.91o for BBA without GCP and direct 

georeferencing respectively.  In the BBA approach, less 

accurate attitude measurement is of less importance because its 

effect is mitigated by overlapping images with sufficient tie 

points which improves the exterior orientation (Rehak and 

Skaloud, 2016). However, in DG, the accuracy of the 
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measurement directly depends on factors such as sensor quality, 

wind speed and flight speed (Dreier et al., 2021; Jaud et al., 

2018).  

 

 

 

 

 

 

 

Figure 7. Comparison of attitude angles in (A) Omega, (B) Phi 

and (C) Kappa between Direct Georeferencing (Red), BBA with 

no GCP (Blue) and BBA with GCP (Green)  

3.4 Improved DG Orthomosaic using Image Displacement 

Correction 

The initial direct georeferencing errors were improved using the 

image displacement correction formula in section 2.6. From 

Figure 8, it can be seen that the DG MAE was improved from 

18.93m to 9.34m. Also, there was a significant improvement in 

the standard deviation from the initial direct georeferencing 

result of 10.09m to 2.9m after image displacement correction. 

Our method helps reduce the DG MAE down by 53.54%, thus 

reducing the error by more than half. Additionally, our method 

helped smooth the peak errors and high tilt angles which were 

caused by the high pitch and roll values during the survey. It 

was shown that our method is suitable for correcting both low 

tilt and high tilt images. Comparing our result to the classical 

bundle block adjustment, it is clear that there are further errors 

that need to be removed to further improve the planimetric 

accuracy and this work is currently underway.  

 

 

 

Figure 8. Analysis of Mean Absolute Error for positional 

accuracy using (A) initial direct georeferencing method without 

correction, (B) improved MAE from our method and (C) a line 

graph comparing all the methods. 

4. CONCLUSION 

This paper showed the initial results of using direct 

georeferencing as a potential approach that can be applied in 

mapping over inland water. An empirical study was performed 

to assess the accuracy of direct georeferencing using a low-cost 

IMU and GNSS and providing analysis of the error sources 

associated with DG and then demonstrated new approach to 

minimize them.  The outcome of the results showed that the 

Mean Absolute Error from the initial DG approach was reduced 

from 18.93m to 9.34m after tilt angle correction was applied. 

This means that the direct georeferencing approach can be 

improved by using the tilt angle correction method. This 

method also helped to smooth the high Mean Absolute Errors 

which result from high Pitch angles. The result outlined in this 

paper demonstrates the feasibility of using low-cost GPS and 

IMU for direct georeferencing over featureless terrain.  

Inferring from these results, it is suggested that future research 

should focus on analysing the influence of flight parameters on 

orthophoto using direct georeferencing. Furthermore, future 

(A) 

(C) 

(B) 

(C) 
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research should focus on further refining the pose measurement 

and removing the tilt distortion over featureless terrain.   
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