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ABSTRACT:

This contribution presents a method for extracting a 3D model of facades and windows from a point cloud. The point
cloud is segmented based on a voxel octree, in which the facades are sought as planes. These can be used to filter out
potential window points within the building, which are then analysed on their visibility by checking the occupancy
grid of the voxel space. Here, methods of digital image processing are used for analysing both point clusters behind
the facade and holes in the estimated facade planes as window candidates. Facades and windows are both simplified
as rectangles. The test data set was gathered in a Mobile Laser Scanning campaign. While the segmentation fails in
some cases, the extraction of facades and windows shows good results: 25 facades with 702 detected windows yield
a detection rate of 86% with a false alarm rate of 13%. The reconstructed sizes of the windows differ from reference
measurements in the range of centimetres to a few decimetres. These refined geometries can be used to enrich existing
building models or for vehicle navigation without GNSS.

1. STATE OF THE ART

With increasing density and accuracy of mobile laser
scanning (MLS) based point clouds possibilities arise for
reconstructing 3d building facades according to CityGML
level-od.detail 3 (LOD3) of corresponding IFC models.
One important task is the detection and extraction of
windows. Window extraction from images is an extens-
ively researched area for both images in the visible (Reznik
and Mayer, 2008) and infrared spectrum (Michaelsen et
al., 2012). In these cases, facade planes are estimated
from generated point clouds or given from existing 3d
building models. The images are then used as textures
on these planes and analysed by their intensity values. In
contrast, window detection based on laser scanning point
clouds is based on a point cloud segmentation process.

Model-based methods often search for geometric primit-
ives like lines (Widyaningrum et al., 2019), planes (Filin
and Pfeifer, 2006), cylinders (Tarsha-Kurdi et al., 2007),
or spheres (Rabbani et al., 2006). Radiometric attrib-
utes of the points, such as the intensity of reflection
(Nobrega and O’Hara, 2006), are also considered here.
The points belonging to a primitive and the parameters
of the primitive can be determined by a Hough trans-
formation (Rutzinger et al., 2011) or by tensors (Schuster,
2004). Since there are usually significantly more points
than necessary to determine the parameters in a seg-
ment, the optimal set of parameters is determined in the
context of quadratic error minimization (Castillo et al.,
2013). A simplification within quadratic error minimiza-
tion is the Principal Component Analysis- PCA (Lari and
Habib, 2014).This also allows to infer from the principal
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components of each segment the most suitable geomet-
ric primitives to describe this segment. Found geometric
primitives can be described via Boundary Representa-
tion or Constructive Solid Geometries (Brenner, 2005).
Thereby complex structures are described by union, in-
tersection or difference of primitives.

Point cloud segmentation is also done by region grow-
ing methods. Commonly used for the selection of the
local neighbourhood is the k-nearest neighbour (KNN)
method. Distance, normal direction or intensities can
be used as criteria for adding a point to a segment (Lee
and Schenk, 2001). These local point-related paramet-
ers can be extended by other geometric parameters such
as planarity, curvature, or roughness (Pu and Vossel-
man, 2009). Region growing methods can also be ap-
plied on area patches (Li et al., 2019) or voxels (Xu et
al., 2017) instead of points. Unlike region growing meth-
ods, clustering requires no starting points. For example,
the normal directions (Vo et al., 2015), the distance (Al-
doma et al., 2012) and the point density (Aljumaily et al.,
2017) in the local neighbourhood can serve as attributes.
Clustering can then be performed based on mean-shift
method (Yao et al., 2009). Clustering methods can also
be averted on voxels (Wu et al., 2013) or surface patches
(Vosselman et al., 2017).

In global energy minimization, an energy function is min-
imized that separates points in segments. One variant is
graphical models that derive a set of parameters from the
points to estimate similarities (Hong et al., 2019). Nor-
malized cut (Shi and Malik, 2000), min cut (Golovinskiy
and Funk, 2009) or graph-based segmentation (Green
and Grobler, 2015) can be used to segment this graph.
The relationship between points can also be described us-
ing a Markov model instead of a weighted graph. They
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can be described as Markov Random Fields (Hackel et
al., 2016) or Conditional Random Fields (Rusu et al.,
2009). The actual segmentation is then performed by a
graph-cut algorithm (Boykov and Kolmogorov, 2004). In
addition to graphical models, energy terms can also be
realized using level sets (Kim and Shan, 2011) or as a
global energy minimization problem (Dong et al., 2018).

A special case in that field is the detection of windows.
It can be seen that laser beams partially penetrate the
window glass, so that holes appear in the point cloud
in the plane of the facade and, in return, points appear
in the building interior in the line of sight of the beam
path. In (Tuttas and Stilla, 2013) a method using both
the detection of holes in the facade planes and points be-
hind that planes is introduced for coarse airborne laser
scanning (ALS) point clouds. Results show a good com-
pleteness of the window detection. The limited point
density leads to a very coarse geometric accuracy of the
extracted windows. In our contribution, this method is
adapted for mobile laser scanning point clouds (MLS). As
the point density is much higher, the window detection of
(Tuttas and Stilla, 2013) is combined with a voxel-space
representation as introduced by (Xu et al., 2017). This
allows both the search for facade planes and the analysis
of the occupancy grid for the window detection.

2. EXTRACTION OF FACADES AND WINDOWS
FROM MLS POINT CLOUDS

Our proposed method is split in three parts. First, (Xu
et al., 2017) is applied to generate a discrete voxel space.
This voxel space will be used in the second step for facade
plane detection and the occupancy grid generation. The
voxel space is then used for the window detection as
described in (Tuttas and Stilla, 2013). We extend the
detection by a texture analysis framework inspired by
(Schneider and Coors, 2018). The facade plane points
are projected onto a 2d facade texture. The same is
done for the intersection points of the projection rays
of the points behind the facade. In contrast to (Tut-
tas and Stilla, 2013), not only the intersection points
are used for window detection, but also the holes in the
facade points. To do so, it is necessary to add a visib-
ility analysis to avoid window detection in occluded or
non-recorded parts of facades.

2.1 Partitioning of the point cloud in voxels

The estimation of a facade plane and an occupancy ana-
lysis is done by discretizing the space in voxels (Xu et
al., 2017). Since most voxels in the space are empty,
an octree is constructed to reduce the amount of data.
Voxels in the octree are then divided into subspaces if
they are not empty until a minimum voxel size is reached,
the number of points in a voxel falls below a threshold,
or, if the residuals of the plane estimated in the points
within a voxel are too large and indicate that there is
more than one plane in the voxel.

The standard deviation σ of a voxel indicates the mean
deviation of the points from the estimated plane of a
voxel (Vo et al., 2015). This plane is determined by
the plane equation of the Hessian normal form. As ini-
tial voxels for the plane search, voxels aare selected with

a standard deviation below an initial threshold. These
voxels are assumed to be the best representations for
facade planes. All neighbours are now checked to see if
the angle between the normal vector of the starting voxel
and the normal vector of the neighbour is less than a set
threshold. Additionally, it is checked whether the dis-
tance of the planes between two voxels is smaller than
a threshold value. This prevents closely spaced facades
from being merged into one segment. This is repeated
iteratively until no more voxel can be added to the seg-
ment. Now it is checked whether the segment can be a
facade segment. For this purpose, a minimum number
of contained points as well as a deviation of the normal
vector of max. 30° from the horizontal are assumed. If
these rules are met, the segment is saved. Otherwise, the
segment is deleted and the points are marked as unseg-
mented. This procedure is repeated until all voxels have
been processed and thus either assigned to a segment or
marked as unsegmented.

In phase two, the unsegmented voxels are checked to see
if they match an existing segment. For this purpose,
the procedure according to (Vo et al., 2015) is applied.
If at least 80% of the points in a segment are within a
specified distance interval from the assumed plane, the
segment is considered planar and so-called Fast Refine-
ment is performed, otherwise General Refinement is per-
formed. Fast Refinement determines for each unsegmen-
ted point Ni of a voxel the distance to the estimated
plane of the segment Rj . If the distance is less than a
threshold, the point is added to the segment. The voxel
to which this point belongs is marked as possibly be-
longing to the segment and stored in a candidate list Sj .
This process is repeated for all points of all neighbour-
ing voxels in a segment, and then for all neighbouring
voxels of voxels in Sj . If the voxel’s normal direction and
distance meet the thresholds, the voxel is added to the
segment. In General Refinement, the points are directly
checked for their distance to the nearest point of the seg-
ment Rj and iteratively added one by one. The check of
the voxels is omitted.

2.2 Plane estimation

The estimation of the facade planes is now performed for
each segment by estimating the parameters of the plane
equation in parameter form

ax+ by + cz + d = 0; a2 + b2 + c2 = 1 (1)

where (a, b, c) are the three components of the normal
vector and d is the distance to the origin. It is assumed
for the estimation that there are more points on the
facade plane than in front of or behind. The MSAC
method is used to estimate the parameters (Urbančič et
al., 2014). The inliers now make up the facade. All the
outliers of the segment are now checked whether they
are behind the plane of the facade from the viewpoint of
the recording location. For this purpose, the intersection
point of the projection ray of a point p with the facade
plane is calculated and checked whether it lies within the
boundaries of the facade. If so, it is calculated whether
the point is behind the facade by transforming of equa-
tion 1:
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l = sign

(⟨
p,

a
b
c

⟩
+ d

)
(2)

If l is equal to 1, point p lies in the direction in which
the normal also points, with −1 in the opposite direction,
with 0 the point is in the plane. If the normal direction
of the facade is defined away from the line of sight, it
means that a point with l = 1 lies behind the facade.
Figure 1 shows the classification of the points that are
not counted to the facade plane. Fig. 1a shows the pos-
sible positions and recording directions of the points. A
point may be located in front of or behind the facade, or
may have been taken from behind when driving around
a building corner, for example. Fig. 1b shows the as-
signment areas for points to the facade. Here E is the
range of safe facade points according to MSAC, A is the
range of exterior points that lie in front of the facade, I
is the interior range of points that lie safely behind the
facade, and P is the range of points that were sorted out
by MSAC but cannot be safely assigned to the interior
segment I due to the noise behaviour of the point cloud.
For remaining untested points, we now test whether they
intersect another facade within their area along the line
of sight.

(a) (b)

Figure 1. Determination of points located behind the
facade. (a): top view of possible locations of viewpoint
(blue) and measurement point (green) to facade plane

(red): (1) outside - inside, (2) outside - outside, (3) inside
- inside, (4) inside - outside. (b): Separation of interior
and facade points by top view. Dark blue: MSAC inlier
in tolerance δ1 to plane E (white). Light blue area A:

Points in front of the facade (exterior points). Light grey
area I: Interior points. Dark grey area P between δ1 and

δ2: Buffer zone whose points are not used further
.

2.3 Window extraction

For window detection, the facade points and the intersec-
tion points of the visible rays of the interior points with
the facade plane are now projected onto the facade plane
and provided with texture coordinates. Feature of a win-
dow is a hole in the points of the facade and a segment
at intersections with imaging rays. Figure 2 shows the
scheme when searching for windows in a facade. First,
it is checked if there are enough intersection points (a).
In this case, window positions are searched based on the
intersection points like in (Tuttas and Stilla, 2013). If
positions are not found there, it is additionally checked
for gaps in the facade points (b). If this also remains
without result, the search is carried out in a finer grid
with facade points and intersection points (e) and fur-
ther window candidates are searched for in the regular

structure of the facade (f). For the positions found, a cir-
cumscribing rectangle of the windows is now determined
in a fine grid with facade points and intersection points
(c) and then the windows are checked for completeness
(d).

For the case Fig. 2a the extraction strategy of (Tuttas
and Stilla, 2013) is used. A binary image with a grid size
of 0.5 m is generated from the intersections. The image
is then oversampled by a factor of 10. The result is a
smoothed, low-noise binary image. A cross-correlation
is performed on this image using two templates with a
horizontal and vertical bar of length 1.5 m, respectively.
Maxima in the correlation indicate the positions of the
windows in x (columns) and y (rows).

If not all window positions are found in this way, the in-
tersection points can be supplemented by our extended
method. For this purpose, the projection of the facade
points is analysed (Fig. 2b). Raster cells with few or no
facade points are now also marked in the binary mask and
the search is repeated. However, reflective areas where
the laser beam was reflected away are now also included,
as well as occluded and invisible parts of the facade, e.g.
at the edge of the bounding box. The latter is counterac-
ted by the mentioned minimum distance to the edge at
least in x-direction. If this search also does not lead to
the result, then according to Fig. 2e, both methods are
combined where areas with intersection points or holes
in the facade points are searched. If the search was suc-
cessful, the contours of the windows are determined in
the next step. Figure 3 shows one example facade where
3a is the mask of the facade point holes, 3b the mask
of the intersection points and 3c the combined binary
mask. Where barred windows are located, facade points
are created on the bars and, at the same time, intersec-
tion points are created in the gaps between the bars. In
the combined image, the intersection points now overrule
the facade points and the barred window is recognized as
such. Windows through which few interior points were
seen are better represented in the facade point image.
This is the case when a window is seen at a very acute
angle as with the top floors. All windows are now cap-
tured in the added image. There is also the case where,
due to the scanning by the scanner, areas have only a
few facade points. So that these are not mistakenly con-
sidered as holes, in such areas only the intersection points
are used for the search for windows.

Due to the high point density of the MLS point cloud
compared to the ALS point cloud, a procedure based
on (Schneider and Coors, 2018) is used for the contour
search instead of the method proposed in (Tuttas and
Stilla, 2013). The binary images of facade points and
intersection points are sampled in 1 cm. Morphological
operators are used to remove disturbances in the win-
dows, e.g. single points of the window intersections. This
is to prevent a breakout/leakage effect during later con-
tour tracing. The reconstruction of the contour of the
windows (Fig. 2c) is performed for each detected object
via the contour tracking and clustering method accord-
ing to (Gonzalez et al., 2004) in the fused binary im-
age. For the contours, it is specified that they must be
the smallest circumscribing rectangle of a segment and
that these rectangles must not be wider than 3.5 m and
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Figure 2. Flowchart for window extraction. (a) Position search with enough intersection points (b) Add facade points
to the search. (c) Contour determination. (d) Check for completeness of regular arrangement of windows. (e) Finer

search with facades and intersection points. (f) Search for more windows in the grid of the regular grid.

taller than 5.5 m. With these parameters, most windows
are covered. In addition, rectangles with a side length
of less than 30 cm are excluded. For each rectangle,
it is also checked that its centroid is no further than
1.5 m from the search points determined by the cross-
correlation. If there are still several matching rectangles
around a search point, the one with the smallest distance
to the search point is selected. If no rectangle is found
for a search point in this way, the search is repeated on
the basis of the binary image of the intersection points.
If there are still search points without a rectangle, the
search criteria are adjusted for these positions. The di-
mensions of a window are set to 1.5 times the average

size of the windows already found in the same row and
additional artificial search points are inserted, the dis-
tance between which, however, must not be less than 0.4
m. This is to prevent deviations from the grid of the
rectangles. Figure 4a shows the contour extraction for a
facade piece. The facade points are shown in grey, and
the intersection points are shown in orange- The crosses
mark the previously found search points for the expected
window positions in the grid. The rectangles represent
the extracted windows. The two windows on the left
were extracted from the merge binary image. The two
windows on the right could only be found in the inter-
sect binary image because the point density of the facade
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Figure 3. Fusion of the binary images. (a) facade image.
Pixels without points are white. (b) Intersection image.

Pixels with dots are white (c) Fused image.

points was too low here.

(a) (b)

Figure 4. Results of window extraction. (a) Procedure
based on fig. 2c with contour search based on search
points. On the right, two windows correctly detected
only by intersection points (orange) due to missing
facade points (grey). The crosses mark the search

positions determined by the cross correlations. On the
left, for comparison, the situation in the well detected
area. (b) Procedure based on Fig. 2e/f with contour

search in the complete binary image. The contours are
shown in white, the colours indicate the different clusters.

If there are not enough intersection points, no search po-
sitions can be determined as a first approximation for
window positions. In these cases, as in (Schneider and
Coors, 2018), contour tracking is performed over the en-
tire image (Fig. 2e/f). The contour search proceeds as
in the case already described, only with a minimum side
length of 50 cm. However, there are now significantly
more false detections (Fig. 4b). These clusters form the
result of the first search. To remove wrong matches, the
second step is now to search for a regular grid in the
clusters. For this purpose, a new binary image is cre-
ated that contains only the clusters. Then, as described
above, the cross-correlation for horizontal and vertical
edges is run over the image and two correlation curves
in x- and y-direction are obtained. Based on the search
points derived from this, contours are now searched again
and the smallest enclosing rectangles are determined.

Finally, the rectangles found are transferred from pixel

coordinates of the binary images to texture coordinates
of the facades and from there to 3D model coordinates
of the building model.

3. RESULTS

The presented method is evaluated using an MLS test
dataset (Zhu et al., 2020). The minimum voxel size is
assumed to be 0.2 m, the threshold for the standard de-
viations σ to be labelled as plane is set to 0.3 m, and the
threshold for the deviation from the normal direction of
the facade is 20°. The minimum distance between two
facades is given as 2.5 m. A voxel is selected as a start-
ing voxel if its standard deviation σ is smaller than 0.25
m. The two distances δ1 and δ2 for the determination
of the interior points are set to 15 cm and 50 cm, re-
spectively. By choosing these values, the accuracy of
the 3d coordinates of the points is taken into account
accordingly, considering the measurement accuracy and
the viewing angles, as well as minor unevenness of the
facade.

An overview of the reconstructed facades and windows
is shown in Figure 5. All facades could be recognized.
Three double facades can be seen. Facade A consists of
a facade and the scaffolding in front of it. facades 16 and
24 are the front and the back facade of a balcony. facades
17 and 25 are the front and rear facades of an arcade.
facade 14 spans the street and contains a passageway that
could not be identified here. The textures and extracted
windows of facades 14, 16, and 17 are shown again in
Figure 6a. The areas where the recessed facades at 16
and 17 are located are outlined in red, as is the area of
facade 14 that is an open thoroughfare.

(a) (b)

Figure 5. Results of facades and windows extraction. (a)
View on the whole scene. (b) Top view of the facades.

Two facade planes can be seen at A. These are the facade
and a scaffolding in front of it. Also visible are facades 24
and 25, which are recessed facades of a balcony (24) and
an arcade entrance (25). facade 14 contains a passageway
that cannot be detected with the method presented here.

In contrast, Figure 6b shows four textures from differ-
ent facades and table 1 shows the evaluation of the win-
dow detection for these four facades and the overall test
scene. Texture 8 has some windows that are only visible
in facade points. Texture 4 has quite a few missing win-
dows due to poor coverage in the point cloud. Texture 10
shows a very good reconstruction of the windows except
for the unsampled upper right corner. With texture 23
the detection does not work very well. Here the facade
consists of several levels, the windows are partly in deep
niches and the number and shape of the windows varies
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from floor to floor. Over the whole scene, a completeness
of 86% and correctness of 87% is reached.

num GT TP FP FN COM COR
4 6 5 3 1 66.7% 83.3%
8 35 34 0 1 100% 97.1%
10 60 60 0 0 100% 100%
23 59 41 7 20 85.7% 69.5%
total 702 605 88 101 86.2% 87.6%

Table 1. Results for the selected facades of figure 4. num:
number of the facade, GT: Ground Truth, TP: true

positive, FP: false positive, FN: false negative, COM:
completeness, COR: correctness.

The correct shape of the windows is compared with a
reference data set (tab. 2). The deviations in width and
height of the windows are in the range of a few centi-
metres to a few decimetres. The height estimation for
the first to the third floor is heavily underestimated by
half a meter whereas it fits for the two upper floors with
a few centimetres. The width in contrast shows a good
accuracy of a few centimetres for the second to the fifth
floor.

floor height error width error
floor mean [m] σ [m] mean [m] σ [m]
1 -0.48 0.02 -0.20 0.20
2+3 -0.78 0.55 0.05 0.07
4 -0.02 0.07 0.05 0.03
5 -0.02 0.11 -0.08 0.18

Table 2. Evaluation of the window size. Height is
underestimated for floor one to 3.

4. DISCUSSION

The most common cause for non-detections is poor cover-
age of the environment with only very few points. Other
typical problem cases are small basement windows close
to the ground and barred windows with few to no inter-
sections (due to poor detection). The false alarm rate
is just over 10 %. The areas falsely classified as win-
dows are very small in most cases. However, for a few
facades there is a particular accumulation of false detec-
tions, namely mainly when there are many incorrectly
set intersections, which occurs mainly at facade edges or
when there are plane jumps in facades.

The shape reconstruction shows a higher accuracy than
(Tuttas and Stilla, 2013) which is obvious due to the
denser point cloud. The first floor windows show an
underestimation in the height. As these windows start
directly from the ground level, the foot points are of-
ten occluded and thus the windows are not fully seen by
the laser scanner. For the second and third floor, the
reason for the underestimation is different. Both floor
had a couple of windows with shutters partially closed.
As these shutter areas are violating our window detection
rules, they are seen as part of the facade and the open
window area is smaller. The quite constant accuracy in
the width indicates the real accuracy in the window ex-
traction. Here, the windows are reconstructed with the
correct width in the range of a few centimetres.

There is an outlier at the end of the fourth row, which was
reconstructed only by the intersections. Removing this

from the row gives a homogeneous result with a stand-
ard deviation of the height and width difference of only
7 and 3 cm, respectively. There is also only a very small
deviation of 2 or 5 cm from the reference. The situ-
ation is similar for row 5, although the standard devi-
ation is somewhat higher here. The reason for this is
probably the smaller size of the windows and the more
acute viewing angle of the laser scanner. This also shows
that the reconstruction is done with a resolution of 1 cm,
which is due to the pixel size of the binary image. due
to the pixel size of the binary image. Overall, from the
non-systematically error-prone values, a weak tendency
to slightly too large reconstruction can be seen.

5. OUTLOOK

Overall, the results are satisfactory. Compared to (Tut-
tas and Stilla, 2013), the detection rate is about 10% bet-
ter due to the significantly higher point density and the
false alarm rate is somewhat lower. The deviations in the
sizes of the windows are also lower according to the point
density. In (Tuttas and Stilla, 2013) the accuracy of the
dimensions of the windows was obtained from the recon-
struction. This was taken into account using a probab-
ility density function. This could also be considered in
continuation of the work presented here to further re-
duce the inaccuracies. In addition to incorrectly posi-
tioned search points, incorrectly set intersection points
are a common source of error in window extraction, as
mentioned earlier. These usually occur at the vertical
edges of the facade or due to facade areas that are offset
to the rear. Checking all points for lines of sight with all
estimated planes would reduce this problem, but means
a much higher computational effort. Also, the model
assumption about the shape of windows could be exten-
ded from rectangular windows to other shapes. These
location and shape parameters could be trained (Schmit-
twilken and Plumer, 2010) or a library of templates could
be created and selected via a Monte Carlo procedure (Ng-
uatem et al., 2014).
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(a)

(b)

Figure 6. Results of window extraction. Gray dots stand
for the facade points, orange ones for intersection points.

The purple crosses are the search positions of the first
search phase (if with position search), the blue ones mark

those of the new detection (or the completion of the
grid). The windows found in this process are shown as

blue rectangles, those of the first pass in black. (a) Areas
to be extracted (outlined in red) in facades 14, 16 and 17.

The extracted rectangles each encompass the range of
values shown. For 16 and 17, the respective facade

behind them (24 and 25, respectively) is also shown. (b)
facades 8, 4, 10 and 23.
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