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ABSTRACT:  

 

Accurate digital representation of indoor facilities is a key component for the generation of building twins. 3D indoor scenes are often 

reconstructed from 3D point clouds obtained by various measurement techniques, which usually show different accuracy 

characteristics. During the reconstruction process, the uncertainties of data and intermediate products propagate into the accuracy of 

the vectorized model. Although point clouds-based 3D building modeling has been a hot topic of research for at least two decades, a 

thorough analysis of error propagation for this problem from a geodetic point of view is still underrepresented. In this contribution, we 

propose an analytical approach to estimate the uncertainty of 3D modeling results using the analytic approach based on first-order 

Taylor-series expansion. A general model for the input data is established and the uncertainty expressions of all computed products 

are symbolically derived. We estimate the uncertainty of 3D data fitting, followed by the derivation of vectorized building parameters 

and their covariance matrices. The results of the theoretical approaches are tested on real data presenting an indoor scene. The practical 

example is illustrated, thoroughly analysed, and quantified. 

 

 

 

1. INTRODUCTION 

Accurate 3D reconstruction of digital indoor scenes is one of the 

main components for Building Information Modeling (BIM). 

Virtual building models are often (semi-)automatically 

reconstructed from 3D point clouds obtained by various 

measurement techniques, which usually show different accuracy 

characteristics. During the reconstruction process errors of the 

acquired data propagate into the accuracy of a vectorized model. 

Without the statement of their uncertainties, the final outputs of 

data processing cannot be reasonably compared with each other 

or with a reference standard. Especially in the design and 

development phase, it is needed to estimate the uncertainties 

associated with a measurement system and modeling method. 

Such estimation procedures enable the a priori estimation of the 

achievable accuracy of the data processing chain which is under 

development (Biljecki at al., 2015). Furthermore, the analysis can 

also provide knowledge about causes of errors and processing 

parts that are sensitive to uncertainties.  

 

While automatic 3D building reconstruction from point clouds 

has been a hot topic of research for at least two decades, a 

thorough analysis of error propagation for this problem from a 

geodetic point of view is clearly underrepresented. Research 

dedicated to quality assessment of the reconstructed 3D models 

is mostly limited to the comparison against input data or 

reference models (e.g. Tran 2019; Khoshelham 2020). This fact 

motivates us to propose an analytical error propagation model 

based on first-order Taylor-series expansion. We aim at the 

investigation of how the uncertainties in fitting objects to 3D 

points propagate towards the positional uncertainty of the 

reconstructed elements.  Although building structural 

components can be abstracted in 3D space by various geometric 

objects, the core idea in most building reconstruction algorithms 

is to detect planar patches in an input point cloud  (Pintore et al., 
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2020). Therefore, the presented approach starts with an analysis 

of error propagation in algorithms for fitting planes to the sets of 

segmented 3D points. The estimated plane parameter 

uncertainties are then used to investigate their influence on the 

accuracy of the elements which are derived from them. We 

analyse the following cases: (i) positional uncertainty of the 3D 

model vertices (computed as the intersection of three planes), and 

(ii) errors of the 3D line parameters that describe model edges 

(computed as the intersection of two planes). All the established 

error propagation models consider the correlations between 

parameters. The results of the theoretical approaches are tested 

on a 3D point cloud presenting a single office. The practical 

example is illustrated, thoroughly analysed, and quantified. 

 

 

2. METHODOLOGY 

2.1 Analytical estimation of error propagation 

The error propagation problem can be formulated mathematically 

as follows (e.g. Heuvelink, 2005): 

   

                   𝑈(. ) = 𝑔(𝐴1(. ), … , 𝐴𝑚(. ))                                (1) 

 

where the function 𝑔(. ) may represent any operation on the input 

data. The error propagation analysis aims to determine the error 

in the output 𝑈(. ), usually expressed with its variance, given the 

operation 𝑔(. ) and the errors in the input attributes 𝐴𝑖(. ).  

 

There are two common approaches to investigate the propagation 

of errors in computational processes: Taylor series 

approximation and Monte Carlo simulation. The first approach is 

analytical and based on the first-order Taylor-series expansion of 

the process function. It requires establishing mathematical 

functions that describe the computation process. The alternative 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-395-2022 | © Author(s) 2022. CC BY 4.0 License.

 
395

https://www2.isprs.org/commissions/comm2/wgs/#wg2-4


 

approach, Monte-Carlo simulation, is a numerical brute force 

method based on simulated noise on measurement data. In this 

contribution, we focus on the analytical modeling of the error 

propagation to estimate the covariance matrix of a processing 

result for each step of 3D indoor scene modeling.  

 

Assuming that the input data is represented by the random vector 

𝑥 with the covariance matrix 𝛬𝑥 and the process is 

mathematically described by an explicit continuously 

differentiable function 𝑓(𝑥), we aim at the computation of the 

covariance matrix 𝛬𝑦 of the result 𝑦 = 𝑓(𝑥) (Clarke, 1998). The 

Taylor series expansion of 𝑓(𝑥) around the expected value 𝑥̅ of 

𝑥 yields: 

 

             𝑓( 𝑥̅ + ∆𝑥) = 𝑓( 𝑥̅) + ∇𝑓( 𝑥̅)∆𝑥) + 𝑂(‖∆𝑥‖)2.             (2) 

 

The first order approximation to the covariance matrix 𝛬𝑦 for the 

estimated vector 𝑦 is thus given by: 

 

                                    𝛬𝑦 = ∇𝑓𝛬𝑥∇𝑓𝑇  ,                                      (3) 

 

where ∇𝑓 denotes the Jacobian of the function 𝑓(𝑥), obtained by 

computing partial derivatives: 

 

                     ∇𝑓 =
𝜕𝑓(𝑥)

𝜕𝑥
=

[
 
 
 
𝜕𝑓1

𝜕𝑥1
…

𝜕𝑓1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑛

𝜕𝑥1
…

𝜕𝑓𝑛

𝜕𝑥𝑛]
 
 
 

       .                            (4) 

 
 

2.2 Uncertainty of 3D plane parameters and derived 

quantities 

A geometric object in 3D space is represented by a set of 

parameters. During the fitting process, the parameters of the 

fitted object are estimated by the minimization of a chosen error 

function. The presented methodological chain starts with fitting 

planes to the input 3D points by the least-squares method in order 

to estimate the coefficients of the fitting planes equations and 

their corresponding covariance matrices. This work is focussed 

on the reconstruction-based uncertainty, which means that for the 

time being we assume no measurement errors in the acquired 

data. A plane in the 3D space is described by a normal vector                    

𝒏 = [𝑎, 𝑏, 𝑐]𝑇 and a normal oriented distance 𝑑 , so that for point 

𝒑 = [𝑥, 𝑦, 𝑧]𝑇  on the plane the following relation holds: 

 

                                         𝒑𝑇𝒏 + 𝑑 = 0   .                                   (5) 

 

Considering the notation above, we can rewrite this as: 

 

                                 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0   ,                          (6) 

 

and by assigning 𝑐 = 1 rearrange to: 

 

                                     𝑎𝑥 + 𝑏𝑦 + 𝑑 = −𝑧                                (7)  

                

Given a set of  𝑁 > 3 points in the 3D space  𝒑𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖),    

𝑖 = {1…𝑁), Equation 7 can be presented in a matrix form: 
 

                             [

𝑥1 𝑦1 1
𝑥2 𝑦2 1
⋮ ⋮ ⋮

𝑥𝑁 𝑦𝑁 1

] [
𝑎
𝑏
𝑑
] = [

−𝑧1

−𝑧2

⋮
−𝑧𝑁

]                         (8) 

 
and described by: 

                                           𝐴𝑋 = 𝐿    .                                           (9) 

The least square method gives the solution vector : 

 

                                 𝑿̂ = (𝐴𝑇𝐴)−1𝐴𝑇𝑙  ,                                (10) 

 

the residual vector for the observations: 

 

                                    𝑣 = 𝐴𝑿̂ − 𝑙  ,                                      (11) 

cofactor matrix: 

                                   𝑄 = (𝐴𝑇𝐴)−1  ,                                    (12) 

 

and the variance factor: 

 

                           𝛿̂0
2

= (𝑣𝑇𝑣)−1/(𝑁 − 𝑘) ,                           (13) 

 

where k is the number of minimum required observations.  

 

The covariance matrix of the estimated plane parameters is then 

computed as: 

                                     𝛬 = 𝛿̂0
2
𝑄                                           (14) 

 

and can be directly used to extract the uncertainties of the 

estimated plane parameters and their correlations. Additionally, 

the slope s of the extracted plane is computed using an angle 

between the plane normal vector and the horizontal plane: 

 

                                 𝑠 = tan−1 −1

√𝑎2+𝑏2
   .                                   (15) 

 

The related uncertainty of the plane slope is estimated taking the 

2x2 part of the covariance matrix related to 𝑎, 𝑏 parameters of the 

fitted plane: 𝛬𝑎𝑏 and the Jacobian of the function s (Equation 15): 

 

                                    ∇𝑓𝑠 = 
𝜕(𝑎,𝑏)

𝜕(𝑠)
                                        (16) 

 

and given by the following relation: 

 

                      𝛬𝑠 = ∇𝑓
𝑠
𝛬𝑎𝑏∇𝑓

𝑠
𝑇
  .                                                 (17) 

 
 
2.3 Positional uncertainty of model vertices 

In the next part of the presented research, we derive a functional 

relationship between the covariance matrix of the estimated plane 

parameters and the parameters of the intersection point. Given 

three planes 𝑙, 𝑔,𝑚 and their covariance matrices 𝛬𝑙 , 𝛬𝑔 , 𝛬𝑚 , the 

intersection point p is found by: 

 

     𝒑 = [
𝑋
𝑌
𝑍
] =

[

(𝑏𝑙𝑑𝑔 − 𝑏𝑔𝑑𝑙 − 𝑏𝑙𝑑𝑚 + 𝑏𝑚𝑑𝑙 + 𝑏𝑔𝑑𝑚 − 𝑏𝑚𝑑𝑔)/𝑡

(−𝑎𝑙𝑑𝑔 − 𝑎𝑔𝑑𝑙 − 𝑎𝑙𝑑𝑚 + 𝑎𝑚𝑑𝑙 + 𝑎𝑔𝑑𝑚 − 𝑎𝑚𝑑𝑔)/𝑡

(𝑎𝑙𝑏𝑔𝑑𝑚 − 𝑎𝑙𝑏𝑚𝑑𝑔 − 𝑎𝑔𝑏𝑙𝑑𝑚 + 𝑎𝑔𝑏𝑚𝑑𝑙 + 𝑎𝑚𝑏𝑙𝑑𝑔 − 𝑎𝑚𝑏𝑔𝑑𝑙)/𝑡

]  

 

where    𝒕 = 𝑎𝑙𝑏𝑔 − 𝑎𝑔𝑏𝑙 − 𝑎𝑙𝑏𝑚 + 𝑎𝑚𝑏𝑙 + 𝑎𝑔𝑏𝑚 − 𝑎𝑚𝑏𝑔 ,             (18) 

 

and 𝑎, 𝑏, 𝑑 denotes plane parameters of 𝑙, 𝑔,𝑚  planes, according 

to equation 6. 

 

Considering the merged covariance matrix of the three planes: 

 

                                 𝛬𝑙𝑔𝑚 = [

𝛬𝑙 0 0
0 𝛬𝑔 0

0 0 𝛬𝑚

]                                   (19) 
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and the Jacobian of the point coordinate function presented in 

Equation 18: 

                      ∇𝑓𝑝 = 
𝜕(𝑎𝑙,𝑏𝑙,𝑑𝑙,𝑎𝑔,𝑏𝑔,𝑑𝑔,𝑎𝑚,𝑏𝑚,𝑑𝑚)

𝜕(𝑥,𝑦,𝑧)
      ,             (20) 

 

the covariance matrix of the intersection point is computed as: 

                                          𝛬𝑝 = ∇𝑓𝑝𝛬𝑙𝑔𝑚∇𝑓𝑝
𝑇

  ,                      (21) 

 

providing uncertainties of the derived point coordinates X,Y,Z. 

 

2.4 Positional uncertainty of model edges 

The uncertainty associated with the parameters of a plane fitted 

to the input data (c.f. Section 2.2.) is also used to establish a 

general model of error propagation for the estimation of an 

intersection line uncertainty. A directional vector of a 3D line 

generated by the intersection of two planes 𝑙, 𝑔 is obtained by: 

 

                                   𝒗 = [

𝑣𝑖

𝑣𝑗

𝑣𝑘

] = [

−𝑏𝑙 + 𝑏𝑔

𝑎𝑙 − 𝑎𝑔

𝑎𝑙𝑏𝑔 − 𝑎𝑔𝑏𝑙

]    .                                     (22) 

 

Given the merged covariance matrices 𝛬𝑙−𝑎𝑏, 𝛬𝑔−𝑎𝑏  which are 

parts (2x2) of the full covariance matrices 𝛬𝑙 , 𝛬𝑔  related to 𝑎, 𝑏 

parameters, and the Jacobian of the function v (Equation 22): 

 

                              ∇𝑓𝑣 = 
𝜕(𝑎𝑙,𝑏𝑙,𝑎𝑔,𝑏𝑔)

𝜕(𝑣𝑖,𝑣𝑗,𝑣𝑘)
                                  (23) 

 

the covariance matrix for the 3D line directional vector 

parameters is estimated by: 

 

                 𝛬𝑣 = ∇𝑓
𝑣
𝛬𝑙−𝑎𝑏,𝑔−𝑎𝑏∇𝑓

𝑣
𝑇
 .                             (24) 

 

Finally, the inclination of the model edge with respect to the 

horizontal plane yields: 

 

                                 𝑠𝑒 = tan−1 𝑣𝑘

√𝑣𝑖
2+𝑣𝑗

2
  .                                 (25) 

 

Considering the Jacobian of 𝑠𝑒 : 

 

                                  ∇𝑓𝑠𝑒
= 

𝜕(𝑣𝑖,𝑣𝑗,𝑣𝑘)

𝜕(𝑠)
                                        (26) 

the covariance matrix 𝛬𝑠𝑒
 of the model edge slope is computed 

as: 

                 𝛬𝑠 = ∇𝑓
𝑠𝑒

(∇𝑓
𝑣
𝛬𝑙−𝑎𝑏,𝑔−𝑎𝑏∇𝑓

𝑣
𝑇
)∇𝑓

𝑠𝑒

𝑇
 .                   (27) 

 

 

3. RESULTS AND DISCUSSION 

For the practical application of the derived analytical model of 

error propagation, we use a raw point cloud generated based on 

RGB-D data as a part of the Stanford 2D-3D-Semantic Dataset 

(2D-3D-S, Armeni et al., 2016). The benchmark provides a 

variety of mutually registered modalities collected in large-scale 

indoor areas of mainly educational and office use. In our initial 

experiment, we choose a subset of the data presenting a single 

office (Fig.1a). The presented methodological chain is applied to 

a 3D point cloud segmented into planar patches according to the 

segmentation method presented in (Jarząbek-Rychard and 

Borkowski, 2016). The input data pre-processed by the 

segmentation algorithm is visualized in Fig.1b. To avoid 

singularities in 3D object fitting to the vertical walls, we 

temporarily align the room layout along the x-axis and rotate the 

point cloud by 45° around the x-axis and 45° around the y-axis. 

 

Our numerical analyses start with the computation of the 

uncertainty of plane fitting. The related statistics are collected in 

Table 1. The numbers present the estimated parameters of each 

plane (according to Equation 6), together with the values of plane 

slope that are derived based on them. The average slope error in 

the test data is 0.0725°. Additionally, we provide the number of 

points for each segment, and compute a mean absolute distance 

from 3D points to the plane, which is often used in 3D modeling 

as an indicator for plane-fitting quality. Figure 2 shows the 

uncertainties of the estimated plane parameters, presented as a 

total error of the normalized plane vector and as the error of the 

parameter 𝑑. It is clearly visible that the numbers for two planes 

stand out from the others - plane 7 and plane 8. These are the 

smallest walls of the test space. Extending the statistics by the 

visualization from Fig.1, we can infer that the uncertainty of 

object fitting is inversely proportional to the size of a point 

segment. This is also proven by the point segment used for the 

estimation of plane 4, which characteristic is better than the two 

smallest planes but slightly worse than the rest of them. 

 

Figure 1. Input 3D point cloud and corresponding vectorised indoor model (a), direct input to the error propagation analysis – data 

segmented into planar patches (b), top view of the vertical walls with the corresponding plane IDs, horizontal planes 1 and 2 are not 

visualized (c).. 

                    (a)                                                                          (b)                                                                 (c) 
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Figure 2. Uncertainty of plane estimation: normalised plane 

vector  𝒗 = [𝑎, 𝑏, 𝑐]𝑇  and distance parameter d. 

 

 
Figure 3. Uncertainties of plane slope estimation compared 

against mean residuals calculated between 3D points and the 

estimated planes. 

 

 

In Fig.3 we compare the uncertainties of plane slope estimation 

against mean residuals calculated between 3D points and the 

estimated planes. The plot shows that there is no direct 

dependency correlation between these two indicators. For 

example, the point segment assigned with plane 6 has large 

residuals, while its uncertainty of plane fitting remains relatively 

small. 

 

point 

ID 

floor ceiling 

   error -   

3D space 

intersection 

planes 

   error -   

3D space 

intersection 

planes 

1 0,0042 1,3,4 0,0027 2,3,4 

2 0,0055 1,4,5 0,0040 2,4,5 

3 0,0056 1,5,6 0,0042 2,5,6 

4 0,0046 1,6,7 0,0031 2,6,7 

5 0,0032 1,7,8 0,0019 2,7,8 

6 0,0033 1,8,3 0,0017 2,8,3 

 

Table 2. Uncertainty of 3D model vertices presented as a total 

displacement of a point in the 3D space. 

 

 

 

 
Figure 4. Uncertainty of 3D model vertices - displacements in 

3D space. 

 

 

 

In the next stage of the  numerical experiment, we investigate 

how the plane fitting uncertainties affect the uncertainty of the 

reconstructed model vertices. The values of point displacements 

in 3D space together with the indices of intersection planes are 

presented in Table 2. The average positional error of all 

intersection points is equal to 3.7 mm. The results are illustrated 

in Fig.4. Differences in uncertainty within the vertices belonging 
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0,006

1 2 3 4 5 6

[m
]

point ID

floor points ceiling points

plane 

ID 

number 

of points 

normalized vector v 

D 

plane 

slope 

[deg] 

v error d error 
slope 

error 

plane-

point 

mean dist. 

[m] A B C 

1 2665 0,0040 0,0018 -1,0000 0,0394 0,2525 0,0002 0,0019 0,0050 0,0039 

2 2988 0,0037 -0,0013 -1,0000 3,1870 0,2228 0,0001 0,0009 0,0034 0,0033 

3 2587 -0,0031 -1,0000 -0,0069 6,2317 89,6057 0,0001 0,0013 0,0042 0,0031 

4 333 0,9999 -0,0002 -0,0138 15,3386 89,2092 0,0008 0,0042 0,0315 0,0027 

5 2106 -0,0028 -1,0000 0,0013 9,1394 90,0724 0,0001 0,0019 0,0037 0,0018 

6 611 0,9999 -0,0006 0,0147 20,8746 90,8440 0,0007 0,0039 0,0281 0,0072 

7 200 -0,0092 -0,9999 -0,0093 6,3199 89,4650 0,0022 0,0454 0,1038 0,0023 

8 108 0,9985 0,0549 0,0078 20,1358 90,4444 0,0094 0,0708 0,4002 0,0044 

 

Table 1. Plane fitting quality. 
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to the same horizontal plane are nearly the same. We can notice 

an almost constant offset between the plots regarding floor and 

ceiling. The lower error values are presented for the ceiling 

points. This is related to the better quality of the plane fit (cf. 

Tab.1), which now propagates into the point uncertainty.  

The last assessment is related to the propagation of plane fitting 

errors into the positional uncertainty of model edges generated 

by the intersection of two planes. Based on the 3D line directional 

vector and the associated covariance matrix we compute the 

slope of the model edge (inclination to the horizontal plane) and 

its uncertainty (Table 3). The mean slope error of all the edges is 

equal to 0.0741°. The numbers are illustrated in Figures 5-7. 

Vertical edges present very similar slope errors within the whole 

group. Although it is noticeable that the uncertainty for edges 5 

and 6 are almost twice as large as the others, these differences are 

not as clear as the differences within both horizontal groups (floor 

and the ceiling edges). Here the largest slope error (edge 6) is 

more than 100 times bigger than the smallest one (edge 1 and 3). 

For all the computed horizontal edges (where one intersecting 

plane is constant) uncertainty statistics reflect the uncertainty of 

estimated parameters of the vertical plane used for the generation 

of the model edge (c.f. Table 1). It is also worth noticing that in 

almost all the cases the edge slope values of 0° or 90°, commonly 

used for building model regularization, are out of the scope 

indicated by the computed edge slopes and their uncertainties. 

 

edge 

type 

edge 

ID 
slope [deg] slope error 

[deg] 

intersection 

planes 

  
  

  
 v

er
ti

ca
l 

ed
g

es
 1 89,1153 0,0236 3,4 

2 90,7939 0,0236 4,5 

3 89,1527 0,0215 5,6 

4 90,9954 0,0248 6,7 

5 89,3254 0,0427 7,8 

6 90,5777 0,0406 8,3 

h
o

ri
zo

n
ta

l 
ed

g
es

 -
 f

lo
o

r 

1 -0,2309 0,0035 1,3 

2 -0,1014 0,0295 1,4 

3 -0,2309 0,0035 1,5 

4 -0,1015 0,0231 1,6 

5 -0,2303 0,0879 1,7 

6 -0,0885 0,4316 1,8 

h
o

ri
zo

n
ta

l 
ed

g
es

 -
 c

ei
li

n
g
 

1 -0,2107 0,0035 2,3 

2 0,0733 0,0290 2,4 

3 -0,2106 0,0035 2,5 

4 0,0732 0,0225 2,6 

5 -0,2111 0,0876 2,7 

6 0,0848 0,4312 2,8 

 

Table 3. Estimated slopes of 3D model edges with corresponding 

uncertainties. 

 
Figure 5. Slopes of model vertical edges with corresponding 

uncertainties. 

 

 
Figure 6. Slopes of model floor horizontal edges with 

corresponding uncertainties. 

 

 
Figure 7. Slopes of model ceiling horizontal edges with 

corresponding uncertainties. 

 

 

4. CONCLUSION 

This paper gives an insight into error propagation analysis for the 

estimation of building model parameters, based on the Taylor 

series approximation. The presented work is an opening step 

towards establishing a general framework for the investigation of 

uncertainties in 3D building modeling, which was so far rarely 

covered. Given the segmented data points, we start with the 

estimation of an analytical expression for the covariance matrix 

of the fitted 3D plane parameters, followed by the derivation of 

error propagation models for each consecutive step of 3D 

reconstruction. The influence of fitting errors on the uncertainty 

of the subsequent reconstruction results, computed from the 

estimated parameters, is thoroughly investigated and quantified. 

For the presented test data, the analyses reveal the positional error 

of calculated vertices in a 3D space of 3.7 mm. The mean error 
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of the inclination of model 3D edges to the horizontal plane is 

equal to 0.0741°. The underlying methodology so far is dedicated 

to the propagation of uncertainties through the reconstruction 

process, excluding the influence of data acquisition errors. In 

future work, we will address this issue and propose a 

comprehensive error propagation model for the generation of a 

digital indoor scene. The presented analytical approach will be 

enhanced by the numerical simulation based on the Monte Carlo 

method. In the described work, we also assume that the planes 

are really planar. We plan to verify this hypothesis, using for 

instance residuals from the input data. Furthermore, we intend to 

investigate uncertainty distribution to extend the research scope 

by the applicability of building model regularization rules. 
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