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ABSTRACT: 

The use of Airborne Laser Scanner (ALS) point clouds has dominated 3D buildings reconstruction research, thus giving 

photogrammetric point clouds less attention. Point cloud density, occlusion and vegetation cover are some of the concerns that 

promote the necessity to understand and question the completeness and correctness of UAV photogrammetric point clouds for 3D 

buildings reconstruction. This research explores the potentials of modelling 3D buildings from nadir and oblique UAV image data 

vis a vis airborne laser data. Optimal parameter settings for dense matching and reconstruction are analysed for both UAV image-

based and lidar point clouds. This research employs an automatic data driven model approach to 3D building reconstruction. A 

proper segmentation into planar roof faces is crucial, followed by façade detection to capture the real extent of the buildings’ roof 

overhang. An analysis of the quality of point density and point noise, in relation to setting parameter indicates that with a minimum 

of 50 points/m2, most of the planar surfaces are reconstructed comfortably. But for smaller features than dormers on the roof, a 

denser point cloud than 80points/m2 is needed. 3D buildings from UAVs point cloud can be improved by enhancing roof boundary 

by use of edge information from images. It can also be improved by merging the imagery building outlines, point clouds roof 

boundary and the walls outline to extract the real extent of the building. 

1. INTRODUCTION

Buildings are vital structuring elements for urban planning, 

emergency response and disaster management applications; 

they are an important feature in a spatial decision support 

system (Xiao et al., 2012). In the third dimension (3D), 

buildings can be used as urban parameters to monitor and 

evaluate city planning indicators (Rebelo et al., 2015). 3D 

buildings show geometry and appearance of reality; they enable 

contextual spatiotemporal understanding of built-up scenes. 

Traditional photogrammetry has demonstrated the ability to 

reconstruct 3D scenes. Nevertheless, manual stereo pair feature 

extraction has proven to be tedious and time consuming for 

expansive built-up areas. Airborne Laser Scanning (ALS), has 

come a long way to leverage traditional image-based 3D 

reconstruction. ALS point clouds are dense, accurate, penetrate 

vegetation and give ready 3D data. However, reconstruction of 

3D models representative of the real ground scene remains to be 

a challenge (Malihi et al., 2016). High cost of scanner 

acquisition, and limitation to capture the roof and parts of a 

building only visible from an aerial perspective plague the use 

of ALS to accurately model 3D buildings. ALS cannot record 

data on slate roofs, roof covered with water and glass materials; 

the ALS beam can also be diverted by solar panels. Moreover, 

ALS  lacks accuracy at the edge of the building due to laser 

sampling. Maltezos & Ioannidis (2015) argue that, ALS point 

clouds could give false 3D models since buildings are easily 

confused with smooth canopy. 

On the other hand, contemporary digital photogrammetry has 

revived image-based data collection and is a suitable alternative 

for 3D reconstruction of built-up scenes. The use of Unmanned 

Aerial Vehicles (UAV) for image data acquisition is widely 

spread due to their low-cost, flexibility and high-efficiency. 

They are viewed as a midway option between higher resolution 

ground-based images and the lower resolution data acquired 

from satellites and other airborne platforms. 

Irrespective of the pros of UAV application, the cons are quite 

an array and can be separated into three broad categories: 

operational restrictions such as violent weather conditions, high, 

rugged and rapidly undulating terrain, limited spatial coverage, 

radio connection stability, landing services; political readiness 

such as public approval and safety measures; and regulation 

restrictions such as privacy, region coverage and flying height.  

Both UAV and ALS point clouds suffer similar shortcomings; 

occlusion and shadows (Li et al., 2013). According to Haala & 

Kada (2010), the development of a fully automated algorithm 

for 3D modelling of buildings remains a challenge. To add to 

this discourse,  Xiong, (2014) summarizes the complexities of 

3D building modelling as:  

• Complex scenes - The environment to which the

buildings are found is a mixer of many objects thus hard

to distinguish;

• Complex building shapes - Some buildings have

complicated shapes and a lot of fixtures on the roof;

• Complex boundaries – Some incomplete shapes

missing due to missing 3D points; and

• Lack of data – These are caused by occlusion, slate

roofs, water on roofs, and shadows.

Figure 1.  UAV point cloud (left) and ALS point cloud (right) 

In Figure 1(a), the arrows show scene features void of points 

due to occlusion and shadow; comparably, in 1(b), the same 

features are either fully captured or void of points like the roof.  
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The developments in computer vision and photogrammetry 

allows for the extraction of geometrically accurate point clouds 

from overlapping imagery and automatic scene interpretation. 

The motivation is triggered by increased quality of digital 

cameras, flight planning flexibility as well as amplified 

innovation in image matching algorithms. According to Fabio 

Remondino et al., (2014), accurate image matching is one of the 

keys to proper 3D modelling. 
 

This research aims at 3D modelling of buildings from UAV 

dense point clouds. We explore the use of oblique images to 

enhance roof boundaries, facades and wall outline to reveal the 

true extents of buildings. 
 

2. RELATED WORKS 
 

For two decades now, lidar and aerial image point clouds have 

been used for automatic 3D building reconstruction with 

different level of details (LOD) and approaches, model-driven 

and data-driven. Haala & Kada, (2010) give an update of the 

current state-of-the-art to 3D building reconstruction from laser, 

aerial images and a fusion of both. Later, Xiao et al., (2012) 

attempt automatic detection of 3D buildings from aerial images. 

Oblique airborne images were used; facades positioning with 

same view direction were used to recognize buildings. One key 

assumption was that facades are a composition of vertical 

planes. Onyango et al., (2017) estimate orientation parameters 

of oblique UAV imagery using keypoint intensity features on 

building facades. Resolution and scale differences are observed 

not to be an image matching deterrent.   
 

Tutzauer & Haala, (2015) used a combination method of dense 

point clouds from mobile and aerial images to reconstruct and 

enrich the building facades; a grammar-based approach was 

used for the building reconstruction in parts which were not 

covered by images. Another approach was applied by Verdie et 

al. (2015); multiple classification of building categories like 

ground, roofs, or façades was done. Zebedin et al., (2008); 

Rouhani, Lafarge, & Alliez, (2017) with multi-view geometry 

techniques and multi-view stereo images, introduce a Markov 

Random Field-based approach which segments textured meshes 

for urban classes which clearly separate ground, buildings and 

trees. The input mesh is partitioned into small cluster from 

which geometric and photometric features are computed. 
 

B. Xiong, Oude Elberink, & Vosselman, (2014) examine 3D 

building reconstruction approaches using UAV images; a free 

parameter algorithm is used as an alternative to erroneous roof 

topology graphs and model-driven method. It takes noisy 

photogrammetric point clouds and existing cadastral maps as 

the inputs; cadastral maps act as the constrains to roof 

boundaries and project the point clouds to the map boundaries 

to construct the walls. Vacca, Dessì, & Sacco (2017) study the 

accuracy gains achieved in surveying and compare the accuracy 

in height, area, and volume of the dimensions of the 3D 

building from UAV nadir and oblique images. Chen et al., 

(2016) execute an Automatic change detection for urban 

buildings using UAV images and dense point clouds. 
 

3. STUDY AREA AND DATASET 
 

3.1 Dataset 1 

The first study area is in Nunspeet; a municipality in central 

Netherlands; approximately 52° 22' 20"N and 5° 47' 16"E.  The 

area was first surveyed with an aerial laser scanner and later 

with UAV. The buildings are simple gable roofs. A total of 312 

UAV nadir images covering about 4.4 hectares and capturing 35 

main buildings were taken. 

The UAV camera specs include: model EP3_17.0_4032x3024 

(RGB) with image resolution of 4032*3024, focal length of 

16.7095 (mm), sensor size of 17.3*12.975(mm), pixel size of 

4.29068(µm) and average GSD of 1.65(cm). The flying height 

was about 62 m with a forward and side overlap of 85%. 
 

 
Figure 2. Left; ALS data; Right: UAV Orthomosaic image 

 

3.1.1 Reference data 

The Actueel Hoogtebestand Nederland (AHN) point cloud data 

was used as the reference for the Nunspeet site. AHN, is a lidar 

point clouds data covering the Netherlands. It is provided as an 

open data source in Publieke Dienstverlening op de Kaart 

(PDOK). The AHN lidar data has a point density of about 15 

points/m2 and was clipped to the same size as the UAV data. 
 

3.2 Dataset 2 

L’Aquila in Italy is about 42° 20' 40"N, 13° 23' 38"E. L’ Aquila 

has both tall and normal buildings. Only UAV images were 

captured. Five different flights were made (1 nadir and 4 

oblique in north, east, south, west directions). This was done to 

ensure that all the buildings in the area were captured from 360 

degrees view. The flying height was an average 60m with a 

forward and side overlap of 80% and 60% respectively.  
 

 
Figure 3.  L’Aquila’s one oblique image showing the area 

 

3.3 Dataset 3 

The third study area is City Hall Dortmund located in Germany; 

about 51° 30' 39"N, 7° 27' 58.40"E. The area was surveyed with 

UAV, terrestrial images as well as terrestrial laser scanner. The 

images were both oblique (forwardlap 75%, sidelap 85%), and 

nadir (forwardlap 85%, sidelap 85%) with the GSD ranging 

from 1 to 3 cm.  
 

 
Figure 4. Aerial oblique photo of City Hall Dortmund 

 

4. METHODOLOGY 
 

An integrated approach that takes point clouds and existing 2D 

map boundary as inputs to reconstruct the 3D building is 

proposed in this study. Xiong, Oude Elberink and Vosselman, 

(2016) demonstrate an automatic 3D building reconstruction 

approach and correction of 3D building models using the planar 

faces segmentation algorithm and roof topology graphs. This 

approach is also explored in this research using oblique images 

to extract accurate building extents from the facades. Figure 5 

shows the workflow overview. 
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Figure 5. Methodology workflow diagram 
 

4.1 Photogrammetric Workflow 

The initial processing mainly entails keypoint detection and 

matching, and estimation of camera interior and the exterior 

orientation parameters. Bundle block adjustment was done to 

refine 3D positioning and accurate image scaling. Automatic tie 

points are used as an input to the next processing step of point 

cloud densification. The point density can be processed in three 

different scales: original image scale, a point for every pixel; 

half image scale, a point for every four pixels - this is the 

recommended image scale in Pix4D; and quarter image scale, a 

point for every 16 pixels.  
 

4.2 UAV Versus ALS Point Cloud Density 

Remondino et al., (2014) argue that on aerial acquisition, laser 

gives 1-25 points/m2 dense point clouds, while UAV imagery 

with a GSD of 10cm can produce a dense point cloud of 100 

points/m2. For accurate comparison, all point clouds were 

clipped from the same area with the ALS point clouds. The 

Nunspeet UAV point clouds processed in different scales were 

considered as separate input datasets. A statistical analysis of 

point spacing for each input dataset was done. Point spacing 

refers to the linear distance between individual points whereas 

point density is defined as the number of points per m2 or m3. A 

statistical analysis on maximum and minimum Z of the UAV 

point cloud was also done. 
 

4.3 UAV Point Cloud Accuracy Assessment 

To evaluate the accuracy and completeness of 3D building 

models from UAV point clouds, accuracy assessment was done 

from various points of view. 
 

4.3.1 Structure from Motion (SfM): Pix4D gives a quality 

report on the accuracy of the point clouds generated after the 

processing stage. In the initial processing stage, Pix4D uses the 

images and GCPs to identify specific feature in the images as 

key points. The GCPs are assessed for Root Mean Square error. 
 

4.3.2 Positional Accuracy: To compare the UAV and ALS 

positional accuracy, the two datasets are displayed in Cloud 

Compare (CC) for visual interpretation of the two-point clouds. 

The UAV point clouds are displayed in RGB and the ALS point 

clouds are displayed in a height colour code. The positional 

accuracy is assessed visually by looking at the position of the 

building in UAV and the position of the ALS buildings as well. 
 

4.3.3 Internal Accuracy Assessment by Fitting a Plane: 

This was done by comparing the distance from the fitted plane 

and the UAV point clouds, same for the ALS point clouds. To 

give the noise to the fitted plane in Cloud Compare, the 

algorithm does a least square best fit of a set of 3D points by 

applying principal component analysis (PCA) (Pearson, 1901). 

Noise residuals were also compared in Python and R. The 

samples were taken from building roofs of different colours. 
 

4.3.4 External Accuracy Assessment: In this research, ALS 

point cloud is used as the reference, and is thus used to assess 

the accuracy of the UAV point clouds. It was not possible to do 

ground truthing, which is the best external accuracy assessment 

for survey data. Thus, for external accuracy assessment, the two 

datasets were loaded and compared for cloud-to-cloud distances 

in Cloud Compare software. A threshold of 20cm was set to be 

the maximum distance between the two-point clouds. The 

distance of each point in the photogrammetric point cloud is 

compared to the nearest point in the reference ALS point cloud.  
 

4.3.5 Accuracy Assessment by Running Profile: a profile 

is run through same area of the two Nunspeet datasets. Surface 

undulation is extracted, and finally horizontal and vertical 

discrepancies between the UAV and ALS points is assessed. 
 

4.4 2D Building Edge Extraction 

The proposed method uses 3D point clouds and a 2D cadastral 

map as inputs. Digitization to extract 2D building outlines from 

the orthomosaic was done. About 35 main houses in the 

common area of the two datasets were extracted. The 2D 

outlines act as a constraint to the extent of the 3D buildings and 

as the base for projecting walls of the buildings. 
 

4.5 Point Cloud Filtering 

3D building reconstruction is affected by missing point cloud 

information, noise, shadows and trees among others. UAV 

images with trees cannot generate point clouds under those 

areas, only trees points will be captured. This hinders 3D 

reconstruction since planar segmentation will mistake the trees 

as building roof segments, thus giving spikes as a result in the 

final 3D buildings.  
 

4.5.1 Classification: The unsupervised machine learning 

algorithm in Pix4D uses colour information and geometry; a 

trained model is then applied which predicts the label of each 

point then assigns it to one of the five classes (High vegetation, 

buildings, human made objects, roads and ground). For this 

data, trees were removed from the classes and the data exported. 

Tall trees which cover the roof are problematic to 3D 

modelling. Filtering of the ground and non-ground in the ALS 

cloud points was done using Lidar360 software. 
 

4.5.2 Normalized DSM: The normalized digital surface 

model (nDSM) is the difference of digital surface model (DSM) 

and the generated digital terrain model (DTM). Normalizing the 

UAV and the ALS point clouds makes it possible to get the 

local height of the buildings which can be determined from 0-

level (bottom) to the rooftop. This is the height which the 

building should be at and not the included DTM height. 
 

4.5.3 Noise Filtering: Noise is any unwanted detail that 

makes part of the building reconstruction points; it can be grass 

on the roof or other litters which if not removed, may give a 

wrong geometry due to errors in surface reconstruction. In CC, 

the noise filter algorithm is used to remove unwanted outliers. 

The algorithm considers the underlying plane and not the 

distance to the neighbouring points; it uses least square distance 

for best plane fit. 
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4.6 Defining the Real Buildings Extent 

The nadir aerial view is used to outline building boundaries. In 

most cases, the roof edge does not reflect the real building 

extent especially where there is a roof hang or gutters. The real 

extent of buildings is defined by facades of the building. 

Oblique images are needed to capture facades. The L’Aquila 

images captured the buildings from all the five views (nadir, 

oblique North, oblique East, oblique South, and oblique west), 

thus being perfect to realize this objective.  
 

4.7 Planar Segmentation 

Segmentation is very important in the detection of roof outlines 

and for the reconstruction of buildings. Segmentation is meant 

to cluster point clouds with similar characteristics into 

homogenous regions. Due to large number of points on the roof, 

planar roof faces can be detected automatically. In this research 

we use the segmentation algorithm by Oude Elberink & 

Vosselman, (2009). To detect these planar points, the Hough 

transform was extended. 
 

According to Elberink & Vosselman, (2009), lines connecting 

two roof faces and height jump are part of a topological 

relationship between two neighbouring segments and if there 

are segmentation errors, roof faces and height jumps cannot be 

detected. If within a segment an intersection line or a height 

jump is detected, the segment is split into two parts. 
 

4.8 Automatic Facades Detection from UAV Point Clouds 

To automatically detect the facades from the UAV point clouds, 

an assumption is made that the walls are 90 degrees vertical to 

the ground. In setting of segmentation parameters, this 

assumption is factored in. Walls, just like the roof faces are 

searched by segmentation and detected automatically. If the 

keep-roof parameter filters the walls, then a keep-walls 

parameter can filter the roof.  
 

4.9 3D Building Evaluation 

Dorninger & Pfeifer, (2008) present an orthogonal vertical 

difference between the 3D model and the reference point 

clouds. Elberink & Vosselman, (2011) however, argue that the 

perpendicular distance from the point clouds to the 3D models 

might be misleading since most points are close to the models. 

In this research, two quality checks were done, a visual 

interpretation and an overlay of the segmentation contours since 

an optimal segmentation defines the final structure. 

 

5. RESULTS AND ANALYSIS 
 

5.1 UAV Dense Point Clouds 
 

5.1.1 Nunspeet Dataset: It is clear that processing at varying 

scales produce different point densities; which is determined by 

the number of matched pixels. It is also observed that the point 

clouds from the aerial view are uniformly distributed, and no 

clusters or holes are in between the point clouds.  
 

 
Figure 6. Original, half and quarter image scale point clouds 

 

The original image size point cloud is very dense, followed by 

the half image scale, and the quarter image scale showing the 

least point spacing. The half image size point cloud was 

preferred for 3D building reconstruction. 
 

5.1.2     L’Aquila and City Hall Dortmund Dataset: A mis-

match of the walls and the roofs is evident. This can be due to 

imperfect geolocation of the images and lack of GCPs on the 

ground. Figure 7 illustrates the mis-match by showing 3 roof 

layers and two walls. In between tall buildings there are some 

missing points which were not generated for the walls. This can 

be attributed to occlusion and image alignment failures.  
  
To align the mis-aligned walls and roofs of all the projects, each 

project was brought into Cloud Compare and each was aligned 

to the other by picking 4 common points. This is a point cloud 

registration by applying a transformation matrix. The merged 

project had over 99 million points and almost all the walls were 

captured except the areas in between the close buildings and 

ones next to tree canopies and other types of occlusions. The 

walls were more than 1m thick (a challenge on where is the 

exact location of the wall plane). It can be noted that the manual 

tie points did not work for a perfect alignment. 
 

   
Figure 7. L’Aquila processed point clouds; left: mis-matched 

walls and roofs before registration; Centre: Missing points in 

between the walls; Right: Aligned point clouds - thick walls and 

undefined windows. 
 

A lot of noise persists even after alignment in the L’Aquila 

dataset; the walls are very thick, doors and windows are not 

clearly defined, a lot of filtering is necessary. Also, distribution 

of points is not uniform, a lot of holes in the data is clear, and 

some areas have clustered distribution of points. Conversely, the 

City Hall Dortmund dataset is well aligned; the windows and 

doors are perfectly aligned. All facades were captured smoothly. 
 

 
Figure 8. The City Hall Dortmund image point clouds 
 

The City Hall building yielded over 7million points for 312 

images, and the 110 images yielded less noisy point clouds. 

Reducing the number of image overlaps still gives acceptable 

results with reduced noise. The extreme right snippet in Figure 

8 shows the cross-section of the wall point clouds. The 

challenge of many images is the noise, as it can be seen. The 

cross-sectional wall point clouds thickness is 82cm which is a 

challenge to plane fitting. 
 

5.2 UAV versus ALS Point Cloud Density 

The point clouds were compared with respect to point spacing, 

point density, number of points in the clipped area and 

positional precision as well as minimum and maximum Z.  
 

Dataset Image 

Scale 

Point 

Count 

Point 

Spacing 

Z 

Min 

Z Max 

UAV 1 5,274,128 0.025 7.857 22.997 

UAV 0.5 1,230,494 0.051 7.987 23.419 

UAV 0.25 298,540 0.106 8.233 22.655 

ALS 1 53,901 0.256 8.440 21.810 

Table 1. Showing Point Cloud Statistics. 
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The photogrammetric point cloud is observed to be denser than 

the ALS. The statistics in Table 1 show that the point spacing of 

the photogrammetric points is less than that of ALS. The Z 

values shows how well the two-point clouds align vertically. 

The difference of the minimum Z values is 0.453m. This can be 

attributed to the UAV and ALS having a different Z reference 

datum or GCP Z value refinement. It can also simply be a 

function of noise in the point cloud. The maximum Z value the 

difference is 1.61m. In addition to the reasons above, this can be 

accounted for by difference in time of data capture.  

5.3 UAV Point Cloud Accuracy Assessment 
 

5.3.1    UAV Triangulation RMS Errors 

The photogrammetric point cloud has a low triangulation RMS 

error for GCPS. According to ASPRS accuracy standards for 

digital geospatial data ASPRS, (2014), the accuracy standards 

for aerial triangulation errors can be 3 times the GSD of the 

images. The 10 GCPs show quite good residuals in XYZ, the 

highest being 1.24cm in X. Thus, the RMS errors are good 

compared to the GSD of 1.65cm with a mean error of 1cm. This 

can be attributed to good contrast and high resolution of the 

images, and accurate GCPs.  
 

5.3.2    UAV and ALS Point Cloud Positional Accuracy 

An overlay of the two point clouds with the image building 

information outlines shows that the two overlay perfectly 

horizontally (See Figure 9). This makes it possible to check 

whether the Lidar point cloud and the photogrammetric point 

clouds cover the same space especially around the buildings. 

The RGB coloured buildings are of the UAV point clouds, the 

blue points are the ground points for the ALS, the dark green 

points are the roof points of the lower buildings and green 

points are the higher roofs points. 

    
Figure 9. UAV and ALS point clouds overlay 

5.3.3    Accuracy Assessment by Fitting Plane 

The aim of fitting a plane in the UAV and ALS point clouds is 

to assess the amount of noise. Four random samples are 

assessed (See Figure 10). The results are so smooth in CC that 

further comparison is done in Python and R programming 

platforms. The difference in the roof’s standard deviations for 

the UAV point clouds is due to the fact that the images of the 

UAV data are not uniform throughout the area of coverage. 

 

 
Figure 10. UAV and ALS point clouds; Grey1; Red1; Grey2; 

Red2 respectively 

 
Roof 

Colour 

UAV – Std 

CC (m) 

UAV -Std 

R (m) 

UAV -Std 

Py(m) 

ALS -Std 

CC(m) 

ALS -Std 

R(m) 

ALS - Std 

Py(m) 

Grey1 0.0121 0.0144 0.0143 0.030 0.0386 0.0376 

Red1 0.0117 0.0129 0.0129 0.078 0.088 0.0843                   

Grey2 0.024 0.0253 0.0253 0.0182 0.0193 0.0189 

Red2 0.0107 0.0103 0.0103 0.018 0.022 0.0209 

Table 2. Best plane fit errors comparison 

The roof colour does not matter; it is clear the errors are not 

related to red nor grey roof; and same can be concluded for ALS 

point clouds. The notable error in grey2 roof can be a result of a 

flat roof; this could have accumulated materials like tree leaves 

and grass, making it difficult for matching. In addition. the roof 

texture looks homogenous. The UAV point cloud was observed 

to have less noise in most cases. This is good for surface 

reconstruction. The texture of the roof matters for UAV point 

cloud; flat roofs may thus be noisier. 
 

5.3.4    Distance Comparison Accuracy Assessment 

The results show that values higher than 20cm maximum 

threshold distance were excluded, the mean distance was 

0.162m and the standard deviation was 0.046m. Normally, the 

deviations are an indication of the low quality of UAV point 

clouds in certain areas or less dense point clouds of the lidar 

especially on the roof, ground and on the trees. ALS points were 

sparse; thus, chimneys and dormers were not captured.  As the 

differences are mainly concentrated on the trees and on limited 

portions of the scene, these results confirm the suitability of the 

UAV for surface reconstruction. 

5.3.5    Accuracy Assessment by Running Profile 

The positional accuracy of the UAV data seems same with the 

ALS when looking at the length of the data across the two 

buildings as shown in Figure 12. The height accuracy is in the 

same range as looked through the height of the roof and the 

tallest chimneys. The UAV points give a smooth chimney 

canopy than the ALS points. The point clouds of both data give 

more less the same profile and a model reconstruction will give 

the same. 
 

5.4 Point Cloud Filtering 
 

5.4.1 Classification: The ALS point clouds were filtered to 

ground and non-ground points. The UAV point clouds were 

filtered through trees up to the buildings only; closer inspection 

reveals misclassification. Some building patches were classified 

as high vegetation or road surface. This can be attributed to roof 

colour or tree canopy occluding the building or casting 

shadows. To avoid missing information from UAV point cloud, 

it is not advisable to over filter. 
 

5.4.2 Normalized DSM:  Results show that the approximate 

height of the consecutive three buildings is 7.6m. This is 

evident by looking at the profile of the two datasets as shown in 

Figure 11. The profile confirms the same building height for the 

UAV and ALS, this can be another accuracy assessment for the 

volume in the final 3D model. 

 

 

                      
Figure 11. UAV (top) and ALS (Bottom)point cloud profiles 

UAV and ALS point cloud data fit well both horizontally and 

vertically. Thus, UAV point clouds can be as correct and accurate 

as ALS point clouds for 3D modelling of buildings. 
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5.4.3 Noise Filtering: Noise filtering is done by least 

squares for the best plane fit. Some chimneys were longer than 

1m; a radius of 2m was considered and a relative error of 2m. 

As shown in Figure 12, it reduces points density and completely 

trims all the chimneys for both UAV and ALS point cloud. 
 

                                                        
Figure 12. Upper image (before filtering); middle image (after 

filtering); and the lower image showing removed chimney clouds 

5.5 Defining Building Extents 

The role of facades in defining the real extents of a 3D building 

is addressed in this section. After clipping the buildings to 

expose the walls, and superimposing it on the orthomosaic, it is 

evident that the two don’t have the same extent (See Figure 13). 

An outline of both facade edges displayed with the digitized 

roof outline, show totally different extents. The real extent is 

defined by the facades/walls of the building. 
 

 
Figure 13. Real extent of a building as shown by its facades 
 

Results show that the real extent of a 3D building can be 

achieved by UAV multi-oblique images capturing the facades. 

It is observed that by clipping the building to a certain height, 

can exclude the roof and then, manually or by edge filters the 

façades boundary is extracted. By displaying the facades edge 

and building image information, the real extent is achieved. In 

cases where there is no roof hand, the image building 

information and the facades edge will have the same extent. 
 

5.6 Planar Segmentation 

Roof planes are correctly detected. During segmentation, small 

roof segments not meeting a minimum number of points are 

removed. By comparing the roof segments and the orthomosaic, 

the accuracy is expressed by the completeness and correctness 

of the segmentation contours. 
 

In this research, the 0.5 image scale was chosen to work with 

for the 3D buildings reconstruction. The half image scale point 

cloud is the middle ground of quality and computational cost. 

Also, after filtering of noise it offers the perfect cloud to capture 

target roof fixtures. The original image scale generates most 

points thus creating more surfaces during segmentation process 

while the quarter image scale, after filtering the noise, removes 

all the roof fixtures including the wanted ones like the dormers. 
 

5.6.1 UAV Segmentation Parameter Setting: Different 

parameter settings yield different results per scene. Varying the 

seed radius, grow radius, maximum distance to grow, and 

minimum segmentation size results into over-segmentation and 

under-segmentation of roof planes. Figure 14 below shows the 

orthomosaic snippet used for segmentation quality check. 

 

 
Figure 14. Orthomosaic used for segmentation quality check 
 

                              
Figure 15. UAV segmentation results using different parameters 

 

In Figure 15 (a), chimneys and dormers are visible, over-

segmentation is circled green while under-segmentation purple. In 

(b), more surfaces are seen due to many points within the increased 

seed radius. Finally, in (c), more surfaces are over-segmented. 

Table 3 shows the varied parameters during segmentation (meters).  
 

 Seed Radius Grow Radius Max Dist Grow Min Seg Size 

a 1.0 1 0.3 30 

b 2.0 1 0.3 30 

c 1.0 1 0.1 10 

Table 3 Segmentation parameters use for UAV point cloud  
 

5.6.2 ALS Segmentation Parameter Setting: By increasing 

the maximum distance to grow to 0.3, more surfaces start to show. 

With flatness of 0.75, trees are filtered but segments are not clean; 

there’s over segmentation. By reducing the minimum segmentation 

size to 10 and maintaining the maximum distance to grow at 0.3, 

under segmentation is observed in some roofs. A seed radius of 1.0, 

grow radius of 1, maximum distance grows of 0.2, minimum 

segment size of 10, and flatness 0.75 were observed to give optimal 

segmentation results. See Figure 16. 
 

                 

Figure 16. ALS segmentation results using optimal parameters 
 

Further comparison of the optimal segmentation contours after 

noise filtering shows that over and under-segmentation errors for 

this section alone gives 98% accurate planar segments for the ALS 

and 94% for the UAV.  
 

  Total ALS  UAV  

1 Roof faces 51 100% 100% 

2 Dormers 2 0% 100% 

3 Over-segmentation  None = 0% 3/51=3.8% 

4 Under-segmentation  1/51= 1.9% None = 0% 

 Optimal Planar segment  50/51=98% 48/51 = 94% 

Table 4. Comparison of optimal segmentation results 

(a) 

(b) 

(c) 
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The parameter settings depend on point density for optimal 

segmentation. In this research, the less dense ALS point clouds, the 

minimum segment is less (10 points) than the minimum segment in 

UAV point clouds which is denser (30 points).  

5.7 Façade Detection 
The planar faces segmentation algorithm implemented in this 

research filters non-planar points from the point cloud. It 

successfully detects building facades for simple buildings. The 

main challenge of automatic façade detection for this algorithm is 

the point density. For big buildings like the City Hall Dortmund 

with more than 7 million points, planar faces are not detected due to 

noise and computing limitation. Only roof contours are 

automatically detected. 
 

                                
Figure 17. City Hall segmentation and façade detection 

Automatic façade detection is possible for buildings with less 

than 7 million points. See Figure 18.  

                                                                                      
Figure 18. Detected facades for a ‘simple’ building. 

 

5.8 3D Building Reconstruction 
3D modelling was carried out for two datasets by using the same 

planar faces segmentation algorithm with different parameter 

settings. The study examined the modelling correctness of the 

buildings with reference to the orthomosaic by visual interpretation 

and inspection. For the modelling accuracy, buildings models were 

one by one chosen from each side (ALS and UAV). It is important 

to note that over and under segmentation errors are propagated to 

this modelling phase. Figure 19 shows the 3D building 

reconstruction results of UAV and ALS using similar parameter 

settings. 
 

                      

Figure 19. Snippet of final UAV (left) and ALS (Right) 3D buildings 
 

UAV image buildings were observed to have more roof features 

like dormers and chimneys. Due to UAV dense point clouds, some 

buildings depict more partitioning than in reality as a result of more 

surfaces recovery from the data during segmentation. Results of the 

ALS 3D buildings reconstruction was as a result of one parameter 

setting giving only one bad reconstructed model. For UAV point 

clouds, two different parameter settings had to be done in different 

areas of the same dataset to get correct buildings, and a third 

parameter setting done on the bad reconstructed buildings. 
 

6. DISCUSSION 
 

The UAVs systems can provide very high-resolution data for it can 

be manipulated to fly lower with high overlaps, the higher the 

flying height, the bigger the GSD and the poor the resolution of the 

images acquired. The GNSS/INS on-board provide automated 

navigation and photogrammetric images orientation, GPS and IMU 

are used for direct-georeferencing but ground control points (GCPs) 

are needed to refine the accuracy of the models. The main 

challenges for ALS are wall occlusions and point density but this 

can be improved by taking nadir and oblique multi-view UAVs 

images in areas that cannot be accessed by ALS.  
 

To capture the facades and take care of occlusions, oblique images 

with bigger overlaps are needed. Dataset 2 has demonstrated the use 

of many overlapping nadir and oblique images. However, big 

overlaps should be executed with the knowledge that it comes with 

extra cost. Bigger overlaps translate to many flight lines which 

mean many images will be captured. A trade-of between data 

accuracy and completeness with acquisition and computational cost 

should be made. 
 

Automatic classification addressed the challenge posed by tree 

canopy. Other classes are exported without tall trees. The planar 

faces segmentation algorithm applies the keep-roof parameter to 

keep the roof at 0-75 degrees slope and filter others by 

connected component at 90 degrees slope.  
 

3D buildings from UAVs can be improved by enhancing roof 

boundary by use of edge information from images. It can also 

be improved by merging the imagery building outlines, point 

clouds roof boundary and the walls outline to extract the real 

extent of the building. This way, the planar segmentation 

approach used in this research somewhat accounts for missing 

point cloud data.  Figure 20 shows and example of a scene 

missing data and how 3D building reconstruction filled the 

missing roof segment. This clearly demonstrates that the 

missing data can be reconstructed without omission of the 

segment or distortions of the roof outline. However, it depends 

on the amount of the missing segment, if the whole segment has 

no data, the roof will take a flat shape at the wall’s height. 
 

 
Figure 20. Showing missing data, UAV and ALS 3D models 

respectively 
 

7. CONCLUSION 
 

Although photogrammetric point cloud is considered less 

accurate, the advances in technology has made it possible to 

create highly accurate maps from drones for a wide range of 

applications. The findings in this research show that, UAVs can 

be the suitable platform for improvement of 3D buildings from 

a combination of multi-view and oblique UAV images. 

 

It can be concluded that there can be more than one parameter 

setting within one dataset for both UAV and ALS. It is not easy 

to get the geometry of all the buildings correctly within the 

entire area with only one parameter setting. For the wrongly 

reconstructed buildings one can get another parameter setting. 

 

There is no need for oblique multiple overlaps of above 80% for 

3D building reconstruction, the nadir images with traditional 

overlaps of between 60% to 75% is sufficient for the roof 

points. Also, the 0.5 image scale is good enough for the roof 

features and optimal segmentation without over/ under 

segmentations depending on the parameter settings. From the 

results, the deduction is that with a minimum of 50 points/m2, 

most of the planar surfaces are reconstructed comfortably. But 

for smaller features than dormers on the roof, a denser point 

cloud than 80points/m2 is needed. 
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Further research into automatic façade detection is needed; if the 

proposed planar segmentation approach can automatically detect 

the roof planar contours and snap them to the footprint maps 

perpendicularly, then the facades contours can be snapped to the 2D 

planes parallel to the walls. An alternative on the walls may also be 

to reduce the image scale during point cloud generation. 
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