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ABSTRACT 
Despite the recent success of learning-based monocular depth estimation algorithms and the release of large-scale datasets for training, 
the methods are limited to depth map prediction and still struggle to yield reliable results in the 3D space without additional scene cues. 
Indeed, although state-of-the-art approaches produce quality depth maps, they generally fail to recover the 3D structure of the scene 
robustly. This work explores supervised CNN architectures for monocular depth estimation and evaluates their potential in 3D 
reconstruction. Since most available datasets for training are not designed toward this goal and are limited to specific indoor scenarios, 
a new metric, large-scale synthetic benchmark (ArchDepth) is introduced that renders near real-world scenarios of outdoor scenes. A 
encoder-decoder architecture is used for training, and the generalization of the approach is evaluated via depth inference in unseen 
views in synthetic and real-world scenarios. The depth map predictions are also projected in the 3D space using a separate module. 
Results are qualitatively and quantitatively evaluated and compared with state-of-the-art algorithms for single image 3D scene recovery.  
 

1. INTRODUCTION 

Depth estimation from 2D images is a fundamental research topic 
in photogrammetry and computer vision toward 3D 
reconstruction and scene understanding with a vast field of 
applications, including mapping, navigation, and augmented 
reality. Most scenarios have high requirements for dense and 
accurate depth estimation for, if possible, every scene pixel to 
recover the 3D structure reliably. The recent success of deep 
learning in several image recognition tasks, such as image 
classification (Krizhevsky et al., 2012; He et al., 2016), object 
detection (Girshick et al., 2014; He et al., 2017), and semantic 
segmentation (Long et al., 2015; Chen et al., 2017; 
Badrinarayanan et al., 2017), motivated their application also in 
the field of depth estimation and 3D reconstruction, especially for 
tackling the matching ambiguities and occlusions problem. 
Depth estimation using deep learning can be applied in stereo, 
multi-view, or monocular scenarios. Indeed, various supervised 
or unsupervised methods have been suggested in the literature in 
recent years (Zbontar and Lecun, 2015; Yao et al., 2018; Huang 
et al., 2021).  
In particular, monocular depth estimation methods aim to recover 
distances between scene objects and camera parameters from a 
single image. It is, by definition, an ill-posed problem since 
redundant 3D scenes can be projected to the same 2D image. 
Indeed, an efficient depth map recovering from a single image 
would require rich scene prior cues, commonly used in 
conventional methods (Saxena et al., 2008). In the deep learning 
era, monocular depth estimation refers to the task of single image 
inference during test time, first introduced by Eigen et al. (2014) 
using a coarse-to-fine approach. Since then, the problem has been 
broadly studied in the literature as a supervised or unsupervised 
task. As with all supervised learning methods, supervised 
monocular depth estimation relies on corresponding ground truth 
(GT) depth maps for every RGB image. On the contrary, 
unsupervised methods learn stereo cues or video sequences 
during training and predict a depth map for single images during 
testing. Despite the tremendous underlying potential, supervised 
depth estimation generally requires an enormous amount of 
training data to generalize in diverse scenarios properly, i.e., 
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indoor, outdoor, and aerial applications; this fact is particularly 
true in monocular depth estimation. Most state-of-the-art 
methods achieve their results by training and testing on each 
benchmark separately; few focus on generalization, commonly 
assuming ordinal depth relations and only recently investigating 
affine-invariant depth (Yin et al., 2020). However, we believe 
that the greatest challenge of monocular depth estimation is the 
quality of the 3D reconstruction derived from the predicted 
estimates. The deficiency derives commonly due to the lack of 
3D supervision cues and the difficulty in determining the camera 
intrinsics. Indeed, it is not trivial to enforce geometric constraints 
from monocular images without additional scene cues. In fact, 
most methods are limited to depth prediction, and while 
achieving low depth error values, the actual 3D scene 
reconstruction mostly fails; 3D structure recovery remains an 
unexplored topic for state-of-the-art methods. Few recent works 
discuss this issue, integrating geometric supervision (Yin et al., 
2019) or relying on extra modules for training in point cloud level 
separately from depth estimation (Yin et al., 2021).  
The transferability of deep learning depth estimation for real-
world photogrammetric scenarios is a challenging problem that 
has only recently been acknowledged in the community 
(Madhuanand et al., 2021; Steenbeek and Nex, 2022).  
 
1.1 Aim of the work 

This work investigates the potential of integrating learning-based 
monocular depth estimation in photogrammetric applications. 
Our contributions can be summarized as follows (Figure 1):  
(1) we introduce a novel, large-scale dataset (ArchDepth) of 
photorealistic outdoor scenes of historic buildings, including 
high-quality, complete, metric depth maps for every image; (2) 
we present a straightforward training pipeline following an 
encoder-decoder network for metric monocular depth estimation 
to demonstrate the potential of this dataset; (3) we employ a 3D 
reconstruction module based on our predictions for single-view 
3D scene recovery; (4) we evaluate the generalization 
performance of our trained model and investigate its applicability 
in real-world photogrammetric scenarios. 
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Figure 1. The pipeline of our method is based on an encoder-decoder architecture with skip connections for monocular depth prediction. 
An additional module for 3D reconstruction is also employed afterward. 
 

2. RELATED WORK 

Monocular Depth Prediction. Early methods for monocular 
depth estimation relied on handcrafted features and used 
complementary cues to recover the depth since limited 
information about the scene geometry can be directly extracted 
from a single image (Saxena et al., 2008). In the deep learning 
era, the seminal work of Eigen et al. (2014) proposed a scale-
invariant loss function in a coarse-to-fine context using a VGG 
network. The approach was further extended by adding more 
layers while predicting surface normals and semantic maps 
(Eigen and Fergus, 2015). Since then, the problem has been 
studied in the literature as a supervised (Laina et al., 2016; Xu et 
al., 2018; Fu et al., 2018; Hu et al., 2019) or unsupervised 
problem (Garg et al., 2016; Godard et al., 2017; Tosi et al., 2019). 
An architecture often adopted in such methods is the encoder-
decoder (e.g., Fu et al., 2018) with RGB images as input and 
direct regression of pixel-wise depth maps as output. Indeed, 
most methods perform pixel-wise supervision, yet Conditional 
Random Fields (CRFs) have also been used to exploit neighbor 
relations and include a more global context (Liu et al., 2015). The 
loss function can be formed either as a regression or a 
classification problem. Skip connections in a ResNet fashion are 
used to preserve the fine-grained features of the first layers (Laina 
et al., 2016). Cues such as texture, shading, and structural 
information are used, while high quality and pixel-aligned GT 
depth maps are needed. Depending on the available training data, 
the scene depth can be estimated as ordinal, i.e., relative (Fu et 
al., 2018) or Euclidean (Eigen et al., 2014; Yin et al., 2019). Local 
planar priors have also been incorporated as guidance (Lee et al., 
2019). Apart from standard CNN models, adversarial training 
(Chen et al., 2018), attention mechanisms (Chen et al., 2020), and 
transformer architectures (Ranftl et al., 2021; Yang et al., 2021) 
have also been recently proposed.  
 
3D scene recovery. Even though achieving excellent results in 
depth map prediction (e.g., Hu et al., 2019), the respective 
reconstructions in the 3D space suffer from significant distortions 
and the presence of artifacts. Only recently, few works have tried 
to incorporate 3D awareness into the methods. Since most man-
made scenes can be decomposed in planar structures, plane 
detection can be used as a prior for monocular depth estimation 
(Liu et al., 2019). However, the 3D structure was not explicitly 
considered until recently; Yin et al. (2019) formulated a joint loss 
function using virtual normals to enforce high-order geometric 
consistency between surface patches in a large range. The work 
was further extended by considering affine-invariant depth (Yin 
et al., 2020) and adding an extra training module for scene 3D 
reconstruction (Yin et al., 2021). These state-of-the-art methods, 
although promising, still suffer from generalization limitations in 
diverse scenarios. 

 
Datasets. KITTY Vision (Geiger et al., 2012) and NYU Depth v2 
(Silberman et al., 2012) are the pioneer efforts and widely-used 
large-scale datasets regarding the number of images. KITTY 
Vision contains real-world street scenes captured with a LiDaR 
sensor, while NYU Depth v2 contains indoor scenes acquired with 
the Kinect sensor. Indeed, most existing benchmark datasets for 
depth estimation are video sequences of indoor scenes acquired 
with such commodity RGB-D sensors. Since then, the increasing 
demand for training data has led to the release of similar datasets 
SUN RGB-D (Song et al., 2015) and larger-scale ones regarding 
scene diversity and acquired images such as Stanford 2D-3D 
Semantics (Armeni et al., 2017), ScanNet (Dai et al., 2017) and 
the synthetic SceneNet (McCormac et al., 2017). The 
aforementioned benchmark datasets have established a common 
baseline for new algorithms to be developed and evaluated. They 
have contributed significantly to developing new methods and 
have driven the research in novel directions during the last 
decade. However, although the scenarios contain a vast number 
of images, they are mostly similar; that is, constrained by the 
usage of depth sensors, they are limited to indoor environments. 
Moreover, depth sensors inevitably introduce errors during 
acquisition, resulting in noisy training data. To improve the 
generalization of such methods in random scenes, datasets with 
crowdsource images from the internet have also been introduced 
(Li and Snavely, 2018). Yet, they solve the depth estimation only 
at the ordinal level, prohibiting distortion-free and metric 3D 
reconstructions. To overcome such limitations, in this paper, we 
propose a novel, metric, large-scale dataset containing outdoor 
scenes of historic buildings of varying architectural styles (Figure 
2). We aspire that this dataset will enable further research in the 
field. 
 

3. METHODOLOGY 

Most state-of-the-art networks for monocular depth estimation 
focus on indoor datasets and typically fail to generalize in 
outdoor, real-world scenarios. Therefore, we introduce a new 
metric dataset of photorealistic environments. We employ an 
encoder-decoder architecture for training and an additional 
single-view 3D reconstruction module to prove its effectiveness. 
 
3.1 The ArchDepth dataset  
We introduce a novel dataset, named ArchDepth, consisting of 
seven photorealistic outdoor scenes of historic buildings of 
diverse architectural styles (Figure 2). The first six scenes are 3D 
models of northern European medieval churches retrieved from 
the web1, namely Kuusisto, Liedon, Mietoinen, Nousiainen, 
Piikkio, and Saint Jacobs. The last scene includes various 
similarly harvested historic facades rendered in a virtual Piazza.    

 
 

1 https://sketchfab.com/3d-models 
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Kuusisto Liedon Mietoinen 

   

Nousiainen Piikkio Saint Jacobs 

   

Piazza 

   
Figure 2. Our synthetic dataset ArchDepth. The first six scenes depict 3D models of churches, while the last scene includes several 
historic facades. The diverse camera paths for each scene are indicated with a black line. 
 
We have built upon the open-source software Blender2 for image 
rendering. For the first six scenes, we designed four camera paths 
around each of our models and five paths for the Liedon model, 
rendering a total of 24,000 images of 640x480 resolution. The 
virtual Piazza consists of eight camera paths along the facades. 
Images are generated based on the pinhole camera model, so no 
distortions were present.  
Moreover, we also generated a hybrid dataset Modena Cathedral; 
it contains 88 real-world images acquired for photogrammetric 
3D reconstruction. A point cloud collected with a commercial 
laser scanner was used as a ground truth model. However, since 
the images also contained areas not acquired with the scanner 
(due to occlusions, sensor range limits, etc.) or appeared with 
sparse points, starting from the acquired point cloud, we have 
generated a 3D model to render complete depth maps. 
The generation of a new dataset of outdoor scenes for training 
purposes was undoubtedly a laborious and expensive task, yet we 
believe it can be a starting point for further research. 
 
3.2. Network architecture and training 
We employ a straightforward encoder-decoder architecture with 
skip connections based on the network of Alhashim and Wonka 
(2018). The network has ca. 58M parameters and has been proven 
to work efficiently and produce high-quality depth maps with 
clear boundaries. The original method exploits transfer learning, 
starting from pre-trained weights on other visual recognition 
tasks, i.e., image classification. Following this idea, we use a pre-

 
2 https://www.blender.org/  

trained DenseNet-201 (Huang et al., 2017) on ImageNet (Deng 
et al., 2009; Krizhevsky et al., 2012) as a backbone. The decoder 
part consists of successive bilinear up-sampling layers and their 
skip connections, and the output is half the input resolution 
(320*240). As in the original implementation (Alhashim and 
Wonka, 2018), we do not perform batch normalization (Ioffe and 
Szegedy, 2015). 
 
3.2.1 Loss function. The choice of the loss function is crucial 
and should be appropriate for the particular problem. For depth 
regression, a standard approach considers the pixel-wise depth 
difference between GT depth value 𝑦 and prediction 𝑦∗ (Eigen et 
al., 2014). Following the approach of Alhashim and Wonka 
(2018), apart from the pixel-wise loss 𝐿"#$%&, we use the loss 
over the image gradient 𝐿'()" and the loss based on structural 
similarity 𝐿**+, as defined by Wang et al. (2004). The final total 
loss is therefore defined as a weighted sum: 
 

𝐿%-%). =	𝑤/𝐿"#$%& +𝑤0𝐿'()" +𝑤1𝐿**+,														(1) 
 
For more details on the loss function, we refer the reader to 
(Alhashim and Wonka, 2018). 
 
3.2.2 Data augmentation. Data augmentation is proven to be 
beneficial to reduce overfitting, especially when limited data are  
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 𝛿!↑ 𝛿"↑ 𝛿#↑ 𝑎𝑏𝑠𝑟𝑒𝑙	↓ RMSE↓ log/2 𝑒𝑟𝑟𝑜𝑟	↓ 

experiment 1 - ours 0.981 0.994 0.997 0.036 8.82 0.016 

experiment 2 - ours 0.973 0.991 0.994 0.078 5.77 0.033 

experiment 1 - LeRes 0.240 0.457 0.575 0.749 53.51 - 

experiment 2 - LeRes 0.126 0.250 0.334 3.217 77.51 - 

Table 1. 2D metric for experiments 1 and 2. The first two rows refer to depth map inference using our training model, while the last 
two refer to depth maps predicted using the trained model of Yin et al. (2021). 
 
available (Krizhevsky et al., 2012). In the particular scenario of 
depth estimation, certain geometric transformations may not be 
appropriate or meaningful. In this case, we only consider 
mirroring, while for radiometric transformations, we consider 
color channel permutations following (Alhashim and Wonka, 
2018). 
 
3.2.3 Experimental setup. For the training of the original 
network, subsets of the NYU Depth v2 (Silberman et al., 2012) 
and the KITTY Vision (Geiger et al., 2012) datasets were used. 
We consider the synthetic dataset and the hybrid dataset Modena 
Cathedral under two different experiments. 
 
Experiment 1 - Synthetic dataset. We split the synthetic dataset 

based on a random shuffling approach on all the seven scenes 
by keeping 88% for training, 6% for validation, and the rest is 
kept for testing. 

 
Experiment 2 - Model fine-tuned on Modena Cathedral. We 

test on the Modena Cathedral dataset to demonstrate how well 
such an architecture, trained on our synthetic dataset, 
generalizes in other scenes. For the fine-tuning, we use 68 
images for training, 42 for validation, and 19 for testing.  

 
3.2.4 Implementation details. In our implementation, we use the 
open-source TensorFlow3 library (version 2.3.1) and trained on 
an NVIDIA GeForce RTX 2070 with 8G RAM. Regarding the 
network hyperparameters, we use the Adam optimizer with a 
learning rate 𝑎 = 0.0001 and a decay factor of 0.7. Training is 
performed for 74 epochs for Experiment 1 using early stopping 
and 48 epochs for Experiment 2. 
 
3.3 3D reconstruction 
In photogrammetric applications, which commonly have high-
quality requirements, 3D reconstruction is typically achieved 
using stereo and multi-view methods. However, monocular 
estimation can be potentially helpful in cases of low overlap 
percentage between the images. Given the recent advancements 
in the state-of-the-art, in this study, we investigate the potential 
of reliable 3D scene recovery from a single image. We 
reconstruct the 3D scene explicitly by projecting each depth 
value to the 3D space using the camera projection matrix. For this 
module, we use the open-source library Open3D (Zhou et al., 
2018). The input is the RGB image along with its respective 16-
bit depth maps; a pinhole camera model is adopted. 
 

4. EVALUATION 

4.1 Evaluation Metrics 
4.1.1. 2D metrics. A standard set of metrics typically used in the 
literature since the seminal work of Eigen et al. (2014) is adopted 

 
3 https://github.com/tensorflow/tensorflow  

to evaluate the quality of the depth maps, namely absolute 
relative error, root mean square error, logged root mean square 
error, and accuracy under threshold. These metrics are calculated 
by comparing all pixel predictions 𝑦∗ with their GT equivalents 
𝑦. Predicted depth maps were upscaled to the original resolution 
(640x480) using bilinear sampling. 
 

𝑎𝑏𝑠𝑟𝑒𝑙	 = 	
1
𝑛8

|𝑦 − 𝑦∗|
𝑦 																(2) 

 

𝑅𝑀𝑆𝐸 = @∑(𝑦 −	𝑦
∗)0

𝑛 													(3)	 

 

log/2 𝑒𝑟𝑟𝑜𝑟 	=
1
𝑛8

|log/2(𝑦) − log/2(𝑦∗)|													(4)					 
 
Where 𝑛 refers to the total number of image pixels. The accuracy 
under threshold 𝛿 is calculated as the percentage of pixels below 
a threshold with the threshold being 𝑡ℎ = {1.25, 1.250, 1.251}. 
The average results for all testing images of experiments 1 and 2 
are shown in Table 1. Naturally, in experiment 1 where both 
training and tests sets come from the same dataset, the results are 
the best; however, the fine-tuned model generalizes quite well on 
the challenging real-world scenario. Our intuition is that the high 
RMSE values are due to the presence of some outliers. 
In Figures 3 and 4 various examples of the predicted depth maps 
are shown. In Experiment 1 the predicted depth maps with our 
model are close to the ground truth ones; depth transitions are 
smooth and ordinal values seem to be consistent. In Experiment 
2 the results behave similarly; however, some outliers are more 
likely to be present. 
 
4.1.2 3D metrics. The 2D metrics tend to disregard the overall 
predicted 3D structure of the scene and cannot thus be reliable 
regarding the quality of the resulting 3D model. Although 
demonstrating high scores, most state-of-the-art methods fail to 
reliably reconstruct the 3D structure of the scene (Yin et al., 
2019; 2020; 2021). To investigate this deficiency, in this study, 
apart from the standard 2D scores, we also consider the 
commonly used metrics for 3D point cloud quality, completeness 
(recall), accuracy (precision), and their harmonic mean F1-score 
(Knapitsch et al., 2017). Figures 5 and 7 present some indicative 
results of the 3D reconstructed point clouds, and Figures 6 and 8 
their respective scores. 
Although for some test images the 3D point cloud was 
reconstructed successfully with marginal distortions, in some 
other cases, particularly under strong perspective angles, the 
resulting 3D model is not reliably recovered.
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Figure 3. Experiment 1. (a) RGB input image (b) predicted depth map (c) GT depth map (d) LeRes depth map. 
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Figure 4. Experiment 2.  (a) RGB input image (b) predicted depth map (c) GT depth map (d) LeRes depth map.

 
The low scores of Figure 5c are due to a present shift, probably 
because of incorrect estimation of absolute minimum and 
maximum depth values. However, in Experiment 1 these failure 
cases are rare. This fact is more present in Experiment 2. 
 
4.2 Inference of LeRes 
We predict on our images using the released pre-trained model of 
LeReS (Yin et al., 2021), a current state-of-the-art method for 
recovering the 3D structure of the scene from a single image. 

Although the method has demonstrated satisfying results in depth 
estimation and 3D reconstruction on various benchmarks in the 
original work, we observe that it does not generalize particularly 
well on our data. Depth maps seem to have kept the ordinal 
relations; however, the absolute and minimum depth values are 
not consistent with the GT (Figures 3,4), a fact also demonstrated 
in the low 2D scores in Table 1. The prediction on the 3D 
reconstruction behaves similarly, with evident distortions and 
scale inconsistencies (Figures 5 and 7). 
 

 
 

 

 

 

 
Figure 5. Experiment 1. (a) RGB input image (b) reconstructed point cloud (c) LeRes point cloud (d) GT point cloud. 
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Figure 6. Experiment 1. Precision and recall curves for the four test images in Figure 5. 

 

 

  
 

Figure 7. Experiment 2.  (a) RGB input image (b) reconstructed point cloud (c) LeRes point cloud (d) GT point cloud. 
 

   
Figure 8. Experiment 2. Precision and recall curves for the two test images in Figure 6. 

 
 

5. CONCLUSIONS 

This paper proposes a new dataset for monocular depth 
prediction, composed of 24K images of outdoor scenes with great 
architectural details. Our dataset aims to provide high-quality 
metric depth benchmark data for training. We show its potential 
by training a straightforward encoder-decoder network and 
testing its robustness in predicting unseen views. The trained 

model was also fine-tuned using real-world images, typical for 
photogrammetric applications. Moreover, we employ a 3D 
reconstruction module to recover the shape of the scene using our 
predictions. Given that monocular depth estimation is by 
definition an ill-posed problem, such a reconstruction is not 
trivial without additional cues. Thus, despite the satisfying results 
on depth map prediction, improving the accuracy of the 
predictions in the 3D space is an open challenge. There is indeed 
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a need to shift the attention to 3D structure recovery and 
investigate more in this direction. 
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