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ABSTRACT: 
 
The use of deep machine learning methods for semantic classification of city mesh models is one of the current trends in geoscience 
development. Thanks to the thriving development of Convolutional Neural Networks (CNNs) it is now achievable to conduct fully 
automated process of building aforementioned 3D model by means of photogrammetric techniques and supplement it with additional 
semantic information obtained by Artificial Intelligence (AI) algorithms. In order to guarantee the comprehensiveness of said 
information it is essential to use an extensive range of 3D data including oblique aerial imagery and aerial laser scanning (ALS). Such 
comprehensive 3D mesh models may be later implemented in many Digital Twin class solutions additionally supported with modern 
GIS systems and its algorithms. To proof the validity of this thesis, the article showcases results of research conducted using deep 
learning based solutions tested on two datasets - real-world data in the form of oblique aerial images and ALS point clouds acquired 
in Bordeaux, France using novel Leica CityMapper-1 multisensoral system and large-scale dataset from SUM: A Benchmark Dataset 
of Semantic Urban Meshes. Both subalgorithms make use of CNNs as its core-feature. To perform accurate classification of oblique 
aerial scenes PSP-Net architecture accelerated by techniques of transfer learning has been used. Second algorithm destined for ALS 
point clouds utilizes CNN as well, but in this case implementation is based on proprietary architecture. The results of the experiments 
demonstrate that the utilizing these two mutually complementary solutions to extract new semantic information for city mesh models 
in proposed manner compared with the state-of-the-art methods achieves competitive classification performance. 
 
 

1. INTRODUCTION 

Urban 3D mesh models, created mostly with Dense Image 
Matching of oblique aerial images (Haala, 2015), have become 
more and more popular as a method for representation of 
complex cities environments in recent years. The superiority of 
3D meshes over LOD CityGML is obvious in the case of models 
created solely for the purpose of visualization. However, they are 
much harder to use for Digital Twin applications (City 
Information Modelling) as they are complex and geometrically 
unstructured which makes them less favourable to store semantic 
information required for complex spatial analysis (Lehner & 
Dorffner, 2020). The recently published Cesium 3D Tiles Next 
(Cozzi, 2020) format could be a game-changer in the field of 
semantic 3D models, as it promises an efficient way of streaming 
3D meshes together with Semantic Metadata which could be 
stored on the various level. Storing semantic metadata not only 
for the purpose of geometric features but also in terms  of texture 
pixels also warrants interest. 
 
Several approaches to semantic segmentation based on 
photogrammetric data had been already introduced: Rouhani et 
al. (2017) proposed a supervised approach for classifying 
textured meshes, Blaha et al. (2017) presented a method of mesh 
surface refinement involving semantic information from images, 
Rong et al. (2021) used multiview oblique images to acquire 
semantic information from many images for each facet of the 3D 
mesh model. Methods of 3D mesh segmentation or labelling 
based solely on triangle faces have their limitations – small 
objects (like windows), could be merged with surrounding 

 
*  Corresponding author 
 

objects (like walls) on the geometry level. Frommholz et al. 
(2016) have shown that such objects could be classified directly 
on images and then projected onto the model. Therefore semantic 
segmentation of oblique images, which are often used for 
creating a 3D mesh, and then a projection of received classes 
from images to 3D meshes (textures) should provide reasonable 
results. Classifying oblique aerial images with Convolution 
Neural Networks in order to distinguish elements of the urban 
environment or building parts is a relatively new research topic 
(Huang, 2019; Liu, 2019). 
 
The second typical source of data for urban modelling are point 
clouds from Airborne Laser Scanning, the classification of which 
is a common challenge among existing 3D urban benchmarks 
(Gao et. al 2021). Recently point clouds from ALS also become 
more and more popular supporting data for the creation of 3D 
meshes. This relatively new trend in mapping city areas is 
connected with hybrid mapping systems - combining LiDAR 
sensors with a nadir and oblique images (Toschi, et al., 2018; 
Bacher, 2021). 
 
The method proposed in this paper (as opposed to segmenting 3D 
mesh) directly focuses on classifying data (oblique images, and 
LiDAR point cloud) that could be used for both mesh creation 
and adding semantic information. Proposed methodology was 
developed with the real-word dataset for Bordeaux collected with 
Leica CityMapper and then further evaluated with data from 
SUM: a Benchmark Dataset of Semantic Urban Meshes (Gao et. 
al 2021). 
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The Bordeaux (real-world dataset), consists of simultaneous 
collected: LiDAR point cloud (with the density of 10 pts/m2), 
nadir images, and oblique images in the four cardinal directions. 
Data were acquired from an altitude of 850 m above ground with 
a hybrid sensor – Leica CityMapper-1. This resulted in the 5 cm 
Ground Sample Distance (GSD) of nadir images with 80%  
overlap along flight lines and 60% overlap across flight lines. 
From Bordeaux dataset 11 oblique images (Fig. 1) are fully 
manually labelled into four semantic classes: facades, windows, 
roofs, and ground accompanied by an additional “other” class. 
For training of a neural network 8 images were used other three 
were used as a test dataset for evaluation of the achieved result. 
 

 
 
Figure 1.  Bordeaux data set. The footprints of oblique images 

used for training (outline in yellow) and test (outline 
in red) of the neural network. 

 
Dataset from SUM: A Benchmark Dataset of Semantic Urban 
Meshes consists of 64 tiles of Helsinki 3D textured meshes, each 
of which covers about 250x250 m. Tiles were divided into three 
groups: 40 were used as training data, 12 tiles as test data, and 12 
tiles as validation during training. Meshes were created from 
oblique aerial images with 7.5 cm GSD, the data were labelled 
per facet of the meshes with 6 semantic classes: terrain, high 
vegetation, building, water, car, boat accompanied by an 
additional “unclassified” class. Within benchmark data classified 
point clouds generated from meshes are also provided, during our 
experiment we use one of three with a sampling density of 30 
pts/m2. 
 
With SUM meshes 120 images (30 per direction with overlaps 
ca. 60/60%) were rendered with pyrender library. The intrinsic 
camera parameters have been selected in such a way as to 
simulate the Leica CityMapper-2 flying 2250 meters above the 
ground to match the resolution of SUM 3D meshes (GSD of 8 
cm). The outputs of pyrender library are images with RGB and 
label values from mesh and depth maps. 
 

2. METHODOLOGY 

The main idea of the presented hybrid method consists of three 
parts: (1) first to classify input data used for photogrammetric 
modelling (oblique images and point clouds) instead of a 
classification of a final product – a 3D meshes; (2) then results of 
images classification are projected on the mesh and stored as 

texture files (due to overlap between images each pixel of texture 
(texel) should be visible and classified on at least a few images – 
differences between classification on different images can be 
solved by voting in texture space); (3) finally results from images 
classification are overwritten on a mesh level with result of 
LiDAR point cloud classification for that classes which can be 
classified with higher accuracy form lidar data than from images. 
 
For point cloud classification, a convolutional neural network 
using only point cloud geometry has been used. This deep 
learning method was developed in-house by the Polish 
Geoinformatics R&D Centre OPEGIEKA (OPEGIEKA, 2020). 
Segmentation of aerial oblique images has been performed using 
the convolutional neural network architecture of the Pyramid 
Scene Parsing Network (PSP-Net). So both presented methods 
utilize completely different information for distinguishing the 
same objects with deep learning, image segmentation is based 
only on RGB values, and point cloud classification use only 
geometric information. 
 
OPEGIEKA's solution for ALS point clouds classification is 
based on a fully convolutional neural network (Dominik et al. 
2021). The solution core is an algorithm of point cloud 
transformation to a regular array accompanied by internally 
designed convolutional neural network architecture. In the first 
step, the point cloud is divided in the horizontal plane into grid 
cells of 1x1 meter. In the next step, raster images are generated 
layer by layer starting from the lowest points in each grid cell. 
The coordinates of the consecutive points in ascending elevation 
order are written as cell attributes of the consecutive images 
which are then stacked together.  
 
The result of those steps is an array (4-dimensional). The first two 
dimensions of the array are the spatial width and height of the 
point cloud divided into 1 meter grid. The third dimension is the 
order of the points in the vertical direction in a given grid cell. 
The fourth dimension stores point coordinates. The size of the 
array is 64 by 64 by 64 by 3 in most cases. If in a certain grid cell 
the number of points exceeds the size of the third dimension 
points are randomly selected. The 4-dimensional array is then fed 
to a fully convolutional neural network constructed from 3D 
convolutional layers. During training, the data is generated by a 
generator that randomly selects patches of point clouds and 
transforms them into the 4-dimensional array. 
 
After training the neural network, the classification of the point 
cloud is carried out by prediction of the neural network. For 
practical reasons, the LiDAR data is divided into 500 by 500 
meters tiles. For experiments with data from SUM Benchmark 
original division into 250 by 250 meters tiles is used. The full 
process of classification of such tile takes about 3-4 minutes on a 
single machine equipped with a graphic card (GPU). 
 
Segmentation of aerial oblique images has been performed using 
the convolutional neural network architecture of the Pyramid 
Scene Parsing Network (PSP-Net) proposed by (Zhao et al., 
2017). CNN implementation was based on source code published 
in the segmentation-models library (Yakubovskiy, 2019) using 
python and Keras deep learning API. PSP-Net architecture can 
be divided into two main parts. The aim of the first module is to 
extract deep image feature maps used as a source for later image 
segmentation. In our case, the extraction was performed with 
ResNet-18 (He, 2015) CNN, which presented the highest level of 
performance among other architectures (eg. VGG) both in 
independent tests and in the literature (Garcia-Garcia et al., 2018; 
H. Zhao et al., 2017) . In principle, the core feature of PSP-Net 
architecture is to intercept more contextual information during 
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the final image segmentation, which allows the algorithm to 
extract multi-scale topological dependencies among the 
distinguished semantic classes. That’s what the second part of 
CNN is designed for. Pyramid Pooling Module performs a fusion 
of feature maps obtained on four levels of image pyramids 
(extracted by four average-pooling layers with different kernel 
sizes). Finally, the result tensor is used as a data source for 
prediction/classification. 
 
Original oblique images (approx. 80 Mpx for Leica CityMapper-
1 data and 150 Mpx for rendered mesh scenes simulating 
CityMapper-2) are too big to be directly fed into the network to 
overcome this problem input images were divided into smaller 
tiles. Because of CNN architecture (combination of 
convolutional and max-pooling layers), each image dimension 
must be 48-divisible, that’s why each input image has been 
cropped to size 624 x 624 px (approx. 50 by 50 m on the ground). 
While images from the training dataset have been tiled without 
any overlap, test images were generated with 50% of overlap 
(vertical and horizontal) between two consecutive tiles. The 
reason why the images were generated with such coverage was 
that there were worse prediction results at the edges of tiles. 
 

  
 

Figure 2. Bordeaux dataset – oblique aerial images CNN 
prediction results without (left) and with mosaic 
mechanism (right). 

 
To avoid that problem, the final assumption for merging results 
of the prediction was that the pixels closer to the centre of the tile 
are more reliable. Based on this assumption final predictions 
were built using only middle parts of tiles (Fig. 2, 3). 
 

 
Figure 3. Final prediction building scheme. Red and blue parts 

of pictures (middles of tiles) are connected side by 
side to reduce effect of false classification on edges. 

 
Another problem that was addressed during the first experiment 
with Bordeaux dataset was the relatively small size of the training 
set for real-world images. In comparison to 120 images rendered 
from SUM dataset, 11 full CityMapper-1 images are not enough 
to perform reliable prediction (Tab. 1) Because of that, the data 
augmentation process was applied during CNN training. Our 
augmentation process, inspired by operations presented in similar 
approaches (Liu, 2019), consisted of 3 possible operations: 

1. Horizontal flip (probability=0.5) 
2. Contrast and brightness manipulation (p=0.8) 
3. Affine transformation (p=0.5). 

For contrast and brightness manipulation specified values were 
changed in the range of ± 20% in comparison to original value. 
During affine transformation every image has been scaled by ± 
15% and then could be either sheared by an random angle in 
range ± 10° or rotated by an random angle in range ± 20°. Using 
the following augmentation process implemented with 
albumentations, the python library training dataset was doubled. 
 
 

Dataset Training 
dataset size 

Effective training 
dataset size  

Real-world  
(CityMapper-1) 885 Mpx 1 834 tiles 

SUM  
(render) 18240 Mpx 14 706 tiles 

 
Table 1. Sizes of the training datasets (used for semantic 

segmentation of oblique images) in Mpx and number 
of tiles (624 x 624 px each). 

 
To further accelerate and regularise the learning process in every 
case the transfer-learning technique was used. The first part of 
PSP-Net used for feature extraction was pretrained using 
ImageNet dataset (Deng et al., 2009). Whole learning process 
was conducted using categorical cross-entropy (CCE) loss 
function and Adam optimizer (Kingma, Ba, 2014) with an initial 
learning rate of 0.001 further reduced when plateau was detected. 
Then results of semantic segmentation from images were 
projected into the mesh and stored as a texture. 
 
In order to project every pixel from classified oblique images into 
a texture map, a simple texturization algorithm was applied. First 
for every pixel of the texture map (texel) and for every triangle 
of the model a position on the model is determined. Using 
multilinear interpolation, which can be viewed as an affine 
transformation (Tymchyshyn, 2019), transformation from UV 
space of texture coordinate to model coordinate we are able to 
perform texel mapping. The affine transformation matrix is 
obtained with the Laplace elimination method. The derived 
transformation matrix with a translation vector transforms points 
from the mesh model texture projection to the model projection. 
 
The height of the individual pixels in the new 3D model 
projection is determined using the plane equation. The values of 
plane parameters are determined as normal planes using the 
cross-product of two vectors constructed from the points of a 
single plane of the mesh model. As the result, all raster cells 
(texels) of the UV texture map are projected on the mesh model. 
The density of points is directly related to the resolution of the 
UV texture image. Finally, for each texel 3D coordinates in 
model space are projected on the corresponding image (with 
known interior and exterior orientation parameters, and depth 
map used for visibility check) and then classification results are 
acquired using nearest neighbour resampling. 
 
With this method for each 3D mesh tile, for every corresponding 
oblique image, a separate texture is created maintaining UV 
coordinates of the original texture map. Then all textures for a 
single mesh tile are stacked together, for SUM Benchmark single 
mesh tile was visible on 6-9 rendered images which result in 
more than 30 textures with classification results per every mesh 
tile. The majority voting in UV coordinates of texture space was 
used for the creation of the final texture with classification 
results. 
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3. RESULTS 

Results of the semantic segmentation of oblique images, from the 
real-world (Bordeaux) dataset, were presented in Table 2. Per-
pixel evaluation metrics were calculated based on three fully 
manually labelled test images (Fig. 1). The lowest accuracies, as 
well as Intersection over Union (IoU) values, were achieved for 
pixels labelled (classified) as windows and ground. The most 
probable reason for the worse accuracies of these two classes is 
the unbalanced training dataset for the test field (less than 12% 
of pixels were labelled as a ground on oblique aerial images). 
 

Class Accuracy IoU 
   

Facades 71.82% 61.81% 
Windows 53.90% 38.11% 
Roofs 86.28% 78.59% 
Ground 71.33% 54.11% 
   

Mean 70.83% 58.16% 
 
Table 2. Real-word dataset. Results of image segmentation 

with PSP-Net. 
 
To improve achieved results hybrid approach (Fig. 1) of ground 
classification was proposed – the ground was classified on the 
LiDAR point cloud and then corresponding faces of 3D mesh 
were labelled as ground and then projected to the oblique images 
overriding the classification achieved from image segmentation. 
This process improved achieved accuracy and IoU for ground 
class pixels up to 89.3% and 77.3% respectively (Fig. 4). 
 
For further investigation of differences in performance of 
semantic classification of point clouds and oblique images data 
from SUM: a Benchmark Dataset of Semantic Urban Meshes 
were used. Results of classification of the point cloud (with a 
density of 30 pts/m2) with OPEGIEKA’s CNN evaluated on 12 
test tiles achieved Overall Accuracy (OA) of 91.4%. These 
results were achieved with classification including six semantic 
classes as well as class unclassified. Per-class metrics calculated 
for points for six semantic classes (Tab. 3) show results 
comparable with the top results achieved in SUM Benchmark 
experiments (Gao et. al 2021). 
 

Class Precision Recall F1 IoU 
     

Ground 89.6% 92.9% 91.2% 83.8% 
Vegetation 92.4% 95.1% 93.7% 88.1% 
Building 93.7% 97.4% 95.5% 91.5% 
Water 94.4% 89.5% 91.9% 85.0% 
Car 75.6% 59.6% 66.6% 49.9% 
Boat 79.4% 16.3% 27.1% 15.7% 
     

Mean 87.5% 75.1% 77.7% 69.0% 
 
Table 3. SUM benchmark dataset. Per-class results of point 

cloud classification. 
 

Class Precision Recall F1 IoU 
     

Ground 85.5% 89.5% 87.4% 77.7% 
Vegetation 91.8% 86.3% 89.0% 80.2% 
Building 91.7% 94.9% 93.3% 87.4% 
Water 92.6% 59.9% 72.7% 57.2% 
Car 45.5% 79.4% 57.9% 40.7% 
Boat 19.7% 78.5% 31.5% 18.7% 
     

Mean 71.2% 81.4% 72.0% 60.3% 
 
Table 4. SUM benchmark dataset. Per-class results of oblique 

image segmentation.
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Figure 4. From top: Reference data from manually annotated 

oblique image; results of image segmentation with 
CNN, results from hybrid approach (ground 
classification from lidar data). 

 
Results of the semantic segmentation of oblique images rendered 
from the SUM Benchmark dataset firstly were evaluated in the 
image space of oblique images. In order to calculate evaluation 
metrics the prediction with the PSP-Net was run on fully rendered 
RGB images and then test and validation tiles were masked out – 
comparison between reference classes rendered from mesh and 
prediction results were performed only on sections of images 
corresponding with test 3D mesh tiles. Achieved results (Tab. 4) 
with OA of 84.1% are slightly worse than in the case of point 
cloud classification with OPEGIEKA’s CNN, but still. 
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comparable with the top results achieved in SUM Benchmark 
experiments (Gao et. al 2021). 
 
Merging classification from many images and voting in UV 
coordinates of texture space improved achieved results (Tab. 5), 
OA increase up to 89,9%. For the calculation of evaluation 
metrics, texture maps generated from 3D mesh tiles were used. 
Texture maps were created for each of 12 test 3D mesh tiles using 
classification stored in the labelled mesh tiles, textures were 
generated with a resolution of the original RGB texture. Per-class 
comparison of results achieved before and after voting show 
improvement of F1 and IoU values for all classes with exception 
of the boat class. The highest improvement is visible for water 
class. 
 

Class Precision Recall F1 IoU 
     

Ground 86.7% 90.2% 88.4% 79.2% 
Vegetation 89.5% 90.7% 90.1% 82.0% 
Building 95.5% 94.2% 94.9% 90.2% 
Water 97.7% 78.9% 87.3% 77.4% 
Car 43.8% 92.2% 59.4% 42.2% 
Boat 12.0% 92.3% 21.2% 11.8% 
     

Mean 70.9% 89.8% 73.5% 63.8% 
 
Table 5.  SUM benchmark dataset. Per-class results of image 

segmentation after texturing and voting. 

The qualitative evaluation for one of the test mesh tiles from 
SUM Benchmark is shown in Fig. 5. Results of classification of 
the point cloud with OPEGIEKA’s CNN show the high 
completeness and quality of classification seldomly part of the 
object are wrongly labelled. However, some errors of 
classification are visible on the ground and water – portions of 
the points are wrongly classified as a ground – the effect is similar 
to the noise. Misclassification errors are mostly visible on small-
scale objects.  
 
Comparison of the results from semantic segmentation of a single 
image and achieved after merging classes from many oblique 
images (by voting in texture space) show (Fig. 5) improvement 
mostly with the classification of the small parts of the object 
which were wrongly classified on the of a single image. But still 
even after voting some errors of misclassification between water 
and ground or trees and buildings are visible. 
 
Finally, from both – the qualitative evaluation (Fig. 5) as well as 
from the mean of evaluation metrics (Tab. 6), it is clearly visible 
that point cloud classification with OPEGIEKA’s CNN provides 
slightly better results that semantic segmentation of oblique 
images with PSP-Net. That result could be easily explained by 
the types of classes that are proposed in SUM Benchmark. All 
semantic classes used in SUM Benchmark are similar to classes 
present in ALS data classification and are possible to distinguish 
only with geometry information from a point cloud. Therefore 

  

  
Figure 5. One of the SUM Benchmark’s test tiles, with the texture generated from reference data (top-left), point cloud classified 

with OPEGIEKA’S CNN (top-right), results from semantic segmentation of single image - occluded areas are black 
(bottom-left), results of merging classification from many oblique images (bottom-right). 
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solution that was developed especially for the classification of 
this type of data provided slightly better results. On the other 
hand, image segmentation was limited to oblique images, when a 
full set of hybrid data should also contain nadir images with a 
NIR channel, using both of them might greatly improve results 
of image segmentation. 
 

 Point 
cloud 

Oblique 
images 

Texture 
voting 

(images) 
mIoU 69.0% 60.3% 63,8% 
OA 91.4% 84.1% 89,9% 

mAcc 75.1% 81.4% 89,8% 
mF1 77.7% 72.0% 73,5% 

 
Table 6.  SUM benchmark dataset – comparison of results from 

different methods. 
 
It is also noteworthy that evaluation metrics for each of the 
datasets compared in Tab. 6 are calculated in different spaces. 
Point cloud comparison was performed in point by point manner, 
for oblique images pixel by pixel in image space calculation was 
used and for texture voting pixel by pixel (texel by texel) in 
texture space (UV texture map). What more reference data in 
SUM benchmark were created by mesh segments and then stored 
in another space – defined by faces of the 3D mesh. 
 

4. CONCLUSIONS 

We have compared two different approaches to semantic 
classification of the urban 3D mesh, which are focused on 
classifying the input data (oblique aerial images or point clouds), 
using deep learning methods instead of segmentation 3D mesh 
itself. Results achieved with data from SUM Benchmark show 
that both methods provide good results when an appropriate set 
of training data is available. Results from Bordeaux dataset 
shown that data augmentation cannot replace diverse training 
dataset in case of image segmentation. However, results achieved 
with images rendered from SUM Bencharks's 3D meshes could 
be biased by higher homogeneity of renders than it is possible to 
achieve in the case of oblique images in a real-world scenario. 
 
Overall results for classification of different types of data show 
that point cloud classification provides slightly better results than 
semantic segmentation of oblique aerial images) at least as long 
as all classes can be distinguished based on geometry information 
from a point cloud. For future work, we plan to evaluate both 
methods on different real-world datasets. We will also investigate 
possibilities of multi-modal information transfer between 
imagery, point clouds, and meshes – that problem was already 
highlighted by Laupheimer & Haala (2021), for merging 
classification from different sources. 
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