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ABSTRACT:

Automatic detection and tracking of individual animals is important to enhance their welfare and to improve our understanding
of their behaviour. Due to methodological difficulties, especially in the context of poultry tracking, it is a challenging task to
automatically recognise and track individual animals. Those difficulties can be, for example, the similarity of animals of the same
species which makes distinguishing between them harder, or sudden changes in their body shape which may happen due to putting
on or spreading out the wings in a very short period of time. In this paper, an automatic poultry tracking algorithm is proposed.
This algorithm is based on the well-known tracktor approach and tackles multi-object tracking by exploiting the regression head
of the Faster R-CNN model to perform temporal realignment of object bounding boxes. Additionally, we use a multi-scale re-
identification model to improve the re-association of the detected animals. For evaluating the performance of the proposed method
in this study, a novel dataset consisting of seven image sequences that show chicks in an average pen farm in different stages of
growth is used.

1. INTRODUCTION

Analysing the behaviour of farm animals is a fundamental pre-
requisite for defining their needs and thus ensuring animal wel-
fare. In this context, it is of great interest to determine the move-
ment of animals in their habitat as a function of time, to analyse
their behaviour in groups, during foraging and in relation to the
use of space. In animal science, it is currently common practice
to use video recordings of animal behaviour which are manually
analysed. Since such manual procedures are extremely time-
consuming, the goal of this work is to provide automatically
extracted trajectories of all animals in an image sequence. To
the best of our knowledge, there is only little research in the
area of image-based tracking of farm animals (Zhang et al.,
2019; Bergamini et al., 2021), which is particularly true for
tracking of poultry (Li et al., 2020; Neethirajan, 2022). Up to
now, there is no effective method to identify individual animals
as a function of time. The research regarding animal tracking
concentrates predominantly on animal movements. This can
be done, for example, by analysing the optical flow patterns
at flock level, to determine if animals are infected by a human
pathogen (Colles et al., 2016), or by applying background sub-
traction to detect the lying-down behaviour of individual broiler
chicken (Aydin, 2017). On the other hand, many approaches
have been developed to track pedestrians as illustrated by the
extensive review on this topic by Luo et al. (2022).

While pedestrian and animal tracking have similar goals, i.e.,
automatically detecting and associating each individual in an
image sequence to a track, some differences arise due to an-
imal anatomy and behaviour: The first difference concerns the
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similarity of individuals of the same species. While pedestri-
ans can often be distinguished from each other by their appear-
ance, size, as well as colour and shape of clothing, this is not
always possible for animals of the same species. This is es-
pecially relevant when re-identification becomes necessary, for
example, to connect two partial trajectories resulting from a
temporary occlusion of an animal. Further challenges in track-
ing poultry arise with re-identification over longer time periods,
as young animals grow much faster compared to humans result-
ing in relatively fast changes in appearance (Wurtz et al., 2019).
Second, in poultry, sudden and significant changes in appear-
ance can be observed when the wings are put on or spread out
in a very short time. This makes it challenging to detect the
animals in the image sequence and to re-identify all the detec-
tions of the individual animals in the course of the entire image
sequence to determine those animal’s trajectories (Kashiha et
al., 2013). Third, in contrast to pedestrians who move in an al-
most straight path on sidewalks, or move in small groups from
which some motion models can be derived by using a social
force model (Helbing and Molnár, 1995), it is harder to jus-
tify any such assumption to describe the motion of poultry as
a function of time (Colantonio et al., 2007). As such animals,
especially young ones, are very energetic and playful in their
movements, it is harder to model their motion. Fourth, the re-
cording configuration often differs between pedestrian tracking
and animal tracking. While the footage of pedestrians used for
tracking is often captured by cameras at street level with the
optical axis parallel to the ground level, cameras used to track
livestock are usually mounted below the barn ceiling and result
in nadir or oblique images.

In this paper, we investigate the potential of animal tracking us-
ing the tracktor approach presented in (Bergmann et al., 2019).
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This approach is based on the Faster R-CNN model (Ren et al.,
2015) and thus, it can detect objects that are small and close to
each other well since it is a region proposal-based method (Zhao
et al., 2019). Furthermore, tracking using the tracktor approach
is achieved via bounding box regression, i.e., no explicit motion
model is needed. To improve the re-identification of animals
that have been occluded temporary, we use MuDeep (Qian et
al., 2017). The MuDeep network architecture is based on a Sia-
mese network. It learns features at different scales and evaluates
their importance for object matching. The underlying assump-
tion for the usage of this method is that MuDeep improves the
re-association of the animals by focusing on the small differ-
ences in their appearance given that those animals are similar in
many respects.

The main contribution of the present work is a method for the
tracking of multiple animals in a confined space for research
purposes, focusing on the tracking of poultry. For this intent,
we use a tracking model that does not require a defined explicit
motion model by exploiting the regression head of a detector to
perform temporal realignment of object bounding boxes. Addi-
tionally, we use a multi-scale re-identification model to address
problems that originate from occlusions.

2. RELATED WORK

Much research has been carried out on pedestrian tracking dur-
ing the last years (Klinger et al., 2014; Tang et al., 2017; Chen
et al., 2018; Ristani and Tomasi, 2018; Nguyen et al., 2019);
these algorithms are predominantly based on the tracking-by-
detection paradigm (Chen et al., 2018; Bergmann et al., 2019).
In tracking-by-detection the tracking problem is broken down
into two steps: i) object detection in each frame, ii) object as-
sociation between adjacent frames. It should be noted that the
quality of the tracking algorithm is limited by the performance
of the underlying detection method (Luo et al., 2022). Re-
cently, neural network-based detectors have outperformed con-
ventional methods for detection (Ren et al., 2015; Redmon and
Farhadi, 2018), making them the main choice for tracking-by-
detection approaches (Bergmann et al., 2019).

Many methods can be used for the second step of tracking-
by-detection in the context of pedestrian tracking. One of
those methods is motion modelling and trajectory predic-
tion (Shafique et al., 2008). This method captures the dynamic
behaviour of an object to estimate its potential position in future
frames by expressing assumptions about the movements of the
individuals to be tracked in form of a motion model that can be
integrated into a filter approach (Luo et al., 2022). One could,
for example, make a simple constant velocity assumption. Al-
ternatively, the motion model can be made more complex by
applying prior knowledge from a social force model (Helbing
and Molnár, 1995), being an example for interaction model-
ling (Luo et al., 2022). The social force model describes the
behaviour of crowds as a result of the interactions of individu-
als. Concerning our task, it is hard to adapt a social force model
from pedestrian tracking to poultry tracking due to difficulties
in modelling animal motion and the limited understanding of
the interaction of stock individuals (Colantonio et al., 2007).
Another method is to use an appearance-based model to cre-
ate links between the detected object in the individual frames.
Such information on the appearance can be particularly helpful
in crowded scenes with many object-object occlusions where
an ID-switch is probable to happen. Such an appearance-based

model can exploit optical flow (Ali and Shah, 2008), point fea-
tures (Ommer et al., 2009) or gradient-based features such as
features of a histogram of oriented gradients (Dalal and Triggs,
2005). Due to the significant advances of machine learn-
ing approaches in recent years, many re-identification models
based on Convolutional Neural Networks (CNNs) have been
developed in the context of pedestrian tracking (Li et al., 2018;
Yu et al., 2018). However, such methods are not necessarily
reliable for animal tracking since animals often have similar
shapes, and colour statistics are often contaminated by back-
ground pixels and illumination changes, while the differences
in appearance between the animals are often subtle and only
detectable at particular locations and scales.

The proposed algorithms for animal detection in the literature
mainly tackle specific animal behaviour aspects, such as eating
or drinking (Li et al., 2020). This is achieved by detecting the
position of an animal relative to the position of the feeder, water
or the nest (Li et al., 2020). While those systems could in prin-
ciple also be used for tracking, they exclusively concentrate on
detecting different behaviours of the animals and neglect track-
ing. By using wireless wearable sensors (e.g., accelerometer,
RFID microchip) (Chien and Chen, 2018) the position of the
animal can be detected if the animal is near the feeder, water
or the nest. Due to the expense and invasive nature of wireless
wearable sensors, visual-based monitoring systems have been
used more and more in recent years (Li et al., 2020). Berga-
mini et al. (2021) use an image-based tracking algorithm to ex-
tract long-term behaviour changes of pigs. They use the YOLO
v3 (Redmon and Farhadi, 2018) model to detect pigs in each
frame independently. In the first frame, a new track is created
and initialised for each detection. While this tracker is based on
a Minimum Output Sum of Squared Error (Bolme et al., 2010),
it uses an adaptive correlation for object tracking which pro-
duces stable correlation filters once initialised. In the follow-
ing frames, the updated tracks and single-frame detections are
matched together comparing the Intersection over Union (IoU)
and their appearance. The best assignments are found with the
Hungarian algorithm (Kuhn, 1955) and a track is removed, if
no match is found. On the other hand, if a detection is not
matched to any track, a new track is created and initialised. The
algorithm in (Bolme et al., 2010) is easy to calculate and can
quickly track objects, but it does not guarantee accurate res-
ults when the object’s appearance changes. Neethirajan (2022)
uses the YOLO v5 model, which is based on YOLO v3 (Red-
mon and Farhadi, 2018), to detect chickens in each frame. To
track each individual chicken, a Kalman filter is applied. The
downside of this approach is that the accuracy of the Kalman
filter depends on the assumption of linear motion for any chick
to be tracked. If a chick takes some abrupt turns, which often
happens, the nonlinear movement cannot be handled well by
the Kalman filter framework.

Another possibility to achieve the stated goals is Track-
tor (Bergmann et al., 2019). Tracktor is a non-motion-model
based tracking approach, simplifying tracking by eliminating
the need for any knowledge or assumptions about animal mo-
tion behaviour. Tracktor requires an image sequence of the an-
imals to track as input. It tackles multi-object tracking by ex-
ploiting the regression head of a detector to perform temporal
realignment of object bounding boxes; objects are detected and
classified using Faster R-CNN (Ren et al., 2015). The data asso-
ciation step in the tracktor method is done by combining object
classification scores from the detection step and IoU between
bounding boxes of two subsequent time steps. Tracktor gen-
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erates a region suggestion for each animal in each frame and
combines the suggestions of different frames to form a traject-
ory for the observed animal over the entire image sequence.

3. TRACKTOR FOR ANIMAL TRACKING

Our methodology is based on the tracktor approach (Bergmann
et al., 2019), where a schematic description of our method
can be found in Figure 1. In contrast to Tracktor, we use the
MuDeep model (Qian et al., 2017) for re-identification, aiming
to increase the accuracy and the reliability of the data associ-
ation step and to better handle occlusions. Further, we employ
additional augmentations during training. To make this paper
self-contained, the subsequent sections will contain a review of
the approach in (Bergmann et al., 2019), highlighting our con-
tributions and extensions of the original approach.

3.1 Animal Detection

In the first step, detection and classification of all animals are
carried out using Faster R-CNN. Faster R-CNN can be separ-
ated into three different steps. The first step is image feature-
map extraction in which a backbone CNN is employed, with
ResNet-50-FPN (He et al., 2016) being used as backbone in
the present work. In the next step, the network learns whether
a pixel belongs to a certain object and estimates the size of
that object. This is done by sliding a window over the feature
maps and placing a set of “anchors” on corresponding positions
between the input image and the window over the feature maps.
Following (Bergmann et al., 2019), we use nine anchors with
three different aspect ratios and three different sizes. This en-
sures that animals of different sizes are detected. This step gen-
erates a multitude of bounding box proposals for each potential
animal. In the third step, feature maps for each proposal are
extracted via Region of Interest pooling (Girshick, 2015) and
passed to the classification and regression heads. The classi-
fication head assigns an object score stk to each proposal. This
score represents the probability s in frame t of a proposal k
showing an object of interest, i.e., an animal. The regression
head refines the coordinates of the proposals that contain anim-
als. Next, non-maximum-suppression is applied to obtain the
final set of detected animals.

3.2 Animal Tracking

Tracktor tackles multi-object tracking by exploiting the regres-
sion head of the detector to perform temporal realignments of
object bounding boxes, which is possible in case of a high frame
rate. Tracktor extracts the trajectories of objects in a video
sequence. Each trajectory is given as a list of ordered object
bounding boxes Tk = {bk0 , bk1 , ...}, where bkt is a bounding
box b of object k in frame t ∈ {0, 1, ...}. In each frame t,
the list of detected objects assigned to a trajectory is defined
as Bt = {b0t , b1t , ..., bKt−1

t } listing the bounding boxes b of all
Kt objects k ∈ {0, 1, ...,Kt − 1} in frame t. At t = 0 the
tracker initialises tracks from the first set of detections D0 as
B0 := D0 = {d00, d10, ...}, where dj0 is the jth bounding box d
delivered by the detector in frame t = 0 that is not yet assigned
to a trajectory and has an object score s0j bigger than a threshold
λdetect = 0.5, as defined in the original approach of Bergmann
et al. (2019). For all frames t > 0 the following two steps are
carried out to determine Bt:

• Bounding box regression (red arrows in Figure 1): given
the assumption that an object k moves only slightly

Figure 1. The proposed methodology performs simultaneous
tracking of multiple animals using the tracktor approach. The

two basic processing steps, bounding box regression and
initialisation, are shown by red and blue arrows, respectively, for

a single image at time t using an example from our poultry
dataset. In the bounding box regression step, the object detector

regression head adjusts the existing bounding boxes bkt−1 of
frame t− 1 to the new positions of the objects at frame t. The

corresponding object classification scores skt of the new
bounding boxes are used to deactivate potentially occluded
tracks. To determine whether a new bounding box has to be
initialised, the Intersection over Union (IoU) is calculated

between each element of the set of detections Dt of frame t and
the elements of the active tracks Bt = {b0t , b1t , ...}. If the IoU

between a detection and the bounding boxes of all active tracks
is smaller than a threshold, a new track is initialised for this

detection and is added to the active tracks. (Figure adapted from
Bergmann et al., 2019). ©IPI, TiHo Hannover.

between two subsequent frames, its trajectory list Tk =
{bk0 , ..., bkt−1} is extended from the preceding frame t − 1
to the current frame t, leading to Tk = {bk0 , ..., bkt−1, b

k
t }.

This is achieved by exploiting bounding box regression,
i.e. by regressing the bounding box bkt−1 in frame t− 1 to
the object’s new bounding box position bkt at frame t. This
is conducted for all Kt−1 objects, where Kt−1 is the num-
ber of objects in frame t−1, leading to the list of bounding
boxes {b0t , ..., b

Kt−1−1
t } for the current frame t referred to

as active trajectories.

• Bounding box initialisation (blue arrows in Figure 1): a
new trajectory of an object i that is not yet contained in
the list of objects {b0t , ..., b

Kt−1−1
t } resulting from bound-

ing box regression can be initialised using the list of detec-
tions Dt for the current frame t, assuming that there is a
detection di ∈ Dt representing object i. A new trajectory
is initialised for that object if the IoU of di with any of the
{b0t , ..., b

Kt−1−1
t } is smaller than a threshold λnew = 0.3,

leading to Bt = {b0t , ..., b
Kt−1−1
t , di} =: {b0t , ..., bKt−1

t }.

A trajectory is deactivated, if the IoU between two objects in Bt

is larger than a threshold λactive = 0.6. which means that the
object with the smaller classification score is occluded by the
other object. Alternatively, a trajectory is also deactivated if the
classification score stk of any object k in frame t resulting from
Faster R-CNN is below a threshold λscore = 0.5 , which means
that the object has left the frame or is occluded by another part
of the scene.

3.3 Animal Re-Identification

In tracking, especially in the context of poultry tracking, occlu-
sions are a common problem. This problem can, for example,
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Figure 2. An example of chick-to-chick occlusion while feeding
on the left and while sleeping on the right. ©TiHo Hannover

be seen when all the animals group together for food or sleeping
as depicted in Figure 2.

To re-identify the animals after occlusions, we propose the
use of the MuDeep re-identification model (Qian et al., 2017).
The MuDeep model is capable of detecting subtle differences
between objects and thus, it is suitable to distinguish very
similarly-looking animals. This model requires two object im-
ages as input and has two branches, one for processing each
image. Each branch consists of the following components: tied
convolutional layers, multi-scale stream layers, saliency-based
learning fusion layers and a verification subnetwork, which is
made up of fully connected layers. After each convolutional
and fully connected layer, a batch normalisation and a Rectified
Linear Unit activation (Agarap, 2018) are used. The weights
are shared between the two branches, resulting in a Siamese
network structure. An overview of the network is shown in Fig-
ure 3.

The following steps are carried out by the MuDeep model to
check whether two images belong to the same object. In the
first step, two image extracts each containing an object are
pre-processed by the two tied convolutional layers. The gen-
erated feature maps are passed to the second step, the multi-
scale stream layers. The purpose of the multi-scale layers is to
extract high-level features. In these layers, the data stream is
down sampled with four different sized convolution masks. In
the third step, a saliency-based learning fusion layer is used to
combine the output of the multi-scale stream layer and emphas-
ise the channels with highly discriminative high-level features.
Such features may, for example, be associated with the head of
animals or feathers with a unique colour. This layer is connec-
ted to a fully connected layer that takes the high-level features
and delivers a feature vector with a lower dimensionality being
the outpt of the verification network. We use the output of the
verification subnetwork, the last step in the MuDeep model, to
decide whether the input image-pair belongs to the same an-
imal. To allow the re-identification of animals that have not
been seen by the detector for multiple frames, we save deac-
tivated tracks for 50 frames such as in the original approach
of Bergmann et al. (2019). Then, the MuDeep model is used to
compare the deactivated with the newly initialised tracks and
connects them, if the associated animal can be re-identified,
meaning that both tracks belong to the same animal.

4. DATASET

For the evaluation of the method presented in this work, a novel
dataset was captured. The dataset was recorded by TiHo Han-
nover (Tierärztliche Hochschule Hannover) over a period of 48
days. This dataset is composed of a total of seven videos that
were acquired during different times of the day and with vary-
ing lighting conditions. The dataset comprises grey and RGB

Figure 3. Overview of the MuDeep architecture.

Figure 4. An example of the scene recorded by the used video
sequences. The red arrow shows the adult turkey, blue arrows

show the chicks. The yellow rectangle shows the main pen, the
orange rectangles show the adjacent pens. ©IPI, TiHo Hannover

video sequences. Each video sequence is recorded via a station-
ary BERGHOCH 8MP Aussen I Basic camera, mounted over
a pen observing the scene from a nadir view. The pen dimen-
sions are 2.6 x 1.0 meters. In each sequence, one pen is fully
visible, containing various chicks and an adult hen. Note that
in this work, we are focusing on tracking the chicks only. The
chicks in the different recordings are of different ages and thus
of different sizes. We split the dataset accordingly into three
sections: small, medium and big. In addition to the fully visible
pen, several partially visible pens can be seen at the boundary
of the images (see Figure 4). To provide a reference, all the data
was manually annotated, using axis-aligned bounding boxes for
all chicks in all frames. Those boxes are set such that they are
the smallest possible boxes containing the chicks completely.
The bounding boxes are defined by the coordinates of the top
left and bottom right corners.

The video recordings were acquired at 30 frames per second
with a resolution of 1280 x 720 pixels. The recordings are split
into three different chick sizes and two camera colour settings
(see Table 1). While Figure 5 shows examples of RGB and grey
value images, Figure 6 shows the chicks of different sizes in the
different stages of their growth. In total, the dataset consists of
seven annotated video sequences, of which five have a length
between 1800 and 1850 frames, one video sequence has 2000
frames and one has 4000 frames.
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ID #Frames Chick size Colour setting Use

1a 1000 Small RGB train
1b 1000 Small RGB val
1c 2000 Small RGB test
2 1850 Small RGB train
3 1815 Small RGB and Grey test
4a 900 Medium Grey train
4b 900 Medium Grey val
5 1808 Medium RGB train
6a 1000 Big Grey train
6b 1000 Big Grey test
7 1819 Big RGB train

Table 1. Description of our novel dataset. ID: the number
indicates the ID of a video sequence, while the letters denote

that a sequence has been split. For example, the subsets 1a and
1b are both part of video sequence 1, where 1a contains frames 0

to 999 and 1b the frames 1000 to 1999. #Frames: number of
frames in the video sequence. Size: the growth status of the
chicks in the video sequence. Colour setting: colour settings
used while recording (RGB or grey). Use: indicate whether a

video sequence is used for training, validation or testing.

Figure 5. Example of the different colour settings used. RGB
video sequence on the left, grey video sequence on the right.

©TiHo Hannover

Figure 6. Different stages of chick growth. From left to right:
small, medium, big. ©TiHo Hannover

5. EXPERIMENTS

In this section, we evaluate the method presented in this work
using the dataset introduced in Section 4. To that extent, we
will use the split shown in Table 1 to create the training, valida-
tion and test sets. For the training of the Faster R-CNN model,
we use a maximum of 30 epochs with early stopping to avoid
overfitting. Thus, the model with the best mean average preci-
sion score on the validation set is used for testing. The model
is trained with a batch size of 4 and a learning rate of 0.001.
The MuDeep model is trained with a maximum of 40 epochs, a
batch size of 32 and a learning rate of 0.0001.

5.1 Metrics

Three metrics are used for evaluating the detection model,
namely Precision, Recall and Average Precision (AP). Preci-
sion is the number of true positives divided by the number of
true positives plus the number of false positives, while Recall
is the number of true positives divided by the number of true
positives plus the number of false negatives. Average Precision
is the harmonic mean of Precision and Recall.

For the quantitative evaluation of the tracking approach, the fol-
lowing metrics, which are common in the tracking domain, are
used: IDF1 (Ristani et al., 2016), MOTA and MOTP (Bernardin
and Stiefelhagen, 2008). The combination of these three met-
rics allows, on the one hand, to evaluate the results in terms of
the correctness of the object IDs and thus the consistency of the
trajectories (IDF1), as well as the accuracy of the determined
position (MOTP). On the other hand, this combination allows
us to put the tracking results obtained into the context of other
work in terms of classification accuracy (MOTA). IDF1 com-
bines ID precision (IDP) and ID recall (IDR) into a single value
by using the harmonic mean, using the definitions of precision
and recall given above. MOTP represents the average of all IoU
errors of the chick detections. MOTA, on the other hand, com-
bines three different error metrics, namely the number of ID
switches, false positives and false negatives in one score. Sum-
ming up these three metrics and dividing the sum by the total
number of objects present in all frames, gives us the total error
rate Etot. MOTA is then defined as MOTA = 1− Etot.

5.2 Augmentations

While the footage of pedestrians used for tracking is often cap-
tured by cameras at street level with the optical axis parallel to
the ground level, cameras used to track the chicks are moun-
ted below the barn ceiling and result in nadir or oblique im-
ages. This gives us the possibility to extend the used augmenta-
tion setting for pedestrian tracking in (Bergmann et al., 2019),
where only random flipping along the vertical axis is applied.
In contrast to Bergmann et al. (2019), we suggest to add Gaus-
sian noise, to augment the brightness and to randomly flip along
the horizontal axis. The use of the added Gaussian noise is mo-
tivated by the assumption that very fast motions of the chicks
result in motion blur. We apply Gaussian noise with a zero
mean and a standard deviation of σ = 1.7. The brightness
augmentations are motivated by the observation that the pen is
unevenly illuminated. Accordingly, brightness augmentations
are supposed to simulate the situations in which the chicks are
in shadow. For this purpose, a brightness factor is randomly
drawn from the interval [0.5, 1.5] and each channel of the image
is multiplied by this factor. If a colour value exceeds the upper
or lower bound of possible values after applying the brightness
factor, this value is set to the respective bound. By randomly ap-
plying flipping along the vertical axis, we exploit that the chicks
are observed in a top view. An example of the augmentation
strategies applied can be seen in Figure 7.

5.3 Experiments

To define a baseline for tracking the chicks and to obtain a better
understanding of the influence of the MuDeep re-identification
model on the tracking results in the context of poultry track-
ing, we carry out multiple experiments. Those experiments
can be split into two groups: detection experiments and re-
identification experiments. In the first group of experiments,
i.e., the detection experiments, we train the Faster R-CNN
model with two different data augmentation methods. For the
first experiment, we used the same augmentation that has been
used in the tracktor approach for pedestrian tracking, namely
random vertical flip. We call this experiment the baseline-
detection test. In the second experiment, we apply the extended
augmentation strategy mentioned above to the dataset. We call
this experiment the extended-detection test. In the second group
of experiments, i.e., the re-identification experiments, we apply
both the baseline-detector and the extended-detector to obtain
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Figure 7. Example of the different augmentation strategies used.

Augmentation
Re-identification

model Experiment ID

baseline
none baseline-none

ResNet-50 baseline-ResNet-50
MuDeep baseline-MuDeep

extended
none extended-none

ResNet-50 extended-ResNet-50
MuDeep extended-MuDeep

Table 2. Overview of the experiments carried out (for details see
text).

detections in the context of Tracktor. Furthermore, Tracktor is
used with different re-identification models, i.e., without any
re-identification model (denoted as none), with the Siamese re-
identification model based on ResNet-50 (denoted as ResNet-
50), which has also been used in the tracktor approach for ped-
estrian tracking, and with MuDeep re-identification (denoted
as MuDeep). We combine each detector with each of the re-
identification models in our experiments, whereas an overview
of the experiments is given in Table 2.

6. RESULTS

For testing, we use the three different video sequences 1c, 3
and 6b. The chicks and the barn in sequences 1c and 6b have
been seen by the model in the training and validation phase,
respectively, where different frames have been used there, i.e.,
the disjoint sequences 1a, 1b and 6a. On the other hand, the
chicks and the barn in sequence 3 have neither been seen during
training nor while validating the detection model.

6.1 Detection Results

Comparing the results of the baseline detector and the exten-
ded detector shown in Table 3, it can be seen that the Aver-
age Precision (AP) of the extended model is slightly higher for
both sequences 1c and 6b, which can be explained by the fact
that similar sequences have been used in the training and val-
idation of the detector. In contrast, the results for sequence 3

Figure 8. An example of the detections in sequence 3. Green
arrows indicate dirt on the floor. Orange arrows indicate black

feathers on the tail of the chicken. ©IPI, TiHo Hannover

ID Augmentation AP Precision Recall FP

1c
baseline 78.2% 85.5% 91.4% 2321
extended 79% 86.3% 91.5% 2178

3
baseline 29.1% 55.4% 49.6% 10846
extended 28.8% 54.6% 52.5% 11866

6b
baseline 93.9% 95.7% 97.8% 463
extended 95.5% 96.4% 98.9% 411

mean
baseline 67.1% 78.9% 79.6% 4543
extended 67.8% 79.1% 81% 4818

Table 3. Detection results. ID: the ID of the used video
sequence. Augmentation: the type of the used augmentation.

AP: average precision score. FP: number of false positive
detections.

are slightly worse for the extended version, which is probably
caused by its differences to the sequences used for training and
validation. An example of detections in sequence 3 can be seen
in Figure 8. It shows that the condition of the barn namely
the dirt on the floor cause false-positive detections. The adult
turkey causes false-positive detections too, due to its black tail
feathers. In the training sequences, the adult turkey has fewer
of these black feathers in the tail area and the barn is cleaner
with no visible dirt on the floor. The use of extended aug-
mentation increased the AP in sequences 1c and 6b by 0,8%
and 1,6%, respectively. In sequence 3 an increase in Recall
by 2,9% coupled with a decrease of the Precision by 0,8% can
be seen which means more true-positive and false-positive de-
tections are made. Overall, the detection model with extended
augmentations shows a slight improvement compared to the de-
tection model with the baseline augmentation, while testing on
data that is similar to the training and validation sets.

6.2 Tracking Results

For the six different tracking experiments, the results corres-
ponding to the IDF1, MOTA and MOTP metrics are given for
each of the test sequences 1c, 3 and 6b in Table 4. These
results show that using the detection model with the exten-
ded augmentation strategy increases the IDF1 score for track-
ing for all three re-identification variants: Tracking without
a re-identification model, tracking with ResNet-50-based re-
identification and tracking with MuDeep are improved by 2,4%,
2,6% and 0,8% in IDF1, respectively. Also, for the same de-
tection model, the results show an increase in the IDF1 score
from not using any re-identification (extended-None) to the use
of ResNet-50 (extended-ResNet-50) and MuDeep (extended-
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Experiment
ID

Sequence
ID IDF1↑ MOTA↑ MOTP↓

baseline-
None

1c 58.5% 78% 0.23
3 26.5% 9% 0.36

6b 88.1% 95.5% 0.14
mean 57.7% 60.8% 0.2

extended-
None

1c 63.7% 81.2% 0.24
3 23.8% 8.9% 0.37

6b 92.8% 97.3% 0.14
mean 60.1% 62.5% 0.21

baseline-
ResNet-50

1c 64.3% 78.2% 0.23
3 27.7% 9.4% 0.36

6b 94.7% 95.7% 0.14
mean 62.2% 61.1% 0.2

extended-
ResNet-50

1c 69.6% 81.5% 0.24
3 26.8% 9.3% 0.37

6b 98% 97.4% 0.14
mean 64.8% 62.7% 0.21

baseline-
MuDeep

1c 69% 78.2% 0.23
3 28.3% 9.4% 0.36

6b 96% 95.7% 0.14
mean 64.4% 61.1% 0.2

extended-
MuDeep

1c 69.2% 81.5% 0.24
3 28.4% 9.3% 0.37

6b 98% 97.4% 0.14
mean 65.2% 62.7% 0.21

Table 4. Results of all the tracking experiments. For each
experiment, we report the scores of each video sequence. The
last row of each experiment shows the average scores of all the

three video sequences.

MuDeep). The detection model with the extended augmenta-
tion in combination with the MuDeep re-identification delivers
the best IDF1 score of 65.2% on average.

The MOTA score, similarly to IDF1, shows an improvement
when using the detection model with the extended augmenta-
tion. Unlike IDF1, there are no differences between ResNet-50
and MuDeep for re-identification; both extended-ResNet-50 and
extended-MuDeep achieve an average MOTA of 62.7%. Com-
pared to MOTA, IDF1 is better at expressing the consistency of
ID matching, by measuring how long the identification is cor-
rect (Huang et al., 2020), which means that the use of MuDeep
improves the ID matching of the tracked chicks. The reason
why the tracking results of Sequence 3 are much worse than
the results of the other two test sequences, i.e., around 30%
worse in IDF1 and around 70% worse in MOTA compared to
1c, is the high number of false-positive detections. Those false-
positive detections create false-positive tracks, which decreases
the IDF1 and MOTA score of Sequence 3.

The MOTP metric only varies slightly comparing the cor-
responding experiments using the two different augmentation
strategies. Furthermore, no changes between the results of the
different re-identification models while using the same detector
variant can be observed, which is reasonable, because MOTP
measures the detection precision error and thus, it measures the
quality of the detection model output and not the tracking model
output.

7. CONCLUSIONS AND FUTURE WORK

It is of significant interest to track animals to analyse their
behaviour and thus, to improve their welfare. In this paper,

we presented an approach based on Tracktor to track poultry;
Tracktor does not use a motion-model for tracking. To im-
prove the detection step we extended the used augmentation
strategy. Additionally, we use a multi-scale model to improve
the re-identification of detected chicks that have been tempor-
arily occluded. The results showed improvements in the IDF1
and MOTA metrics while using the detection model with the
extended augmentation in combination with the MuDeep re-
identification model compared to the results delivered by the
original tracktor approach without any tracking extensions.

It is a question of future research to investigate the influence
of different augmentation methods on the detection and track-
ing models in more detail, for example, in form of a more dif-
ferentiated analysis of the improvements resulting from each
individual augmentation method, and based on that, the intro-
duction of new augmentation methods. In addition, we believe
that by increasing the variety of the used dataset, like the use of
sequences from barns with different conditions and with more
samples from different growth statuses of the chicks, we can
further improve the tracking performance.

REFERENCES

Agarap, A. F., 2018. Deep Learning Using Recti-
fied Linear Units (ReLU). CoRR, abs/1803.08375.
http://arxiv.org/abs/1803.08375.

Ali, S., Shah, M., 2008. Floor Fields for Tracking in High Dens-
ity Crowd Scenes. Springer Berlin Heidelberg.

Aydin, A., 2017. Using 3D vision camera system to automat-
ically assess the level of inactivity in broiler chickens. Com-
puters and Electronics in Agriculture, 135, 4-10.

Bergamini, L., Pini, S., Simoni, A., Vezzani, R., Calderara, S.,
D’Eath, R. B., Fisher, R. B., 2021. Extracting accurate long-
term behavior changes from a large pig dataset. Proceedings
of the 16th International Joint Conference on Computer Vis-
ion, Imaging and Computer Graphics Theory and Applica-
tions, 4, SciTePress, 524–533.

Bergmann, P., Meinhardt, T., Leal-Taixé, L., 2019. Track-
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