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ABSTRACT: 

With the development of sensors and multi-view stereo matching technology, image-based dense matching point cloud data shares 

higher geometric accuracy and richer spectral information, and such data is therefore widely used in change detection-related research. 
Due to the inconsistent position and attitude of the image acquisition for generating two phases of point clouds, as well as the seasonal 
variation of vegetation, the 3D change detection is often subject to false detection. To improve the accuracy of 3D change detection of 
point clouds in large fields, a method of 3D change detection of point clouds based on density adaptive local Euclidean distance is 
proposed. The method consists of three steps: (1) Calculating the local Euclidean distances from each point in the second phase of 
point clouds to the k nearest neighboring points of the first phase of point clouds; (2) Improving the local geometric Euclidean distance 
based on the local density and performing 3D change detection according to a given threshold; (3) Clustering the change detection 
results using Euclidean clustering, and then eliminating the false detection area according to the given threshold. The experiments show 

that the changed region can be better extracted by the proposed method. 

1. INTRODUCTION 

Change detection is a method and technique to obtain change 
information of the objects in the region through data processing 

and comparison for multiple phase data covering the same area, 
and to analyze the change information qualitatively and 
quantitatively (Sirmacek and Unsalan, 2009). As one of the main 
research directions of remote sensing, change detection is not 
only important in land management, disaster assessment, and 
environmental monitoring (Pang et al., 2014), but also indeed 
helpful for constructing and updating of digital cities and smart 
cities (Sui et al., 2018), which has attracted a wide range of 
attention from researchers in recent years. 

According to the number of data dimensions, change detection is 
mainly divided into two aspects: 2D change detection and 3D 
change detection (Qin et al., 2016). Among them, 2D change 
detection uses aerial images and satellite images as data source. 
Although 2D change detection methods have been developed for 
many years, there are still limitations caused by the influence of 
perspective distortion, grayscale nonlinearization and shadowing 

of images (Yang, 2019). 3D change detection is mainly based on 
Light Detection and Ranging (LiDAR) point clouds and image 
dense matching point clouds as data source, which can reflect the 
geometric property of ground objects due to the existence of 
elevation information in 3D point clouds, and the geometric 
reflection of changes in ground object s is often less likely to be 
misjudged and more intense (new construction and demolition of 
ground objects, etc.), so the 3D change detection is able to obtain 

better information on changes in ground objects (de Gélis et al., 
2021). With the development of sensor technology and 
unmanned aerial vehicle (UAV) in recent years, the accuracy and 
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quality of point clouds are getting higher and higher, and the cost 
have also been reduced significantly, so researchers have started 
to conduct studies related to 3D change detection (Xu et al., 
2021). 

According to the detection unit, 3D change detection can be 
mainly divided into two types of detection methods: point-by-
point and object-based (Qin et al., 2016). Point-by-point 3D 

change detection usually uses point-by-point computed height 
difference, Euclidean distance, or graph cut methods to extract 
candidate change regions, based on which geometric structure, 
texture, or color information is used for post-refinement 
processing (Yang et al., 2021). Chaabouni et al. (2010) extracted 
the change areas by making difference between two phase digital 
elevation model (DEM), and then used morphological opening 
and closing processing to optimize the detection areas. Teo et al. 

(2013) extracted vegetation and buildings from digital surface 
models (DSM) based on surface roughness, and then used 
geometric analysis to detect building changes and determine the 
type of changes. Du et al. (2016) fused the height difference 
feature of LiDAR point clouds with the color feature of aerial 
images and extracted the change areas using the graph-cut 
algorithm. Pang et al. (2018) generated DSM using dense 
matching point clouds, and then calculated nDSM and dDSM as 

features to extract changed areas using the grab-cut algorithm. 
The point-by-point 3D change detection methods have high 
requirement on the quality and alignment of point clouds, and 
there are limitations of this type of methods for the seasonal 
change of vegetation and other areas. 

Object-based 3D change detection methods usually require 
classifying data in different phases and then comparing the 
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classification results of point clouds for change areas extraction. 

Matikainen et al. (2010) extracted buildings using decision tree 
based on aerial laser scan data and images, and then compare the 
extracted buildings with existing building maps to identify 
change buildings. Pang et al. (2014a) used point clouds to 
generate DSM, then smoothed the buildings in the region based 
on the connectivity analysis technique, and finally obtained the 
changed areas based on the building extraction results. Qin et al. 
(2015) performed object segmentation with elevation constraints 

based on DSM-assisted images generated from multi-view dense 
matching point clouds. Then they used support vector machine 
(SVM) to classify the segmentation results and merged the 
segmented objects of the same category, based on which the 
initial change index was calculated, and then updated according 
to the mutual coverage of the segmented objects after merging 
different phases, and finally the changed areas were extracted 
according to the double threshold judgment on the change index. 

Compared with the point-by-point 3D change detection, the 

object-based 3D change detection has lower requirement in the 
quality and alignment of the point clouds, but its detection 
accuracy is affected by the accuracy of classification and 
segmentation. 
 
In this paper, we proposed a 3D change detection method for 
point clouds based on density adaptive local Euclidean distance. 
First, search the k nearest neighboring points from the first phase 

point clouds for each point in the second phase point clouds, and 
then calculate local Euclidean distance and local density; Second, 
extract the candidate change areas based on the given threshold; 
finally, the pseudo change areas are eliminated from the 
candidate change areas by using Euclidean clustering and top 

surface analysis. The main workflow of the method is shown in 

Figure 1. 
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Figure.1 Workflow of the proposed method 

 
2. METHOD 

 
2.1 ICP Point clouds Registration 

Currently, both LiDAR point cloud data and image-based dense 
matching point cloud data are recorded in local coordinate system 
and only fine registration is needed, instead of initial alignment. 
The ICP (Iterative Closest Point) algorithm is a point clouds 
refinement registration algorithm proposed by Besl and Mckay 
in 1992, also known as iterative latest point algorithm, widely 

used in point clouds based registration (Besl and McKay, 1992b). 
The ICP algorithm is independently updating corresponding 
points of the point cloud data, so that the rigid body transform 

matrix between the two points clouds to minimize the distance 
between the two point clouds. Suppose there are initial point 
clouds P and target point clouds Q, according to certain 

constraints, we need to find the nearest point (𝑝𝑖 , 𝑞𝑖), and utilize 

the least squares to calculate the best matching parameter 𝑅 and 

𝑡 so that the error function is minimized by equation (1): 

 𝐸(𝑅, 𝑡) =
1

𝑛
∑‖ 𝑞𝑖 − (𝑅𝑝𝑖 + 𝑡)‖2

𝑛

𝑖=1

 (1) 
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Where 𝑅 is the rotation matrix, 𝑡 is the translation parameter, 𝑝
𝑖
 

is a point in the point clouds P, 𝑞
𝑖
 is the neighboring point of 𝑝

𝑖
 

in the point clouds Q. 

 
The ICP algorithm has the following steps: 
(1) Randomly select a portion of the point clouds M from point 
clouds P; 

(2) Searching for the nearest point in point clouds Q as the 
corresponding point clouds M; 
(3) Remove points with the distance value greater than average 
distance, and the remaining point is the final corresponding point; 
(4) Calculate the coordinate conversion matrix (quad number or 
SVD) by the corresponding point; 
(5) Constructing and calculating error evaluation functions; 
(6) Determining whether the value of the error evaluation 
function meets the required accuracy, if it is satisfied, stop the 

algorithm iteration; otherwise, turn to the step (1), and update the 
target point clouds at this time. 
 
2.2 3D Change Detection 

2.2.1 Local European Distance: At present, the point-by-
point 3D change detection methods usually only consider the 
measurement between the pending point and a single nearest 
neighboring point as a measure of the change detection. When 
there are some noise points in the point clouds, detection 
accuracy is difficult to guarantee. In order to reduce the 
interference of noise points, the proposed method uses the 
average European distance of k nearest neighboring points as a 

measure of change detection. 

 
Figure 2. Neighboring points search: (a) is the wrong way to 

search for neighboring points in 3D direction, (b) is the correct 
way to search neighboring points in horizontal direction, (c) is 
the wrong way to search for neighboring points in horizontal 

direction, (d) is the correct way to search for neighboring points 
in 3D direction. 

 

There are some special cases when searching for k nearest 
neighboring points in 3D directions, and when the detection point 
is located on the edge of the changed building, the search result 
always located on the wall (as shown in Figure 2(a)), which 
caused the calculated distance is smaller than the true distance (as 
shown in Figure 2(b)). In order to solve this problem, a k nearest 
neighboring searching method in horizontal direction is 
introduced, but this search mode does not apply to all regions, 

such as the oblique region (as shown in Figure 2 (c)). The 
distance between the neighboring point and the pending point is 
often greater than the real situation (as shown in Figure 2 (d)), 
which causes false detection. Therefore, it is necessary to 
determine the state of the point, so that is to search for adjacent 
points in the 3D direction or in the horizontal direction: if the 
angle between the point to be detected and the vertical direction 

is less than 𝑇𝑎𝑛𝑔𝑙𝑒, search for k nearest neighboring points in the 

horizontal direction, otherwise search for k nearest neighboring 

points in the 3D direction. 
 
When searching for k nearest neighboring points in the horizontal 
direction, it is possible to search for multiple neighboring points 
with different elevation values due to the influence of vegetation 
and complex buildings, which can also lead to false detection in 
some areas. Therefore, it is necessary to process different 
situations: (1) Euclidean clustering is performed on the k nearest 

neighboring points obtained from the search results, and if the 
number of clusters is greater than 1, the search result is 
considered to have searched for multiple points with different 
elevation values; (2) If the number of clusters is 2 , and angle 

between the normal and vertical direction is smaller than 𝑇𝑎𝑛𝑔𝑙𝑒, 

it is considered that the k points is the edge portion of the artificial 
object, and the farthest cluster is selected; (3) If the category is 
greater than 2, it is considered to be vegetation, The area is taken 
close to the cluster to be detected. 

 
When searching for neighboring points in the horizontal direction, 
it is possible to search for multiple neighboring points on the 
elevation due to the influence of vegetation and complex 
buildings, which can also lead to false detection in some areas. 
Therefore, different cases need to be handled: (1) Euclidean 
clustering is performed on the k neighboring points obtained 
from the search, and if the number of clusters is greater than 1, 

the points at multiple elevations are considered to be searched; 
(2) if the number of clusters is 2 and the angle between the normal 
vector and the vertical direction is less than 𝑇𝑎𝑛𝑔𝑙𝑒, the k points 

are considered to be the edge part of the artificial objects, and the 

cluster farthest from the point to be detected is selected; (3) if the 
point category is greater than 2, it is considered as vegetation area 
and the cluster closest to the point to be selected. The local 
Euclidean distance can be calculated by equation (2): 

 

𝑑𝐿𝑜𝑐 =
1

𝑘
∑‖𝑃1

𝑗 − 𝑃2
𝑖‖

𝑘

𝑗=1

=
1

𝑘
∑ √(𝑥𝑗 − 𝑥𝑖)

2
+ (𝑦𝑗 − 𝑦𝑖)

2
+ (𝑧𝑗 − 𝑧𝑖)

2
𝑘

𝑗=1

 

(2) 

where 𝑑𝐿𝑜𝑐  is the local Euclidean distance, 𝑘 is the number of 

nearest neighboring points, 𝑃1
𝑗
 is a neighboring point of 𝑃2

𝑖 in the 

first point clouds, 𝑃2
𝑖  is a point to in the second point clouds, 

(𝑥𝑗 , 𝑦𝑗, 𝑧𝑗)  is the coordinate of 𝑃1
𝑗

, and (𝑥𝑖  , 𝑦𝑖 , 𝑧𝑖)  is the 

coordinate of 𝑃2
𝑖. 

 
2.2.2 Density Adaptive Local Euclidean Distance: In the 

case that the density of two phase point clouds is not same or 

there are errors in registration, the distance between the point 

from the second phase point clouds and the neighboring point 
obtained from the first phase point clouds is often greater than 
the distance to the true neighboring point, so the local Euclidean 
distance is improved in this paper using local density. The 
calculation of the local density requires the center of k nearest 
neighboring points. The center of k nearest neighboring points 
can be calculated by equation (3): 

 (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐) =
1

𝑘
∑(𝑥𝑗, 𝑦𝑗 , 𝑧𝑗)

𝑘

𝑗=1

 (3) 

After obtaining the center of k nearest neighboring points in the 
first phase point clouds, search its k nearest neighboring points in 
the first phase point clouds, and then the local density can be 
calculated by equation (4): 

 𝜌𝐿𝑜𝑐 =
𝑘

𝜋𝑟𝑚𝑎𝑥
2
 (4) 

(a) (b) 

(c) (d) 
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where 𝜌𝐿𝑜𝑐 is the local density, 𝑟𝑚𝑎𝑥 is the max distance from the 

𝑘 neighboring points to the center. 
 
After obtaining the local density, we can use it to improve the 

local Euclidean distance by equation (5): 

 𝑑𝐿𝑜𝑐
𝜌

=
𝑑𝐿𝑜𝑐 lg (𝜌𝐿𝑜𝑐)

lg (max(𝜌𝐿𝑜𝑐))
 (5) 

where 𝑑𝐿𝑜𝑐
𝜌

 is the density adaptive local Euclidean distance. If the 

density adaptive local Euclidean distance of the point is greater 

than the given threshold 𝑇𝑑, it is judged as a candidate change 
point, otherwise it is considered as unchanged point. 
 
2.3 Remove False Detection Area 

Due to the image being obscured or the image overlap ratio is 
insufficient, resulting in the deformation of some building walls 

in the image dense matching point clouds, these areas are often 
mistakenly detected as changed areas, in order to solve this 
problem, the points in the candidate change areas need to be re-
judged: (1) Search for k nearest neighboring points in the 
horizontal direction of the candidate change point, and then use 
Euclidean clustering to these k neighboring points clustering; (2) 
If there are multiple clusters and the number of clusters is less 
than 4, search whether there is a point with an angle between the 

normal and the vertical direction less than 𝑇𝑎𝑛𝑔𝑙𝑒, if it exists, take 

the largest elevation point in this cluster as the top point of the 
current point, and judge the state of the current point by the 
change state of this point; (3) if there are multiple clusters and the 

number of clusters is greater than 3, search the point which has 
the largest elevation value in the k nearest neighboring points, if 
the point has changed, the state of the current point remains 
changed, and if the point has not changed, turn the state of the 
current point to unchanged. 
 
Due to the limitation of image resolution and dense matching 
algorithm, some vegetations area of the point clouds also has 

some distortion. In order to reduce the false detection due to 
vegetation distortion, the candidate change points need to be 

Euclidean clustered, and the area of each cluster is estimated, and 

if the area of the cluster is smaller than the given area threshold 

𝑇𝑎𝑟𝑒𝑎, removes it from the candidate changed points. The area of 
each cluster can be estimated by equation (6). 

 𝑆 = 𝑁(𝑑̅)
2
 (6) 

where S is the estimated area of the cluster and N is the number 
of points in that cluster. If the calculated area is smaller than the 

set area threshold 𝑇𝑎𝑟𝑒𝑎 , it is considered as a pseudo-change 
region and is rejected from the candidate changed points. 

 
3. EXPERIMENTS AND ANALYSIS 

 
3.1 Experimental data 

In order to verify the effectiveness of the proposed method, we 
take experiments with the image dense matching point cloud data 
acquired in June 2020 and September 2020, and the data 
contained three experimental areas, as shown in Figure 3. The 

details are as follows: 
(1) The first experimental area (area 1) is shown in the first 
column of Figure 3, and the first phase point clouds contain 

2725260 points with a density of about 12pts/m2, as is shown in 
Figure 3(a); and the second phase point clouds contain 2767663 

points with a density of about 12pts/m2 , as is shown in Figure 
3(d). 

(2) The second experimental area (area 2) is shown in the second 
column of Figure 3, and the first phase point clouds contain 

2808883 points with a density of about 12pts/m2, as is shown in 
Figure 3(b); the second phase point clouds contain 2729196 

points with a density of about 12pts/m2, as is shown in Figure 
3(e). 
(3) The third experimental area (area 3) is shown in the third 
column of Figure 3, the first phase point clouds contain 4256070 

points with a density of about 27pts/m2, as is shown in Figure 
3(c); the second phase point clouds contain 4305389 points with 

a density of about 27pts/m2, as is shown in Figure 3(f). 
 

 
Figure. 3 Experimental data: (a) is the first phase point clouds of area 1, (d) is the second phase point clouds of area 1, (b) is the first 

phase point clouds of area 2, (e) is the second phase point clouds of area 2, (c) is the first phase point clouds of area 3, (f) is the 
second phase point clouds of area 3. 

 

(a) (b) (c) 

(d) (e) (f) 
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Figure. 4 Manually marked changed area: (a) is the marked data of area 1, (b) is the marked data of area 2, (c)is the marked data of 

area 3 

 
In order to quantitatively evaluate the proposed method, we 
manually selected the changed areas in the three experimental 
areas as references. Due to the existence of vegetation, soil and 
vehicles in the experimental areas, and the limitations of 

resolution, alignment accuracy, point clouds accuracy and 
subjective factors, we only selected some areas with significant 
changes, and excluded the points with density adaptive distance 
less than 0.5m in the changed areas. 
 
The quantitative evaluation metrics used in this paper include 
precision, recall and F1-score.  

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (8) 

 𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (9) 

Where 𝑇𝑃  is the number of points in the correctly detected 

changed region, 𝐹𝑃  is the number of points in the pseudo-

changed region, and 𝐹𝑁 is the number of points that mistakenly 
detect the changed region as the unchanged region. 
 
3.2 Experimental results and discussion 

3D change detection was carried out for area 1, 2 and 3 using the 
proposed method, and the relevant parameters were set as follows: 

the number of searched nearest neighboring points 𝑘 was 15; the 
threshold value of the angle between the normal vector and the 

lead hammer direction 𝑇𝑎𝑛𝑔𝑙𝑒 was 20°; the threshold value of the 

density adaptive local Euclidean distance 𝑇𝑑 was 1.2 m; and the 

threshold value of the area 𝑇𝑎𝑟𝑒𝑎 was 12 m2.  
 
3D change detection results using the proposed method are 

shown in Figure 5. Overall, the proposed method not only 
detected the large buildings that have changed more completely, 
but also was able to detect some small artificial objects that have 
changed, and the accuracy, recall and F1-score of the three areas 
all reach more than 80%. 
 

 
Figure. 5 3D change detection results used the proposed method: (a) is the change detection result of the first phase point clouds of 

area 1, (d) is the change detection result of the second phase point clouds of area 1, (b) is the change detection result of the first phase 

point clouds of area 2, (e) is the change detection result of the second phase point clouds of area 2, (c) is the change detection result 
of the first phase point clouds of area 3, (f) is the change detection result of the second phase point clouds of area 3. 

 

(a) (b) (c) 

Changed Area Unchanged Area 

(a) (b) (c) 

(e) (d) (f) 
Changed Area Background 
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Figure. 6 3D change detection results of traditional Euclidean distance segmentation: (a) is the change detection result if the first 

phase point clouds of area 1, (d) is the change detection result if the second phase point clouds of area 1, (b) is the change detection 
result if the first phase point clouds of area 2, (e) is the change detection result if the second phase point clouds of area 2, (c) is the 
change detection result if the first phase point clouds of area 3, (f) is the change detection result if the second phase point clouds of 

area 3. 
 
Since the three experimental areas differ in terms of ground 
object type and distribution, and the result of change detection 
are different, further analysis of each of the three experimental 

areas will be conducted in four aspects: large buildings, small 
artificial objects, bare ground and vegetation. 
 

Table. 1 Change detection accuracy of the proposed method 

Experiment 
area 

Phase Precision Recall F1-score 

1 
1 0.922 0.812 0.864 

2 0.821 0.829 0.825 

2 
1 0.916 0.870 0.892 
2 0.847 0.806 0.826 

3 
1 0.948 0.804 0.870 
2 0.924 0.822 0.870 

 
Table. 2 Change detection accuracy of traditional Euclidean 

distance segmentation  

Experiment 
area 

Phase Precision Recall F1-score 

1 
1 0.783 0.879 0.828 
2 0.549 0.866 0.672 

2 
1 0.802 0.943 0.867 
2 0.349 0.842 0.493 

3 
1 0.731 0.940 0.822 
2 0.629 0.926 0.750 

 
For the area 1, the proposed method completely detected the large 
changed building in the middle area, but only part of the small 
artificial objects in the lower left corner were detected. After 
observing the original data, we found that the area of these 
objects was too small, which led to the false detection as 

unchanged. There are also some irregularly shape areas in the 
detection results, and after comparing with the original data, most 
of these areas are from vegetation and bare soil, and the local 

Euclidean distance of these areas are larger than 1.2m, it is 
largely the influence of natural and human factors that lead to 
such a change situation. 
 

For the area 2, the proposed method not only detected the large 
building in the upper right, but also detected most of the small 
artificial objects. In the lower left, there are some areas with 
irregular shape, these areas are also mainly the bare soil changed, 
similar to the area 1, and it is also caused by natural and human 
factors. 
 
For the area 3, the proposed method completely detected the large 

changed building in the second phase point clouds, but a part is 
missing in the change detection result of the first phase point 
clouds. After comparing with the original point clouds, we found 
that this part is caused by the recessed wall of the building, and 
the ground point under the building is reconstructed, so the local 
Euclidean distance is smaller when compared with the second 
phase point clouds, therefore mistakenly detected this part as 
unchanged area. Most of the artificial objects were detected, and 
the parts where there was a large variation in soil were also 

detected.  
 
In order to objectively verify the effectiveness of the proposed 
method, we also used the traditional Euclidean distance 
segmentation change detection method to detect changed areas in 
the three experimental areas. Figure 6 is the change detection 
result using traditional Euclidean distance segmentation, and the 
corresponding accuracy assessment is as shown in Table 2. 

 
Compared with the proposed method, the change detection 
accuracy of the traditional Euclidean distance segmentation 
change detection method is smaller, both in terms of the change 
detection accuracy of the first phase point clouds and the change 
detection accuracy of the second phase point clouds. At the same 
time, because the traditional Euclidean distance segmentation 

(a) (b) (c) 

(e) (f) (d) 

Changed Area Background 
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change detection method has defects when searching the 

neighboring points as shown in Figure 2(a), which caused its 
extremely low accuracy of the first phase point clouds change 
detection. 
 
For both the proposed method, and the traditional Euclidean 
distance segmentation change detection method, it is obviously 
to see the overall accuracy of the second phase point clouds 
change detection result is less than that of the first phase point 

clouds change detection result, the main reason is that the three 
experimental areas have a large number of removed artificial 
objects, so the second phase change detection results have a large 
number of ground points, and the number of ground points is 
much smaller than the points on the wall, which also led to the 
misjudgment of the changed area because of the smaller area.  
 
The effectiveness of the proposed change detection method 
depends on the value of the density adaptive local Euclidean 

distance threshold 𝑇𝑑 . Figure 7 shows when fixed 𝑇𝑎𝑟𝑒𝑎  , the 
variation results of precision, recall and F1-score with changing 

𝑇𝑑 . For all three experimental areas, precision decreases with 

increasing 𝑇𝑑, recall increases with increasing 𝑇𝑑, and F1-score 

increases first and then decreases with increasing 𝑇𝑑, which we 
can obtain a max F1-score.  

 

In the experimental data of this paper, the recommended density 

adaptive local Euclidean distance threshold 𝑇𝑑 is 1.2m and the 

area threshold 𝑇𝑎𝑟𝑒𝑎 is 12m2. However, in practical applications, 
there is usually no ground truth data of point clouds to determine 

the best threshold. In this paper, we believe that the size of 𝑇𝑑 

and 𝑇𝑎𝑟𝑒𝑎  depends on the quality of point clouds and the 
interested object, and we can’t define the best fixed threshold 
value. In the case of point clouds with quality and small 

registration error, if we want to detect more small changed 

artificial objects, then the values of 𝑇𝑑 , 𝑇𝑎𝑟𝑒𝑎  need to be set 

smaller, but smaller 𝑇𝑑 , 𝑇𝑎𝑟𝑒𝑎  may lead to the existence of 
vegetation, bare soil and other objects in the results; on the 
contrary, if we only focus on the large changed buildings and 

some large changed artificial objects, then the values of 𝑇𝑑, 𝑇𝑎𝑟𝑒𝑎 

need to be set larger, but larger 𝑇𝑑, 𝑇𝑎𝑟𝑒𝑎 may lead to insufficient 
details in the detection results. If the point clouds quality is poor 

and the registration error is large, then the set values 𝑇𝑑, 𝑇𝑎𝑟𝑒𝑎 

must be large enough, because smaller 𝑇𝑑, 𝑇𝑎𝑟𝑒𝑎 will lead to a 
large number of false detections in the detection results. 
 

 

 
Figure. 7 Variation of change detection accuracy with 𝑇𝑑 for the proposed method: (a) is result of the first phase point clouds of area 
1, (d) is the result of the second phase point clouds of area 1, (b) is the result of the first phase point clouds of area 2, (e) is the result 

of the second phase point clouds of area 2, (c) is the result of the first phase point clouds of area 3, (f) is the result of the second 
phase point clouds of area 3. 

 
 

4. CONCLUSIONS 

In this paper, we proposed a density adaptive local Euclidean 

distance 3D change detection method for detecting changed areas 
in point clouds. This method uses normal vectors to judge the 
detected points in order to select the best neighboring point, so 
that the calculated local Euclidean distance between two points 
can better reflect the real change; at the same time, considering 
the different density between the two point clouds, the calculated 
local Euclidean distance is often slightly larger than the real 
Euclidean distance, so the local Euclidean distance is improved 
by the local density; furthermore, the use of top judgment of the 

point to can well reduce the false detection caused by the 
deformation of building in the point clouds; finally, the Euclidean 
clustering is used to remove small objects. The experimental 
results show that with reasonable threshold settings, the proposed 
method can achieve good change detection accuracy. 
 
There are also some shortcomings of the proposed method, for 
example, the change detection accuracy is extremely dependent 

on the value of 𝑇𝑑 and 𝑇𝑎𝑟𝑒𝑎, and the detection result may not be 

well if the value of 𝑇𝑑 and 𝑇𝑎𝑟𝑒𝑎 do not match the change region 
of interest. In the future, we will improve the proposed method, 
such as adding color information and geometric feature 

(a) (b) (c) 

(d) (e) (f) 
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information to the false detection region rejection to improve the 

accuracy of change detection. 
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