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ABSTRACT:

In the context of the development of an autonomous tower crane, the usage of crane cameras to map the respective workspace
as basis for autonomous path planning is investigated. The goal is to generate an up-to-date DEM as input for the crane control.
As construction sites are highly dynamic scenes, it is crucial to be able to react to any changes. Thus, real-time mapping with a
visual SLAM solution is aspired. As the quality of the DEM is important for such a safety critical application, we are evaluating
the mapping quality of four state-of-the-art SLAM solutions, namely ORB-SLAM3, LDSO, DSM and DROID-SLAM. The results
show that all approaches can handle our specific crane camera setup and thus are generally suited for our application. The DEM
accuracies of all tested methods are even competitive with the result from standard offline photogrammetric processing, at least for
the major part of the test site. However, there are limitations with regards to the DEM completeness. Consequently, our investig-
ations show that the tested methods deliver a good basis for real-time accurate mapping, but for their application for autonomous

path planning further refinements have to be made.

1. INTRODUCTION

The construction industry currently faces the challenge to in-
crease the productivity and efficiency of the building process,
as the demand for buildings is increasing. The automation of
tower cranes can contribute to this goal, e.g. because their
operations can be optimized with respect to time and energy
efficiency. In the context of the development of an autonom-
ous tower crane, we are investigating the usage of crane cam-
eras (array of cameras as proposed by (Tuttas et al., 2016),
see Fig. 1) to map the workspace of the crane as a basis for
autonomous path planning and tracking. The goal is to gener-
ate an up-to-date digital elevation model (DEM) as input for the
crane control, as this is an easy-to-use data format.

In previous investigations, we found that the quality of DEMs
created via standard offline photogrammetric processing of
the crane camera images (including steps like Structure-from-
Motion and dense Multi-View-Stereo) is sufficient for our re-
quirement of an accuracy of a few cm (Joachim et al., 2021).
However, the real-time generation of the DEM is a key require-
ment to make autonomous path planning and tracking applic-
able. For dynamic scenes like construction sites, it is crucial
to be able to react to any changes. Thus, a visual SLAM solu-
tion is aspired. As the quality of the DEM is very important
for such a safety-critical application, we are evaluating state-
of-the-art SLAM solutions with regards to their mapping qual-
ity. To do so, we compare the resulting point clouds and DEMs
and the respective results from standard photogrammetric pro-
cessing with ground truth data from laser scanning. As a first
step, a single crane camera is considered.

As most works and benchmark datasets for visual SLAM
primarily focus on the trajectory estimation accuracy, compre-
hensive evaluations of the mapping quality are only rarely avail-
able. This was also found by (Wang and Shahbazi, 2019), who
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Figure 1. Crane camera setup at the top-slewing tower crane.
For the experiments in this work, only camera B is used.

investigated the mapping quality of several algorithms for im-
agery from a low cost rolling shutter camera on a micro aerial
vehicle. In contrast to them, we work with higher-quality cam-
eras with a global shutter, because crane cameras do not have
restrictions regarding payload or power supply. Thus we expect
a better performance, especially for the algorithm LDSO (Gao
et al., 2018), which failed for their rolling-shutter camera.

In comparison to typical applications of SLAM, the crane cam-
era scenario is special for several reasons: As the camera is at-
tached to the jib of a top slewing tower crane, it can only move
with one degree of freedom, namely on a circle with fixed center
point. The pose can be assumed as fixed, if the load-dependent
bending of the structure of the crane is neglected. Additionally,
the camera always moves orthogonally to the viewing direction,
because it is facing downwards. The scene itself has a fixed
maximum distance to the camera (distance between ground and
jib) and there are no objects close to the camera.

Due to these reasons, we evaluate several state-of-the-art visual
SLAM solutions to identify their strengths and weaknesses with
regards to our specific use case. For this comparison, promising
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recent algorithms based on different approaches with publicly
available code are chosen: 1) ORB-SLAM3 (feature-based,
sparse) (Campos et al., 2021), 2) LDSO (direct, semi-dense)
(Gao et al., 2018), 3) DSM (direct, sparse) (Zubizarreta et al.,
2020), 4) DROID-SLAM (deep-learning based, dense) (Teed
and Deng, 2021).

The following chapters are structured as follows: Chapter 2 in-
troduces the data and methods used for evaluation, as well as
the four considered approaches. In chapter 3, the experimental
evaluation of the individual SLAM solutions is described. Sub-
sequently, their results are compared in chapter 4 and in chapter
5 follow the conclusion and an outlook to future work.

2. METHODOLOGY
2.1 Dataset and Test Site

Images The image data used within this work is generated by
the crane camera system illustrated in Fig. 1. It consists of five
downward-facing GigE Vision cameras mounted at the jib of a
top slewing tower crane. In this work, we consider the monocu-
lar case as a first step, thus only camera B is used. It has a global
shutter and a 12 megapixel CMOS sensor (4096x3000 pixels)
with a pixel size of 3.45m. With the focal length of 16mm,
a ground sampling distance of approximately 1cm is reached.
Thus, the extent of the footprint of one image at the ground is
about 41 x30m, whereas the long edge of the image is parallel
to the jib. Fig. 2 shows two exemplary images of the camera.
The images were taken with a framerate of 10fps during a 382°
rotation of the crane with a duration of 230s. Thus, the camera
moved with a speed of about 0.4%. To enable the comparison
of different input framerates, three downsampled datasets are
derived, such that test sets with 10, 5, 2 and 1 fps are obtained.

Figure 2. Exemplary images of the crane camera showing the
test site. RGB only used for visualization, the test dataset
consists of grey scale images.

In order to use the imagery as input for the SLAM algorithms,
the images, timestamps and the calibration file were stored in
the same data structure as the EuRoC dataset (Burri et al.,
2016), which all tested SLAM solutions are able to use as in-
put. Because every implementation handles the EuRoC input
a bit differently, some minor additional adjustments, e.g. of
the format of the calibration file, had to be made. The same
radial-tangential camera calibration parameters were used for
the whole experiment.

Test site The scene captured by the camera is a research test
site, where the tower crane is located approximately in the
middle. Figure 3 shows the ground truth geometry of the site.
It contains several objects, which are considered as obstacles
for path planning. The main ones are an office container (a)
and a small hall (b), which are both white and with low texture.
Smaller obstacles are a fence surrounding the whole site (d) and
several poles of about 1m height and 3cm width distributed at

Figure 3. Reference point cloud of the test site with a) crane, b)
container, c) hall, d) fence, e) poles.

the left part of the site (e). Additionally, one edge of the site is
seamed with trees. For another impression of the site, refer to
the images in Fig. 2.

Reference data The ground truth (GT) shown in Fig. 3
was captured with the ZEB Horizon mobile laser scanner
(GeoSLAM Ltd., Nottingham, UK) and georeferenced via
ground control points. Additionally, the result from standard
photogrammetric processing of the 1fps image data with the
commercial software Agisoft Metashape (Agisoft LLC, 2021)
serves as a baseline result.

2.2 Investigated SLAM Solutions

In the following section, the evaluated SLAM solutions are in-
troduced and the aspects relevant for their application to our
dataset are explained.

ORB-SLAM3 ORB-SLAM3 (Campos et al., 2021) is a
feature-based sparse visual SLAM method for monocular, ste-
reo and RGB-D cameras. According to the authors, it is the
most accurate visual SLAM system. It is an extension of the
widely used ORB-SLAM2 (Mur-Artal and Tardos, 2017) and
other previous works of the authors and integrates an approach
for multimap data association. Although we do not consider
this feature in this work, we use ORB-SLAM3 as the newest
implementation of the ORB-SLAM approach. As a feature-
based method, it applies feature tracking and minimizes the fea-
ture reprojection error with geometric bundle adjustment. The
number of map points is defined by the parameter number of
features, which is increased for our experiments to adapt to the
high-resolution input images.

Because the published code does not provide the possibility to
export the generated point cloud, it had to be extended with this
functionality. Therefore, we adapted the solution which (Wang
and Shahbazi, 2019) provided for ORB-SLAM?2 to work with
ORB-SLAM3. The reported processing time is measured for
the main processing loop only, such that it doesn’t contain the
time of initialization and the saving of results.

LDSO LDSO (Gao et al., 2018) is a direct sparse (sometimes
also called semi-dense) visual SLAM method, which is an ex-
tension of DSO (Direct Sparse Odometry) (Engel et al., 2018)
with added loop closure detection and pose-graph optimization.
As a direct method, LDSO is based on photometric bundle ad-
justment (PBA) and thus more robust in featureless areas than
feature-based methods. It optimizes the photometric error over
a sliding window of recent keyframes and applies a strategy to
marginalize old keyframes and map points beyond the tracking
window. The loop closure functionality is realized with a com-
mon feature-based bag-of-words approach.

For the application of LDSO to our data, the version without
input of photometric calibration is used, as it is not available
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for the crane camera. According to the authors of LDSO, an
increase of the performance can be expected when including
photometric calibration. To account for the big image size we
evaluate the increase of the parameter number of active points,
which influences the density of the resulting point cloud. The
processing times are measured for the main thread only and thus
do not include initialization or saving of the results.

DSM DSM (Direct Sparse Mapping) (Zubizarreta et al.,
2020) is a direct monocular visual SLAM method. Like LDSO,
it is based on PBA and both of them use the same photometric
model. The main difference between them is that DSM is a fully
direct method which integrates point reobservations and reuses
existing map information directly within the PBA, which leads
to a persistent map. Reusing points is especially beneficial for
our application, because the crane cameras don’t explore un-
seen areas to the extend of typical SLAM applications, as the
crane itself has a fixed location.

The authors of DSM report that to the date of the publication
of their work, DSM was the most accurate direct monocular
SLAM method. Unlike most other works, they not only eval-
uated the trajectory but also the mapping results and compared
them to LDSO. Their investigations show that the map of DSM
is more accurate than the one of LDSO while LDSO yields
more map points because it doesn’t reuse map points.
Different numbers of active points are considered to account
for the large image size of our data. This parameter refers to the
maximum number of points per keyframe which are part of the
PBA and influences the density of the resulting point cloud. To
be able to extract the respective number of points, we increased
the number of candidate points accordingly.

The published code of DSM includes a GUI where the pro-
cessing has to be manually started and ended. Thus, the repor-
ted processing time contains an unknown offset for the manual
starting and stopping process and the point cloud export (we es-
timate this offset to be below 10s), which should be taken into
account when comparing it to the other methods.

DROID-SLAM DROID-SLAM (Teed and Deng, 2021) is a
deep-learning based dense visual SLAM method, which sets
many new state-of-the-art records on multiple SLAM bench-
marks. For the image alignment and tracking between consec-
utive frames, this method is similar to ORB-SLAM3, perform-
ing pixel matching explicitly and thus minimizing reprojection
errors using bundle adjustments (BA). However, an essential
difference is that it does the pixel correspondence matching
densely for every pixel by utilizing a dense optical flow predic-
tion network. The network uses the current optical flow com-
puted by current poses and depth estimates to predict a flow
update and its confidence. Upon a flow update, the BA is per-
formed with the update as target and the confidences as con-
straint weights to refine the camera poses and depth maps.

This dense approach comes with a cost that enormous GPU
memory is demanded for hosting the input data, as well as
for the network feed-forwarding and performing BA. To deal
with that, the original implementation of DROID-SLAM res-
izes by default input images to a resolution with only approx.
20k pixels. This is not significant for usual SLAM applications.
However, for the crane camera with a resolution of 3000 x 4096,
the information is reduced by 600 times with many fine details
of the scene lost. Thus an extension is performed in this work
to enable the processing with higher resolution so that a denser
map with finer details can be produced. Especially we observe
that the most significant memory bottleneck is at the correla-
tion lookup operator in the frontend, where a 4D correlation

volume is precomputed for the lookups afterward. In contrast,
the backend uses a memory-efficient alternative implementa-
tion, where the correlations are only computed when needed.
Therefore, our first trial is to replace this with the memory-
efficient operator, though it leads to a longer runtime. Thus to
better balance the accuracy and efficiency, we design a hybrid-
resolution strategy with low (1/4) and high resolution respective
for the frontend and backend processing. To bridge the resolu-
tion gap, before the global BA, the low resolution depth maps
are up-sampled using nearest-neighbor interpolation, which is
taken afterward as initial values for the global BA optimization
at the backend.

In this work, the pre-trained model provided by (Teed and
Deng, 2021) is used directly without fine-tuning. Even though
it is trained only on a synthetic dataset (Wang et al., 2020), we
found this model has ability to generalize across domains for
the crane images from a top-down perspective. Additionally, to
filter out outlier depth estimates, it projects the depth maps of
each keyframe into the depth maps of its neighbors to check if
the neighbor counterparts are agreed with the estimates. The
parameter threshold sets the maximum tolerance of depth devi-
ation, while count is the minimum number of agreed neighbors.
Furthermore, since the crane moves slowly, the parameter stride
is modified, which reduces the frame rate to 1/stride.

2.3 Evaluation

As a first step, some postprocessing steps are performed on the
point clouds generated by the SLAM solutions in order to pre-
pare them for the DEM generation and comparison (compare
(Wang and Shahbazi, 2019)). The following needed steps are
performed in CloudCompare (CloudCompare, 2021):

1) Filtering: Outliers are filtered with a statistical outlier re-
moval filter (SOR), as implemented in CloudCompare.
The mild filtering parameters number of points = 6 and
standard deviation = 3 were chosen in order to only re-
move large outliers.

2) Determination of scale, georeferencing: As the SLAM
point clouds have an arbitrary scale, they are transformed
to metric scale via alignment to the ground truth point
cloud with manually picked identical points and refine-
ment by ICP (not applied for very sparse clouds).

3) Crop: All point clouds, including the reference, are
cropped to the same extent and height range to facilitate
their comparison.

Afterwards, a DEM with a raster width of 0.1m is derived from
each point cloud. As the crane operates above the scene, the
respective maximum height is assigned to each cell. Empty
cells are left empty. Finally, the difference A pgas between the
SLAM DEM and ground truth DEM is calculated for the filled
cells as the basis of the evaluations:

Apeyv = DEMspam — DEMar (D

The DEM generation and differencing is performed with the
software OPALS (Pfeifer et al., 2014).

For the evaluation of the results, the completeness and accuracy
of the DEMs are considered. Apart from the number of points in
the postprocessed point clouds NV, and visual inspection of the
result, the completeness is evaluated based on the percentage of
filled DEM cells w.r.t. reference Ngjjeq- Here, nspam,cr are
the total numbers of filled cells of the respective DEMs:

NnNsLAM (2)

Nilteq|%] = 100 -
filled (7] iy
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As main measure of accuracy, we use Apgas and its mean A
and standard deviation 0. Additionally, the normalized cumu-
lative histogram of the absolute differences |[Apgas| and three
of its quantiles (q5q0;, 9759 ooy, ) are considered for the eval-
uations. The normalization is calculated relative to the amount
of filled cells of the respective DEM. In general, it should be
kept in mind that the accuracy measures are based on varying
numbers of observations (filled DEM cells).

All experiments were performed on a PC with an Intel Core 19-
10900K CPU and an NVIDIA GeForce RTX 3090 GPU with
24GB memory.

3. EXPERIMENTS
3.1 ORB-SLAM3

In our experiments, the input frame rate had a large influence
on the processing time ¢t of ORB-SLAM3. Considering the four
tested frame rates, only the 1fps dataset could be processed in
real-time, whereas for 2fps the mean processing time increased
by approx. 7 seconds. This behavior was independent of the
number of features. For 5fps ¢ increases by up to 40 seconds,
dependent on the number of features used, and for 10fps ¢ is
doubled w.r.t. 1fps. Thus, we do not consider the 10fps res-
ults for these evaluations. Regarding the number of features,
values between 1000 (default) and 10000 were tested. We ob-
served that for some high numbers of features the system fin-
ishes early without throwing an error, such that the resulting
point cloud only covers a part of the site. To illustrate the influ-
ence of frame rate and number of features on the completeness
and accuracy of the result, four exemplary versions of paramet-
ers are presented in the following:

a) 1fps, 2000 features
b) 1fps, 5000 features

c) 5fps, 2000 features
d) 5fps, 5000 features

Table 1 shows the measures of completeness and the processing
times. As expected, the number of points and filled cells in-
creases according to the number of features. But using more
features doesn’t only have a positive effect on the complete-
ness, but it also leads to a slight increase of accuracy, as can be
seen in Tab. 2. As the processing time doesn’t increase signific-
antly (at least for 1fps), it can be stated that for high-resolution
images it is beneficial to increase the number of features above
the suggested default.

N Nﬁlled [%] time [s]
a) 4814 1.6 236
b) 10,490 34 237
c) 4,705 1.6 255
d) 9,765 33 280

Table 1. Comparison of mapping completeness and processing
times of the different parameter versions of ORB-SLAM3.

A 0A  Y9s0%  Y75% Yoo
a) -054 1.64 0.05 0.12 1.30

b) -052 160 005 0.10 1.13
c) -042 177 007 0.16 1.85
d -053 169 005 011 159

Table 2. Comparison of mapping quality of different parameter
versions for ORB-SLAM3.

On the other hand, increasing the frame rate leads to a slight
decrease of accuracy (see Tab. 2) and no increase in complete-
ness with the cost of increased processing time. Thus, choosing
a low frame rate is sufficient and the amount of data can be kept
low without any disadvantages. As a result, version b deliv-
ers the best results and is chosen for comparison with the other
SLAM methods. Fig. 9a shows the difference to the reference
DEM and Fig. 8a shows the corresponding point cloud. Visual
inspection shows that ORB-SLAM3 creates evenly distributed
points and although the point cloud is sparse, it contains the
most solid objects in the scene including the poles.

3.2 LDSO

For our dataset, the performance of LDSO is strongly depend-
ent on the input frame rate. Only with the 5fps dataset, suffi-
ciently correct results could be generated. Higher frame rates
lead to a strong increase of noise, artifacts and slow processing
times and lower frame rates additionally can even lead to fully
degenerated point clouds. Thus on the one hand, LDSO re-
quires a certain minimum image overlap for the tracking to
work, but on the other hand, the image overlap should not ex-
ceed a certain maximum to limit noise. Regarding the number
of active points, we did not observe significant changes of the
point cloud for increasing it (2000, 4000, 10000), unlike as in
(Engel et al., 2018). Visual inspection only showed a small in-
crease of the total number of points which is mainly caused by
noise. That is why we use the proposed default of 2000 active
points for the evaluation.

The measures for completeness and accuracy of the result gen-
erated with the 5fps dataset and 2000 active points are summar-
ized in Tab. 7 and 6 in chapter 4. Two remarks should be made
regarding these results. First, the processing time reported in
Tab. 7 refers to LDSO without real-time enforcement, which
is accordingly slower. The reason is that with our data, the op-
tion enforcing 1 x real-time execution leads to entirely failed
tracking for all tested frame rates. The authors of DSO (Engel
et al., 2018) reported on such failure in rare cases. Secondly,
we observed that also for the 5fps dataset the tracking fails in
some runs such that the point cloud contains severe artifacts.
Although robustness is not in focus of the investigations, these
observations indicate that LDSO is not entirely robust for our
dataset.

Fig. 8b shows the postprocessed point cloud. It contains all
solid objects of the scene and especially the edges of objects
are clearly visible, because many points cover them. It is par-
ticularly noticeable that the whole point cloud consists of small
clusters of points, which most likely belong to the same point in
object space (see Fig. 4, left). This is an effect of the point mar-
ginalization strategy of LDSO, which leads to the re-creation
of points in a repetitive dataset like ours. Furthermore, all raw
point clouds contain noise within a cone between the test site

Figure 4. Left: Detail of point cloud generated with LDSO (top
view). Right: Side view of raw result with large outliers.
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and the cameras and large outliers underneath the ground (see
Fig. 4, right). Although for the chosen parameters this noise is
smaller than for the other tested versions, filtering is still inev-
itable in order to receive usable results.

3.3 DSM

Considering the input frame rate, an increase of noise and pro-
cessing time can be observed for increased frame rates. For
10fps this effect is so strong, that the results are not considered
for further evaluation. Additionally, 1fps is discarded as DSM
is not stable for such a low frame rate. It either fails or delivers
poor results. The behavior for an increased number of active
points is similar as for the frame rate: Noise (especially under-
neath the surface) and processing time increase. Additionally,
visual inspection shows no significant increase of detail for the
three tested numbers of active points (1500, 2500 and 3500),
just a general increase of the point density. Thus, the highest
number of active points is discarded. It is remarkable that des-
pite the increased noise, all point clouds look pretty well, there
are no artifacts or failures (with the exception of the 1fps data-
set). Thus, DSM seems to be robust against changing frame
rate or the number of active points. Based on these consider-
ations, four parameter combinations are further evaluated with
regards to their influence on the completeness and accuracy of
the result:

a) 2fps, 1500 features
b) 2fps, 2500 features

c) 5fps, 1500 features
d) S5fps, 2500 features

Table 3 summarizes the measures of completeness and the pro-
cessing times for these versions and in Tab. 4 the measures of
accuracy are compared. As expected, an increased number of
active points increases the number of points in the point cloud
as well as Ngjjeq- However, the processing time increases as
well and there is no gain in accuracy (for the 2fps dataset).
Thus, increasing the number of active points does not have any
advantages apart from a higher point density. Regarding the
frame rate, using 5fps instead of 2fps does not improve the res-
ults either. Hence, version a) is chosen for comparison with the
other algorithms, because it has the lowest processing time.

N, Nﬁlled [%] time [s]
a) 67,627 6.1 269
b) 116,601 9.9 276
c) 66,173 6.1 293
d) 108,193 9.5 305

Table 3. Comparison of mapping completeness and processing
times of the different parameter versions of DSM.

A A  Y9s0%  975%  Yoon
a) -047 152 0.04 0.07 0.60
b) -048 155 0.04 0.07 0.70
c) -052 1.60 006 009 0.81
d -048 157 004 0.07 0.75

Table 4. Comparison of mapping quality of different parameter
versions for DSM.

Fig. 9b shows Apgas for this result and Fig. 8c the corres-
ponding point cloud. The point cloud only contains the bigger
objects of the scene, smaller details like the poles or big parts
of the fence are missing or only covered by a single point. Ad-
ditionally, some parts at the edges of the site are missing (see

100 ¢

80 # G

60 -

% of filled cells

a) low res., weak filt.
204 = = =b) low res., strong filt.
¢) high res., weak filt.
= = =d) high res., strong filt.

0 0.5 1 1.5 2
[Apgar| [m]

Figure 5. DROID-SLAM: Normalized cumulative histogram of
|ApEa|. For better visualization, |Apgas| is clipped to 2m.

Fig. 9b). However, it is worth highlighting that the considered
results of DSM have very low noise. In fact, the filtering did
not remove any points.

3.4 DROID-SLAM

For DROID-SLAM, 5fps is the highest frame rate which still
delivers real-time results, thus we only consider this dataset for
the following evaluations. The parameter stride is fixed to 8.
We found it does not affect the performance while significantly
improving the runtime, as the reduced frame rate is still suffi-
cient for keyframes to be tracked. For the original implement-
ation of DROID-SLAM, the maximum feasible image size is
549 x 750 pixels. The adapted more efficient implementation
introduced in this work is able to increase the image size for the
backend to 2272 x 3104 pixels while the frontend uses 568 x 776
pixels. In order to compare the results of these two versions,
four exemplary cases are evaluated. As the internal filtering
step of DROID-SLAM, whose intensity is determined by the
parameters count and threshold, strongly influences the results,
we consider the results for weak and strong filtering for both
implementations:

a) Original: count 2, threshold 0.02 (weak filt.)

b) Original: count 4, threshold 0.005 (strong filt.)

¢) More efficient: count 2, threshold 0.01 (weak filt.)

d) More efficient: count 4, threshold 0.0025 (strong filt.)

Figure 5 compares the normalized cumulative histograms of
|Apewm| for these four cases. It clearly shows an increase in
accuracy for the efficient implementation. Also the stronger
filtering significantly increases the accuracy. Considering the
completeness, the efficient implementation increases the num-
ber of points by a factor of approx. 20 which leads to a sig-
nificant increase of Nﬁlled’ as Tab. 5 summarizes. It also
shows that the filtering decreases the completeness of the data.
The visual comparison of the point clouds ¢ and d in Fig. 6
shows the reason for that: The strong filtering not only removes

Ny, Nﬁ"ed [%] time [s]
a) 159,309 52.5 66
b) 69,639 29.0 66
c) 2,839,362 87.6 187
d 1,622,690 71.7 187

Table 5. Comparison of mapping completeness and processing
times of the different parameter versions of DROID-SLAM.
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Figure 6. Point clouds generated with DROID-SLAM. From top
to bottom: version a, c, d.

noise but the consistency-check also filters out details like the
fence or low-textured objects like the hall. Thus, finding a bal-
ance between filtering to increase accuracy and keeping import-
ant details is crucial and requires fine-tuning w.r.t. the specific
scene. Furthermore, Fig. 6 clearly shows the benefit introduced
by the more efficient implementation with higher image resolu-
tion. The original implementation yields very coarse and noisy
point clouds in which many details are missing.

In summary, it can be stated that DROID-SLAM delivers the
most accurate and complete results for a high image resolution
and appropriately strong filtering. For the comparison with the
other SLAM solutions, the version with the highest accuracy
(version d) is considered.

3.5 Photogrammetric Baseline

The result of processing the images with Agisoft Metashape
(Agisoft LLC, 2021) is shown in Fig. 8e. As expected, it is
much denser than the SLAM results and contains almost all ob-
jects of the scene. However, the resulting point cloud is quite
noisy on textureless surfaces, which can also be seen in the visu-
alization of Ap g (Fig. 9e) where higher deviations occur es-
pecially at the border of objects with low texture like the hall or
the container. In our opinion, this might result from the small
image bases in our dataset, which leads to unfavourable angles
of intersection during photogrammetric processing. Adding the
other cameras of the array would help to eliminate such un-
certain matches. Additionally, Fig. 9e shows a small upward
bending towards the edges of the point cloud, which can also
be caused by the missing image overlap in jib direction.

4. COMPARISON OF RESULTS

Accuracy The normalized cumulative histogram of |Apga|
(Fig. 7) reveals that the mapping accuracies of most tested
methods are quite similar. Only LDSO lies a bit behind, which
is caused by a bigger portion of larger differences. This is in-
dicated by the large standard deviation o and the up to twice
as high values for q, and qq,, compared to the other results,

% of filled cells

---------- ORB-SLAM3
= = =LDSO

— DSM

----- DROID-SLAM

20

Metashape

0 0.2 0.4 0.6 0.8 1
|A1)E,\l\ [111]

Figure 7. Comparison of normalized cumulative histograms of
|Apen|. For better visualization, |Ap g/ is clipped to 1 m.

Method A oA G50 9rs% Yo%
ORB-SLAM3 -052 1.60 0.05 0.10 1.13
LDSO -0.76  2.03 0.06 024 421
DSM -047 1.52 0.04 0.07 0.60
DROID-SLAM -046 1.67 0.06 0.11 0.93
Metashape -0.58 1.88 0.03 0.09 3.11

Table 6. Comparison of mapping quality of different methods.

whereas the median is similar for all methods, as Tab. 6 shows.
The latter proves the visual impression in Fig. 9c, which in-
dicates that the accuracy at the ground, where the major part of
the cells belong to, is similar to the results of ORB-SLAM3 and
DSM. This illustration of the spatial distribution of A pgas also
reveals the main source for the larger differences: The DEM
from LDSO covers the largest extent of the test site and thus a
bigger portion of its cells lies in areas, where objects which are
difficult to reconstruct (e.g. trees, fence, hall) are located.

In general, the three other methods yield similar results for the
mean, median and g5, only for qq0, they slightly differ (Tab.
6). DSM does deliver the most accurate results, both regarding
the results in Tab. 6 and when considering the cumulative histo-
gram (Fig. 7). It is remarkable that it even slightly outperforms
the results of Metashape. In fact, the results of ORB-SLAM3,
DSM and DROID-SLAM all reach a similar level of accuracy
as the Metashape result. Although this is promising, it should
be remarked that there are bigger differences regarding the com-
pleteness, which is discussed in the next paragraph.

Looking at the accuracy in terms of Apgys illustrated in Fig.
9, it can be seen that all results including the photogrammetric
reference have in common, that higher differences occur at the
trees and at the edges of elevated objects. The first is a common
problem of image based 3D reconstruction, which doesn’t work
well for vegetation. Thus the missing trees cause high negative
deviations. Apart from the absence of the objects in the data,
the latter has two more reasons: Noise causes the objects to be
wider than they are in reality, leading to high positive differ-
ences (e.g. visible at the poles in the right part of Fig. 9d). The
second reason are small displacements of such edges due to the
georeferencing, which is often the cause for the differences in
the area of the fence (e.g. at top of Fig. 9d).

With regards to the accuracy of the geometry of the test site as
a whole, it can be concluded that all methods reach an adequate
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accuracy as no systematic deviations or deformations occur. In
fact, the only systematic deformation can be observed for the
Metashape result (see chapter 3.5). However, it should be men-
tioned that the DROID-SLAM result contains noise distributed
all over the site (small positive deviations indicated by yellow
color in Fig. 9d).

(b) LDSO

(c) DSM

(e) Metashape

Figure 8. Comparison of the point clouds. For a-d color codes
height. The point size is enlarged for the sparse results for better
visualization.

Completeness The completeness of point clouds generated
by sparse, semi-dense and dense methods can hardly be com-
pared fairly as they are designed for different purposes. Nev-
ertheless, this comparison reveals some interesting aspects. On
the one hand, DROID-SLAM as the only dense method delivers
a very dense result (Fig. 8d) while still having high accuracy.
On the other hand, its point cloud lacks important details, like
e.g. big parts of the fence. Even in the Metashape result, some
parts of the fence are missing. The semi-dense result of LDSO,
however, contains most scene objects (at least their contours)
including almost the whole fence (Fig. 8b). Thus, according

Method Np Nﬁlled [%] time [s]
ORB-SLAM3 10,490 34 237
LDSO 125,813 11.0 276
DSM 67,627 6.1 269*
DROID-SLAM 1,622,690 71.7 187
Metashape 9,795,377 90.1 -

Table 7. Comparison of mapping completeness and processing
times of the different methods.

to visual inspection the LDSO point cloud can be considered
as the most complete one with regards to the amount of con-
tained obstacles. The sparse point clouds of DSM and ORB-
SLAMS3 still contain many of the obstacles, even if they are
sometimes only represented by a single point (e.g. the poles).
The reason for this is that such objects are quite distinct from
their surroundings and thus are likely to be chosen for tracking.
However, for sparse keypoint-based or direct approaches there
is no guarantee that all objects are included. That is why such
approaches cannot provide a reliable map, but rather a basis for
dense reconstruction (see chap. 5).

When considering completeness in terms of the amount of (cor-
rectly) filled cells of the DEM as summarized in Tab. 7 and
visualized in Fig. 9, it is clear that Metashape delivers the
densest and thus most complete result. Additionally, it also
covers the largest area of the test site, while for the other res-
ults (except LDSO) some parts at the edges of the site are
missing. As expected, for the SLAM methods the amount of
filled cells varies strongly. For the two sparse methods (ORB-
SLAM3 and DSM) the number of filled cells is below 10%
of the reference DEM. LDSO as a semi-dense method yields
more than ten times the amount of points as ORB-SLAM3 but
only about three times more filled cells, which can be explained
by the effect of point clusters in the LDSO point cloud. Al-
though DROID-SLAM delivers the most complete DEM, it still
has 20% less filled cells than the photogrammetric reference.
The comparison of the two DEMs in Fig. 9d/e shows that this
is rather caused by some missing parts in the DROID-SLAM
DEM (left side, upper right edge and trees) than by a lack of
density as for the other methods. The major part of these areas
is removed by the consistency-based filtering of DROID-SLAM
and is contained in the point clouds with less strict filtering.

Processing time For our time measurements, the processing
times of the different methods vary by up to 90s (see Tab.
7). Only ORB-SLAM3 and DROID-SLAM reach real-time
(t < 230s), whereas DROID-SLAM is even significantly faster
than the real-time stream of the images. However, it should
be noted that the compared results are based on different input
frame rates as explained in chapters 3.1-3.4.

5. CONCLUSION AND OUTLOOK

The experiments show that all tested approaches are capable
of working with the special geometry of our dataset and are
thus in general suited for our application. None of the methods
can be clearly identified as the most suitable one, because they
have different advantages and disadvantages. With regards to
the general accuracy of the DEM, they can even compete with
the offline photogrammetric result. However, these measures
do not reflect the absence of important parts of the test site in
the resulting DEM, which occurs to varying degrees for the dif-
ferent methods. For the sparse and semi-dense methods, the
application for real-time workspace mapping as basis for path
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a) ORB-SLAM3
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d) DROID-SLAM
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Figure 9. Comparison of Apgas. For better visualization, A p g is clipped to [—0.5,0.5]m.

planning would require an additional module to derive a dense
and thus more complete point cloud based on the sparse result,
as e.g. proposed by (Matsuki et al., 2021). Here, ORB-SLAM3
is a promising base for such an extension due to its fast pro-
cessing time and DSM due to its high accuracy. The dense res-
ult of DROID-SLAM however would have to be refined to be
able to capture all obstacles. To do so, further modifications
to enable the processing of the full resolution images could
be promising. In general, all methods were previously mostly
evaluated for images with much lower resolution, which causes
challenges in terms of processing time or memory issues. For
high-quality mapping, however, the usage of high-quality im-
agery is an important prerequisite.

Apart from that, for our future work it will be interesting to
extend the monocular SLAM approach to a multi-camera ap-
proach by treating the whole crane camera array as a partly
flexible multi-camera rig. This would not only deliver scale
information but could also significantly improve the accuracy
and also the reliability of the resulting DEM. Additionally, the
integration of a-priori camera pose information derived from
crane sensor measurements could be used for direct georeferen-
cing and thus support the tracking and speed up the processing.
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