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ABSTRACT:

3D data retrieval is required in various fields such as an industrial monitoring, agriculture, and robotics. Recent advances in pho-
togrammetry and computer vision allowed to perform 3D reconstruction using a set of images captured with uncalibrated camera.
Such technique is commonly known as Structure-from-Motion. In this paper, we propose a reinforcement learning framework RL3D
for online strong camera configuration planning onboard of a mobile robot. The mobile robot consists of a skid-steered wheeled
platform, a single-board computer and an industrial camera. Our aim is developing a model that plans a set of robot location that
provide a strong camera configuration. We developed an environment simulator to train our RL3D framework. The simulator was
implemented using a 3D model of the indoor scene and includes a model of robot’s dynamics. We trained our framework using the
simulator and evaluated it using a virtual and real environments. The results of the evaluation are encouraging and demonstrate that
the controller model successfully learns simple camera configurations such as a circle around an object.

1. INTRODUCTION

3D data retrieval is required in various fields such as an indus-
trial monitoring, agriculture, and robotics. Recent advances in
photogrammetry and computer vision allowed to perform 3D
reconstruction using a set of images captured with uncalibrated
camera. Such technique is commonly known as Structure-from-
Motion (Remondino et al., 2017) (SfM). Multiple commercial
and open-source software implement SfM. It became a conveni-
ent solution for fast 3D reconstruction of indoor and outdoor
scenes. Still the success and accuracy of the 3D reconstruction
using SfM strongly depends on the configuration of the cameras
during the collection of the data. Weak placement of the cam-
eras could lead to large amount of outliers or a complete fail of
the bundle adjustment step. While an experienced surveyor can
plan a strong camera configuration, a technique for automatic
configuration planning still remains an open problem. Camera
configuration effectiveness estimation received a lot of scholar
attention recently (Hastedt et al., 2021). While modern methods
can robustly estimate strong camera configuration setting using
a 3D model of a scene, online configuration planning using a
set of reference photos remains an open problem.

Reinforcement learning methods demonstrated an exciting pro-
gress recently and proved that they can be used for such com-
plicated tasks as an autonomous helicopter flight (Kim et al.,
2004, Ng et al., 2006), robot hand manipulation (OpenAl et
al., 2018a) and playing games (Ha and Schmidhuber, 2018b,
Freeman et al., 2019). In RL framework a decision-making
model, commonly called an agent, learns to interact with the
environment by choosing from available actions and earning
some awards. Related to our controller 7" is an RL-GAN-
Net (Sarmad et al., 2019) model in which a GAN model for
point cloud shape completion is controlled by a RL controller.
Related to our model is WorldModels (Ha and Schmidhuber,
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2018b, Freeman et al., 2019) framework that consists of three
key components: a Variational Auto Encoder (VAE) (Kingma
and Welling, 2014) that translates the input image into latent
code, the Mixture Density Network Recurrent Neural Network
(MDN-RNN) (Graves, 2013, Freeman et al., 2019) that learns to
predict a sequence of actions and a controller that is trained us-
ing the CMA-ES (Hansen and Ostermeier, 2001, Hansen, 2016)
algorithm. Our FFD framework leverages the training using
‘world model’ of the WorldModels framework to learn gen-
erating realistic and self-consistent image splices.

Figure 1. The mobile robot.

In this paper, we propose a reinforcement learning framework
RL3D for online strong camera configuration planning onboard
of a mobile robot. The mobile robot consists of a skid-steered
wheeled platform, a single-board computer and an industrial
camera. Our aim is developing a model that plans a set of ro-
bot location that provide a strong camera configuration. We use
the WorldModels (Ha and Schmidhuber, 2018b) framework as
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a starting point for our research. Specifically, our framework
includes three deep models: a controller C' that predicts the ro-
bot control, a variational auto-encoder V' that encodes the input
image A into a latent code z, and a MDN-RNN M that learns to
predict the robot’s behavior from the movement history and the
the input image A. We design a new loss function that uses the
fraction of the scene surface captured by the robot’s camera and
the final residual of the bundle adjustment as training penalty.

We developed an environment simulator to train our RL3D
framework. The simulator was implemented using a 3D model
of the indoor scene and includes a model of robot’s dynam-
ics. We trained our framework using the simulator and evalu-
ated it using a virtual and real environments. The results of the
evaluation are encouraging and demonstrate that the controller
model successfully learns simple camera configurations such as
a circle around an object.

2. RELATED WORK
2.1 Camera configuration planning

Camera configuration planning received a lot of scholar atten-
tion recently (Michelini and Mayer, 2014, Chiabrando et al.,
2017, Tufarolo et al., 2019). In (Michelini and Mayer, 2014)
authors present an approach for detection of weak camera con-
figurations. The presented approach can be applied to planning
of the survey stage for a calibrated Structure from Motion (SfM)
approach. Moreover, the presented method can leverage image
triplets for complex, unordered image sets, e.g., obtained by
combining terrestrial images and images from small Unmanned
Aerial Systems (UAS).

2.2 Reinforcement Learning

Reinforcement learning has become a powerful tool for learning
a test system (agent) to interact with a certain environment. One
of the first deep learning models that were able to successfully
learn control policies directly from high-dimensional sensory
input using reinforcement learning was presented in 2013 by
Mnih et al. (Mnih et al., 2013). It was trained with a variant of
Q-learning and demonstrated its ability to master complicated
control policies for computer games, using only raw pixels as
an input. Such an approach outperformed all previous methods
on six computer games.

Hausknecht et al. have developed the Deep Q-Networks (DQN)
method (Hausknecht and Stone, 2015). In this approach, the
effects of adding recurrence to a Deep Q-Network were in-
vestigated. The authors proposed replacing the first post-
convolutional fully-connected layer with a recurrent Long Term
Short Memory (LSTM) (Hochreiter and Schmidhuber, 1997). It
allowed eliminating some shortcomings related to the memory
limitations of game controllers and incomplete and noisy state
information, resulting from partial observability.

Reinforcement learning is also actively used for learning to con-
trol a real manipulator on model data. Andrychowicz et al.
have proposed a method (OpenAl et al., 2018b) to train con-
trol policies that perform in-hand manipulation. The authors
have demonstrated the application of the method on a real ro-
bot prototype. The training is performed in a simulated envir-
onment in which many of the physical properties of the sys-
tem, like friction coefficients and an object’s appearance, were

randomized. Kalashnikov et al. have proposed a robot con-
trol method (Kalashnikov et al., 2018) with a reinforcement
learning-based vision system. It enables closed-loop vision-
based control, whereby the robot continuously updates its oper-
ating strategy based on the most recent observations to optimize
long-horizon grasp success.

An alternative approach to reinforcement learning was pro-
posed by Schmidhuber et al. in (Ha and Schmidhuber, 2018a).
In this approach, a generative recurrent neural network is
trained in an unsupervised manner to model popular rein-
forcement learning environments through compressed spatio-
temporal representations. A method fully replaces an actual
reinforcement learning environment with its copy based on
the generative modeling. The training agent’s controller C is
trained using only the internal world model M of the environ-
ment. The controller C transfers the learned policy back into
the actual environment. This approach offers many practical
benefits, such as eliminating rendering of image frames that re-
quires significant computing resources.

Reinforcement learning methods demonstrated an exciting pro-
gress recently and proved that they can be used for such com-
plicated tasks as an autonomous helicopter flight (Kim et al.,
2004, Ng et al., 2006), robot hand manipulation (OpenAl et
al., 2018a) and playing games (Ha and Schmidhuber, 2018b,
Freeman et al., 2019). In RL framework a decision-making
model, commonly called an agent, learns to interact with the
environment by choosing from available actions and earning
some awards. Related to our controller 7" is an RL-GAN-
Net (Sarmad et al., 2019) model in which a GAN model for
point cloud shape completion is controlled by a RL controller.
Related to our model is WorldModels (Ha and Schmidhuber,
2018b, Freeman et al., 2019) framework that consists of three
key components: a Variational Auto Encoder (VAE) (Kingma
and Welling, 2014) that translates the input image into latent
code, the Mixture Density Network Recurrent Neural Network
(MDN-RNN) (Graves, 2013, Freeman et al., 2019) that learns to
predict a sequence of actions and a controller that is trained us-
ing the CMA-ES (Hansen and Ostermeier, 2001, Hansen, 2016)
algorithm. Our RL3D framework leverages the training using
‘world model’ of the WorldModels framework to learn gener-
ating realistic and self-consistent image splices.

2.3 Reinforcement learning in GAIL

The authors of the article (Ho and Ermon, 2016) propose a new
general framework for directly extracting a policy from data as
if it were obtained by reinforcement learning following inverse
reinforcement learning. They show that a certain instantiation
of the framework draw an analogy between imitation learning
and generative adversarial networks, from which they drive a
model-free imitation learning algorithm that obtains signific-
ant performance gains over existing model-free methods in im-
itating complex behaviors in large, high-dimensional environ-
ments. This method is called Generative Adversarial Imitation
Learning.

3. METHOD
3.1 RL3D Framework
Our method is inspired by GAIL (Ho and Ermon, 2016). The

GAIL approach defines a general pipeline for training an actor
in a given environment using trajectories provided by experts.
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Using an IRL approach GAIL aims to estimate the expert’s
policy and objective.

The aim of our RL3D framework is training an agent that move
around a given object following a trajectory that provides a
strong camera configuration. We assume that the agent is a skid-
steered mobile robot equipped with a forward looking camera.
Therefore, our RL3D framework extends the the GAIL frame-
work with two key technical contributions: (1) a 3D pose en-
coder based on the YOLOv3 (Redmon and Farhadi, 2018), (2) a
camera configuration loss function.

In the inverse reinforcement learning (IRL) task is to learn an
agent that tries to match the outcomes of an expert’s entire tra-
jectory rather than individual actions, as in behavioral cloning.
The output of this algorithm is then a function that scores “ex-
pert behavior” on a trajectory higher than novice behavior. In
Figure 2 on the left we see a typical feedback loop for an RL,
where an agent (blue) observes a state (s) and using a reward
function (R) chooses an action (a) that yields a transition (7")
to a new state and a reward (r). In contrast, on the right, the
rewards resulting from these states, actions, and transitions are
represented implicitly by examples from an expert (E), and the
agent (blue) instead learns to replicate this sequence through a
learned reward function (Rg) rather than being explicitly in
the loop” of the algorithm. In other words, instead of learning
policy from an explicit reward function, we observe an expert’s
behavior and infer a reward function that would lead to their
observed actions.

{(s @), (s,a).}

Figure 2. Reinforcement learning (a) and inverse reinforcement
learning (b).

The aim of the Inverse Reinforcement Learning is the estima-
tion of expert’s policy and the approximation of a loss function
that explains the expert’s behavior. The behavior is given as
a set of trajectories produced by an expert in the same envir-
onment. Nevertheless, in most cases it is hard to obtain expert
trajectories. Moreover, IRL requires a large computational cost.
The GAIL (Ho and Ermon, 2016) framework allows to resolve
this problem by combining the concepts developed in the field
of IRL and GANS.

The Generative Adversarial Imitation Learning (GAIL) ap-
proach is to minimize the loss for such an agent, whose be-
havior mimics the expert’s behavior. On the contrary, agents
whose behavior is significantly different from the expert’s be-
havior receive a large penalty. Moreover the GAIL framework
allows to find such loss function that explain the expert’s be-
havior. This allows to define the overall objective of the GAIL
framework

[Exllog(D(s, a))] + Explog(1 — D(s, a))] = AH(m)] (1)

Figure 3. Coordinate systems: four coordinate systems are
defined (left) to provide a common coordinate systems for 3D
model of the scene and motion capture system (right).

The GAIL framework aims at minimizing the loss function. To
achieve this the following algorithm is applied:

1. Prepare a set of expert trajectories and randomly initialize
the discriminator and policy parameters.

2. Generate a set of trajectories for the RL agent under the
current policy.

3. Update the discriminator parameters with a stochastic
gradient descent step.

4. Update the policy parameters with gradient-based updates
using an algorithm called Trust Region Policy Optimiza-
tion (TRPO).

5. Repeat steps 2-4 of the algorithm until the values of the
parameters of the policy and the discriminator converge.

3.2 Mobile Robot

To train and evaluate our RL3D framework we used a mobile ro-
bot developed in previous research (Kniaz, 2015, Kniaz, 2016,
Kniaz, 2017). The robot consists of a four-wheeled mobile plat-
forms that is operated as a skid-steer. In other words, left and
right wheels are independently controlled by four motors. If
both left and right wheels are turning the same direction the ro-
bot moves forwards of backwards. Otherwise, the robot turns to
the left or to the right. The robot is equipped with a Raspberry
Pi single-board computer and a Raspberry Pi camera module.

3.3 Virtual Environment

To provide a common coordinate system for the 3D model
of the scene and estimated camera trajectories a special test
scene was designed. The origin of object coordinate system
0,X,Y,Z, is defined as follows: the center is located at the
center of the scene, the X, is directed towards the window, the
Y, is directed towards the wall (Figure 3).

Three additional coordinate systems are defined to transform
coordinates from the image space to the object space. To define
the robot’s coordinate system a set of circular targets were loc-
ated on the upper deck of the robot. The origin of the robot’s
coordinate system O, X,Y;Z, is defined by the central target
(#8). The Y, axis is directed towards the forward motion of the
robot. The Z, axis is normal to the upped deck of the robot.
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The origin of the image coordinate system O; X;Y; Z; is located
in the upper left pixel, the X is directed to the right, the Y; axis
is directed downwards. The origin of the camera coordinate
system O.X.Y.Z. is located in the perspective center, the X,
axis is collinear with the X; axis, the Y. axis is collinear with
the Y; axis, the Z. axis is normal to X, and Y. axes. The rota-
tion of the robot’s coordinate system with respect to the object
coordinate system is defined by rotation matrix R,

Ror =R.. Ry - Rg, @

where R, — rotation matrix around the axis Y, R, — rotation
matrix around the axis X, R,, — rotation matrix around the axis
Z.

The environment was developed in a special room to perform
experiments with a real robot. The virtual environment was
developed using the Blender 3D Creation Suite and Unreal En-
gine 4. The virtual environment includes the robot’s dynamics
model and a 3D scene. This allows us to train the robot in the
virtual environment. The comparison of the real and virtual en-
vironments is presented in Figure 4.

Figure 4. Comparison of virtual (top) and real (bottom)
enviroments.

4. EVALUATION
4.1 Network Training

For all deep learning models we use the pre-trained models
provided by the authors. We optimize our controller 7" using

Method | Gnome
Expert 2.12
RL3D 3.45

Table 1. Standard deviation of distances in mm to the
ground-truth 3D model of evaluated methods on the MVSIR
dataset.

the CMA-ES algorithm similar to (Freeman et al., 2019). For
other models we use an Adam solver with a batch size of one
and an initial learning rate of 2 - 10™%.

4.2 Quantitative Evaluation

We evaluate our RL3D framework quantitatively in terms of the
quality of the trajectories of the robot. Most of the learned
trajectories were close to the classical all around camera con-
figuration. An example of the robot trajectory is presented in
Figure 5.

RL3D Virtual Enviroment - X

Steps: 160 | Rewards: 55

Figure 5. Example of a robot trajectory recorded in the virtual
environment.

4.3 Reconstruction Accuracy

We compare the accuracy of reconstructed 3D models gener-
ated from images captured by mobile robot that was controlled
by an expert and by our RL3D framework. We compare the
models reconstructed using an open-source SfM implementa-
tion with respect to 3D models generated by a 3D scanner based
on fringe projection. The 3D scanner (Knyaz, 2010) provides
0.1 mm accuracy for reconstructed reference 3D models. We
used models provided by the MVSIR dataset (Knyaz et al.,
2017). To evaluate the deviation of 3D models obtained by
various techniques from the reference 3D model we transform
them to a common coordinate system and display deviations us-
ing pseudo colors. The accuracy of the reconstructed surfaces
is presented in Figure 6, Figure 7 and Table 1.

5. CONCLUSION

We demonstrated that the inverse reinforcement learning can be
applied to the challenging task of the robot path planning. Fur-
thermore, we demonstrated that our RL3D framework allows to
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Figure 6. Distances in mm to the ground-truth 3D model for the
3D model reconstructed using images captured by a human
operator (top) and the 3D model reconstructed using images

captured by an agent trained using our RL3D framework
(bottom).

Figure 7. Comparison of the reference model with the 3D model
reconstructed using images captured by a human operator (top)
and by an agent trained using our RL3D framework (bottom).

discover complex trajectories that provide strong camera con-
figuration.
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