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ABSTRACT: 

 

In large-scale projects such as hydropower and transportation, the real-time acquisition and generation of the 3D tunnel model can 

provide an important basis for the analysis and evaluation of the tunnel stability. The Simultaneous Localization And Mapping (SLAM) 

technology has the advantages of low cost and strong real-time, which can greatly improve the data acquisition efficiency during tunnel 

excavation. Feature tracking and matching are critical processes of traditional 3D reconstruction technologies such as Structure from 

Motion (SfM) and SLAM. However, the complicated rock mass structures on the tunnel surface and the limited lighting environment 

make feature tracking and matching difficult. Manhattan SLAM is a technology integrating superpixels and Manhattan world 

assumptions, in which both line features and planar features can be better extracted. Rock mass discontinuities including traces and 

structural planes are distributed on the inner surface of tunnels, which can be extracted for feature tracking and matching. Therefore, 

this paper proposes a 3D reconstruction pipeline for tunnels, in which, the Manhattan SLAM algorithm is applied for camera pose 

parameters estimation and the sparse point cloud generation, and the Patch-based Multi-View Stereo (PMVS) is adopted for dense 

reconstruction. In this paper, the Azure Kinect DK sensor is used for data acquisition. Experiments are proceeded and the results show 

that the proposed pipeline based on Manhattan SLAM and PMVS performs good robustness and feasibility for tunnels 3D 

reconstruction. 

 

 

1. INTRODUCTION 

This paper uses the Azure Kinect DK camera to collect data and 

conduct investigations in the tunnel of the Bailongjiang Water 

Diversion Project in Gansu Province, China (Figure 1). The 

Azure Kinect DK camera is an inexpensive RGBD data 

acquisition device that can be used to collect RGBD data. Sparse 

reconstruction is an indispensable part of completing 3D 

reconstruction. In this paper, sparse reconstruction is achieved by 

using SLAM, which greatly reduces the time required for sparse 

reconstruction (Taheri and Xia, 2021). It can effectively improve 

the efficiency of construction. Since the experimental scene is a 

tunnel that has just been excavated and has not yet been 

supported by shotcrete, the follow-up construction will pay more 

attention to the shape of the rock wall.  

 

 

Figure 1. The environment for data collection in this 

experiment was taken by Azure Kinect DK. 

 
*  Corresponding author 

 

 

Therefore, there is no strict requirement for the surface texture of 

the modeled tunnel, and the undulation of the tunnel rock wall is 

more important. The rapid extraction of rock wall morphology is 

the focus of this paper. Using the conventional SfM method to 

complete the sparse reconstruction needs to take a photo first, and 

then spend a long time performing the sparse reconstruction. The 

SLAM method can achieve sparse reconstruction in real-time, 

which significantly improves the reconstruction efficiency. 

Saving the results of sparse reconstruction can provide a good 

data foundation even if there is a need for dense reconstruction 

later. Due to the particularity of the tunnel environment, it is 

difficult for the conventional ORB feature extraction method to 

complete the tracking of the SLAM algorithm (Rublee et al., 

2011). This paper uses the Manhattan SLAM (Yunus et al., 2021) 

method to complete the entire data acquisition and sparse 

reconstruction process. The final results include camera poses, 

movement paths, keyframe numbers, and light point clouds. In 

geological work, for the safety of subsequent construction, it is 

necessary to survey the rock wall to prevent deformation, 

expansion, landslide, water penetration, and other problems. The 

texture information of the 3D reconstruction can provide rock 

formation and rock type information. Completing the three-

dimensional reconstruction of the tunnel environment can reduce 

the workload of tunnel surveying and use the three-dimensional 

model to formulate a construction plan for the rock wall of the 

tunnel. Although the method of first taking pictures from 

different angles and then performing sparse reconstruction can 

meet the needs of the subsequent dense reconstruction, taking 

photographs and sparse reconstruction will take more time, and 

the pose of the camera needs to be solved by the photographs. 
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Using SLAM instead of SfM can complete pose calculations and 

sparse reconstruction when collecting data, saving a lot of time 

for engineering practice and improving work efficiency. 

 

2. RELATED WORK 

With the development of science and technology, more and more 

methods can be used for 3D reconstruction, and the cost of the 

equipment used is also getting lower and lower. How to use fewer 

data to complete 3D reconstruction that meets the needs of use is 

one of the current development directions. 

 

In recent years, SLAM has been applied in many fields. For 

different application environments, the performance of different 

algorithms will vary greatly. Applications in different areas need 

to choose the appropriate SLAM method or modify the existing 

SLAM method to balance efficiency and accuracy. 

 

ORB SLAM2 is a SLAM method that can use binocular and 

RGBD data and does not include a save module, which cannot 

save the obtained point cloud results (Mur-Artal and Tardós, 

2017). LIO-SAM (Shan et al., 2020) using lidar fused with 

inertial odometry can provide high positioning accuracy and can 

also achieve high-precision mapping, but requires expensive 

lidar. TANDEM (Koestler et al., 2021) can achieve high 

modeling accuracy, but the neural network needs to be trained in 

advance, and the application environment needs to be re-

executed. DSP-SLAM is a semantic SLAM method mainly used 

in outdoor scenes, but the tunnel environment is extraordinary 

and cannot be well adapted. Visual-Laser-Inertial SLAM uses a 

laser fringe projector to calculate the depth based on RGB, which 

can obtain good modeling accuracy. For a single image, Self-

supervised Mesh Reconstruction can be used to complete the 

modeling by labeling the object's outline through training (Qian 

et al., 2021). In the tunnel scene,Xue used the method of SFM 

and direct linear transformation (DLT) to complete the three-

dimensional modeling in the tunnel scene (Xue et al., 2021). 

 

Without training and introducing prior knowledge, using 

conventional SLAM technology to complete modeling in 

complex scenarios requires optimization and improvement in the 

feature extraction part. Although ORB-SLAM2 introduces RGB-

D sensors, after testing, in a scene full of many contours, such as 

a tunnel, if the number of feature points is increased, the 

operation efficiency will be significantly reduced and it is 

difficult to achieve real-time 3D reconstruction. Even if the data 

is collected first and then processed, the problem of tracking loss 

will occur due to too many similar feature points on the rock wall. 

If the number of feature points is reduced, it will make feature 

point tracking more difficult. As the camera moves, the trackable 

feature points will gradually decrease, and eventually, the 

tracking will fail. The Manhattan world hypothesis solves this 

problem nicely. There are a lot of planes and straight lines on the 

artificially excavated rock walls. Based on the point tracking of 

ORB SLAM, adding Manhattan feature tracking, that is, line 

features and surface features can effectively increase the 

elements involved in tracking and complete the matching of 

adjacent frames. Manhattan SLAM uses the simple linear 

iterative clustering (SLIC) superpixel algorithm in the face 

feature extraction part, which increases the efficiency of 

matching and improves the accuracy of matching. SLIC is very 

simple (Achanta et al., 2012), but it can find the boundary as well 

as other super-pixel methods. At the same time, it has faster speed, 

higher memory efficiency, improved segmentation performance, 

and can be directly extended to superpixel generation. In the 

depth image, it can meet the needs well. Due to the lack of natural 

lighting in the tunnel, artificial lighting is mainly used. The 

handheld lighting equipment will change the light intensity of the 

rock wall. If superpixels are not used, the drastic changes in 

brightness will also affect the matching. 

 

3. METHODOLOGY 

In this research, 3D reconstruction of the tunnel processing 

includes two stages: sparse reconstruction and dense 

reconstruction. Figure 2 shows the principle flowchart of the 

proposed pipeline.Both camera pose estimation and sparse 

reconstruction are finished by Manhatten SLAM, the results of 

which are integrated into PMVS for dense reconstruction. 

 

 

Figure 2. The principle flowchart of the proposed pipeline. 

 

3.1 Data processing 

Similar to ORB SLAM2, points and lines are extracted from 

RGB images, and planes are extracted from depth images during 
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data processing. The initial pose estimate is obtained by utilizing 

the isokinetic motion model and further optimized by feature 

correspondence and structural rules. For points and lines, the last 

frame's guided search is used to match features, and planes are 

directly compared on the global map. We then detect Manhattan 

Frame (MFs) to determine whether the current scene is an MW 

scene or a non-MW scene, using the respective pose estimation 

strategies. As an additional step in both cases, we track features 

in the local map of the current frame to further refine the pose 

estimation. If the current structure observes less than 90% of the 

points marked in the previous frame, a new keyframe is created. 

 

3.2 Manhattan SLAM 

ORBSLAM2 is a SLAM method based on binocular or RGBD 

cameras. It mainly includes three threads: 1) localization of the 

camera at each frame by finding features that match the local map 

and using the moving features to perform beam adjustment to 

minimize the reprojection error; 2) local map management and 

optimize the local map, perform a local beam method adjustment; 

3) Loop closure detection to detect the entire route and correct 

the accumulated drift by performing pose map optimization. This 

thread then starts the fourth to perform a full BA after pose graph 

optimization to compute the best structural and kinematic 

solutions. The Manhattan SLAM has been improved based on 

ORBSLAM2. The tracking thread is modified to a certain extent, 

the map reconstruction part is added, and the loopback detection 

part is deleted.  

 

RGBD images provide good texture and depth information, 

which can be used to feature extraction. The depth image 

performs well in planar feature extraction. The point and line 

features are easier to be recognized in the RGB images. Firstly, 

the camera is assumed to be uniformly moving, and then the 

initial pose of the camera is calculated according to the 

displacement of the feature points on the image. Next, the pose is 

further calculated and optimized by tracking the position changes 

of the features. Among them, the tracking of point and line 

features is matched in the current last frame, and the matching of 

surface features is based on the map formed by all the current 

frames. Through these two different pose estimation methods, the 

Manhattan frame is detected to determine whether MF exists in 

the current frame. In addition, to enhance the accuracy of pose 

estimation, the features in the local map saved in the current 

online path will be used for further pose correction. A new 

keyframe would be created again if the accuracy is not accepted.  

Figure 3 is an example with 90% accuracy. In the feature tracking 

step, point feature, line feature, and planar feature are combined 

for the tracking task in a complex environment. 

 

 
Figure 3. The movement route of the camera during the 

Manhattan SLAM operation. The blue shapes denote 

keyframes; the green line along the tunel center axis respresents 

the tracks of the camera; the black points show the matching 

feature points. 

 

FAST is a useful feature detection algorithm, but it fails to 

rotation invariance. Feature point rotation is unavoidable in 

dynamic tracking, so FAST algorithm is not appropriate for 

SLAM. In the tunnel environment, the road is not flat, and the 

angle deviation is inevitable when collecting data. Therefore, the 

ORB algorithm provides a better alternative (Rublee et al., 2011 ). 

In this algorithm, the three-dimensional coordinate of the point is 

expressed as 𝑃 =  ( 𝑋, 𝑌, 𝑍 ). The point P is projected into a 2D 

plane for feature matching. The coordinates are expressed as 

𝑝𝑜𝑏𝑠 =  ( 𝑢, 𝑣 ) . When matching, the Hamming distance 

between the strings corresponding to the descriptors of the 

feature points projected on the plane is the compared. When the 

similarity exceeds the set threshold, it will be considered as the 

same feature point, so as to complete the matching. The detection 

method of line features is LSD (VonGioi et al., 2012). LSD 

algorithm uses LBD descriptor to describe line features. LSD 

perfoms better efficiency than Hough transform in line feature 

extraction. For a straight line either in 3D or 2D, it can be 

expressed by the coordinates of the two endpoints of this line. 

Similar to point features, line features in 3D need to be projected 

into a plane for matching. The two endpoints are described 

as (𝑃𝑠𝑡𝑎𝑟𝑡
𝑙 , 𝑃𝑒𝑛𝑑

𝑙 )  and (𝑃𝑠𝑡𝑎𝑟𝑡
𝑙 , 𝑃𝑒𝑛𝑑

𝑙 ) , respectively. The line 

scanned on the plane is represented by 𝑙𝑜𝑏𝑠 = 𝑃𝑠𝑡𝑎𝑟𝑡
𝑙 × 𝑃𝑒𝑛𝑑

𝑙 /

||𝑃𝑠𝑡𝑎𝑟𝑡
𝑙 || ||𝑃𝑒𝑛𝑑

𝑙  || = (𝑎, 𝑏, 𝑐)  (Yunus et al., 2021). Figure 4 

shows an example of point and line feature extraction in 

Manhatten SLAM, which are denoted as green points and red 

lines, respectively. 

 

 

Figure 4. Feature matching results for a pair of keyframes. 

The LBD descriptor is used here to project the line of three-

dimensional space onto the two-dimensional plane and to 

complete the matching between endpoints to extract the plane 

features. To improve the sampling efficiency, SLIC superpixel is 

used to extract the plane features of the depth image (Wang et al., 

2019), and match them. The original depth image will have 
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noises and anomalies due to resolution. Superpixel extraction can 

avoid the noise and extract the plane features. The superpixel 

uses the SLIC superpixel using the K-means clustering method. 

By initializing the clustering center first, and then continuously 

circulating, the pixels are clustered according to the position and 

brightness of the pixels. This step is only carried out on the depth 

image. (Wang et al.,2019). 

 

Frames are described by normal lines projected from the map 

onto the plane, and each frame can be described by normal lines. 

Through the detection of intra-frame normals, if three mutually 

perpendicular normals（𝑛1
𝑘、𝑛2

𝑘、𝑛3
𝑘）are found, this frame is 

the Manhattan frame. At this point, a rotation matrix is used to 

represent the projection of Manhattan frame in camera coordinate 

system. However, if only two perpendicular normal lines are 

detected, they can also be restored to the Manhattan framework 

after processing. The processing method adopted is to take the 

cross product of these two vertical normals and calculate another 

normal, so as to calculate the Manhattan frame on the basis of 

these two planes. In the actual situation, there will be some errors 

in different locations due to hardware reasons, resulting in certain 

noise. In order to deal with the column non-orthogonality of the 

matrix caused by noise, the singular value decomposition method 

is used to approximate the matrix to the rotation matrix 𝑅𝑐𝑖𝑚𝑘
. In 

order to save all the Manhattan frames in the whole map, the 

Manhattan map is created in the system to save the Manhattan 

frames found. 

 

3.3 3D dense reconstruction for tunnels 

Three-dimensional reconstruction is comprised of sparse 

reconstruction and dense reconstruction. In the tunnel 

environment, the rock mass surface morphology plays an 

important role during geological analysis. In this paper, the 

sparse reconstruction results generated by SLAM lack sufficient 

texture features and need to be processed by the dense 

reconstruction method. The sparse reconstruction is finished by 

Manhatten SLAM, and the results including camera pose 

parameters and the sparse point cloud are used for the dense point 

cloud generation with PMVS method. The PMVS method is 

mainly to project a pixel on the image back to a specified surface 

in the space, including three steps, which are initial feature 

matching, surface slice generation and surface slice filtering. 

Firstly, a group of sparse patches are obtained by the initial 

feature matching, and then the final result is obtained by 

continuously encrypting and deleting multiple patches.  

 

Define a mask P when encrypting a mask, and then expand it by 

Equation (1) (Furukawa and Ponce, 2009). 

 

𝐂(𝑝) = {𝐶𝑖(𝑥′, 𝑦′)|𝑝 ∈ 𝑄𝑖(𝑥, 𝑦), |𝑥 − 𝑥′| + |𝑦 − 𝑦′ ∣= 1}   (1) 

 

In the process of reconstruction, those planars with low precision 

will be filtered according to visual consistency.  

 

4. EXPERIMENTS AND RESULTS 

4.1 Data acquisition and pre-processing 

The data used in this experiment comes from handheld Azure 

Kinect DK camera. Due to the lack of natural lighting in the 

tunnel, the lighting comes from the handheld lighting equipment, 

so the illumination of the rock wall will change during the 

process of data collection, and the brightness between different 

frames will vary.Completing the entire experimental process 

requires reasonable handling of scene changes to track the same 

feature. 

 

Due to the handheld device during data collection, shaking will 

inevitably occur, resulting in blurred image quality. Therefore, 

when collecting data, select the sampling mode with frame rate 

priority, reducing the impact of shaking in the final data. 

 

A total of 1 minute and 30 seconds of data were captured in the 

tunnel of the entire test section, and 1501 RGB and depth maps 

were extracted respectively. The data was collected three times 

in total, and the one with the smallest shaking was selected for 

photo extraction. When extracting photos, the camera’s internal 

parameters encapsulated in the data are also extracted 

synchronously.  

 

The experimental area is a tunnel under construction, and there is 

no interference from moving objects such as pedestrians when 

collecting data. To test the performance of the method, the 

analysis of dynamic scenes was done by changing the lighting 

conditions. During the experiment, the original engineering 

lighting system was removed first, and hand-held lighting 

equipment was used for lighting. When collecting data, the angle 

and position of the handheld lighting device will change, 

resulting in changes in the brightness of the rock wall, making it 

possible to obtain dynamic scenes and increasing the difficulty of 

tracking. In practical engineering applications, artificial lighting 

is generally used in the tunnel environment. Compared with 

natural light, artificial lighting is difficult to achieve uniform 

coverage. In the experiment, the hand-held lighting device can 

reasonably simulate the lighting conditions under challenging 

conditions in practical engineering applications to achieve the 

purpose of testing the method. 

 

4.2 The 3D reconstruction of the tunnel 

For ORB SLAM2, only using feature point tracking will be 

disturbed by too many rock blocks on the rock wall, and there are 

too many similar edges and corners, and it is easy to lose tracking. 

The Manhattan SLAM used in this paper adds line features based 

on point features to make up for the problem of tracking loss. The 

number of lines on the rock wall is much less than on the edges 

and corners, and it is much less challenging to complete 

continuous tracking. After pre-adjusting the number of extracted 

feature points before the experiment, feature tracking can still be 

completed at 30fps. 

 

Figure 5 shows the sparse reconstruction results using Manhatten 

SLAM. Figure 5 (a), (b) and (c) respectively shows the 

visiualization of the entrance, the side wall and the excavation 

face of the tunnel. Both camera pose parameters and the sparse 

point cloud obtained by Manhantten SLAM are further used for 

PMVS dense renconstrution. The visualization of the dense point 

cloud of the tunnel in different persepectives is shown in Figure 

6. 
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(a)                                                         (b)                                                        (c) 

Figure 5. The visualization of the sparse point cloud generated by Manhattan SLAM: (a) the entrance of the tunnel; (b) the side wall 

of the tunnel (c) the excavation face of the tunnel. 

 

Figure 6. Dense reconstruction results: (a) the 3D dense point cloud visualization of the tunnel; (b) the view orthogonal to the central 

axis of the tunnel (left to right); (d) the 3D dense point cloud visualization of the side wall of the tunnel; (c) the view orthogonal to 

the central axis of the tunnel (right to left) 

 

4.3 Analysis and discussion 

The hardware environment used in this investigation is AMD 

Ryzen 7 5800H with Radeon Graphics 3.20 GHz, 16G RAM. The 

operating system deployed on the laptop used in the investigation 

is 64-bit Ubuntu 20.04. The time consume involving in data 

acquisition and experimental process demonstrates that the 

current efficiency can meet the requirements of real-time 

reconstruction. Thirty frames per second can be processed during 

operation. Significantly, the stability of the device contributes to 

keep the good quality of the video during data acquisition. 

 

Different from the general modeling environments such as 

buildings, tunnel modelling requires data collection with higher 

efficiency because of the short engeering project schedule as well 

as poor security. Manhattan SLAM integrates line features and 

planar features for matching, which are considered as a 

supplementary when feature points is insufficient for feature 

tracking during camera pose parameters estimation and the sparse 

point cloud generation. Superpixels performs well in expressing 

planar feature, which is easier to be recongnized and extracted 

from the depth images. In order to improve the efficiency, this 

paper extracts RGB and depth images with the high frame rate 

from the video data of the tunnel for experiments, the results 

proves that the navigation and modeling of Manhatten SLAM in 

environments of tunnel excavation surface are feasible.  

 

5. CONCLUSIONS 

This paper proposes a 3D dense reconstruction pipeline for 

tunnels. It finishes camer pose estimation and the sparse point 

cloud generation using the Manhatten SLAM algorithm, and 

achieves the 3D tunnel dense reconstruction using PMVS. The 

feasibility of the pipeline is proved by experiments. 

 

The proposed pipeline in this paper has the following advantages: 

(1) Both the line features and the planar features are combined 

with the point features for features tracking and matching, which 

effectively improves the accuracy of the results. (2) The data 

acquisition and modeling process can be done in real-time, which 

is essential for the stability analysis of tunnels under the premise 

of safety. (3) The RGBD camera is a portable and inexpensive 

device for tunnel 3D reconstruction, which has good application 

prospects. 

 

The further research will concentrate on 3D tunnel reconstruction 

using images and video data with higher resolution. ROS robots 

will be considered for path finding and data acquisition, which 

has broad development prospects.  
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