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ABSTRACT: 

 

Deep Learning (DL) models need big enough datasets for training, especially those that deal with point clouds. Artificial generation of 

these datasets can complement the real ones by improving the learning rate of DL architectures. Also, Light Detection and Ranging 

(LiDAR) scanners can be studied by comparing its performing with artificial point clouds. A methodology for simulate LiDAR-based 

artificial point clouds is presented in this work in order to get train datasets already labelled for DL models. In addition to the geometry 

design, a spectral simulation will be also performed so that all points in each cloud will have its 3 dimensional coordinates (x, y, z), a  

label designing which category it belongs to (vegetation, traffic sign, road pavement, …) and an intensity estimator based on physical 

properties as reflectance. 

 

1. INTRODUCTION 

Automatic point cloud labelling to subtract environment features 

such as trees, road components, … is a challenging task because 

it does not require hand-crafted features, which are widely used 

in existing methods like Koppula (2011), Yokoyama (2013) and 

Song et al. (2014). Point cloud labelling is an important task in 

computer vision and object recognition (Jing Huang et al., 2016). 

Depending on the purpose, there are several techniques based on 

heuristic methods to label each point in a cloud. These methods 

are designed towards the identification of purely geometrical 

patterns by the application of different computational settings, 

such as Machine Learning (Neuville et al., 2021). 

 

With the evolution of Artificial Neural Networks (ANN), more 

ways to automatic point cloud labelling are appearing nowadays, 

like Mei et al. (2018) for individual tree subtraction or Balado et 

al. (2019) for road infrastructure classification. Designing these 

networks is a challenging task, especially because of the lack of 

public labelled datasets. In order to avoid this and other 

expensive solutions, data augmentation by generation of artificial 

point clouds with label information can improve the ANN’s 

performance. 

 

Complex Deep Learning models requires big datasets during 

their training. Also, their internal structures can differ depending 

on the input data type (data source), even if they are designed for 

the same purpose. Nowadays, there are more public imagery 

datasets available than LiDAR due to the operational and 

economic difficulty that presents this last technology 

employment.  

 

This work shows an algorithm developed for synthetic creation 

of point cloud datasets of natural environments including roads. 

Also, for a more realistic scenario, an intensity simulation of a 

multispectral LiDAR is applied in these point clouds. The scheme 

that follows this paper is the following: (1) Description of the 

methodology; (2) Types of environments studied; (3) 

Geometrical and Spectral designs; and (4) Results and its 

discussions. 

 

2. METHODOLOGY 

2.1 Geometrical design 

As mentioned above, the main purpose of this work consists of 

recreating realistic point clouds in different cases where an 

Airborne Light Scanner (ALS) or Terrestrial Laser Scanning 

(TLS) could be used, such as mountain forests or road highways. 

Following this line, two scenarios are presented: (a) Forest point 

clouds without any road presence and (b) forest point clouds with 

road presence. In the second case it is necessary to explain how 

the road is designed according the Spanish normative. 

 

Independently of the point cloud’s type, the first steps of the 

digital terrain model (DTM) and tree generation are completely 

common. As will be shown later, once these steps are completed 

the only remaining part that differs both scenarios are road 

concerning facts as explained in next subsections. 

  

2.1.1 DTM generation 

 

The first step of this work consists in the simulation of a rough 

terrain which emulates real mountain grounds. This will be done 

by setting some curvatures to a previous designed surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Surface model obtained. 
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First of all, a plane grid of points is defined at a height of z=0. 

After this, some random points are selected and their z 

coordinates are changed into a random choice from 0 to a 

maximum height value specified by the user, following a 

Gaussian-like distribution. Then a 2D quadratic model fit is 

applied to all points in the cloud (see Figure 1). We chose a 

quadratic model in order to make a smooth curvature of the 

terrain, as higher orders cannot always provide. The simulated 

surface adapts the following expression: 

 

 

(1), 

 

where 𝑎𝑖 are the quadratic fit parameters. One can rewrite this in 

terms of its matrix form: 

 

 (2), 

 

where G denotes the variable matrix and m is a vector containing 

all 𝑎𝑖 values. 

 

2.1.2 Road alignment 

 

Once the DTM is generated, the next step consists on the road 

trajectory simulation. For this purpose, it is necessary to follow 

some rules concerning to road alignment, like the maximum 

curvature radius per velocity or the slope angle allowed. The 

Spanish 3.1-IC normative for road layout (Ley 3.1-IC de Trazado 

de Carreteras, 2016) will be considered in order to create real-

alike roads. 

 

The types of roads that will be created in this works are three: 

highways, national roads and local roads. Each one of them has 

its own characteristics as it is reflected in Table 1. 

 

 

Characteristics Type 

 Highway National road Local road 

2 platforms Yes No No 

1 platform Yes Yes Yes 

Refuge island Yes No No 

Lanes 4 2 1-2 

Curve radius (m) 250-7500 50-2500 350-3500 

Table 1. Some road alignment normatives (Ley 3.1-IC de 

Trazado de Carreteras, 2016) . 

 

Also, there are more important features as camber angles or 

signal positioning that can differ depending on environmental 

and technical parameters such as the shoulder size of the road or 

the maximum velocity allowed per stretch. 

 

Following these rules, a curve is defined along all points of the 

surface that fall into its domain. This curve will be the main 

skeleton of all the infrastructure and all the remaining parts of the 

road will be created from the point of view of it. For a clearer 

view see the graphical design of Figure 2. 

 

In the scenario of a highway type road, the first element that will 

be created is the refuge island, also known as pedestrian refuge 

or pedestrian island. In Spanish roads (Ley 3.1-IC de Trazado de 

Carreteras, 2016), the   average size of this element is 

approximately 2 m, so all points of the surface that fall under a 

Euclidean distance of < dri (dri = 2 m) from the previous curve in 

the XY plane will be grouped as the refuge island set, I. Once all 

points of I are identified, they are translated into a height zroad. 

After this, knowing that the mean width of the pavement in 

highway’s shoulders is ~2 m, a second set of points S is defined 

with all points of the surface that fall in a Euclidean distance of 

dri < d < rri + 2 m, in the XY plane. As done with the refuge island, 

all points in S are translated to zroad. Lanes are defined in an 

analogous way following the current normatives (Ley 3.1-IC de 

Trazado de Carreteras, 2016). The abrupt discontinuity between 

the shoulders and the DTM is corrected by the definition of a 

smooth surface that adapts the points of the DTM (in a previously 

specified buffer) to the outer points of the shoulders. This surface 

is called slope. The full design can be seen in Figure 2. 

 

If the type of road selected is different, like national and local 

roads, the methodology exposed in the paragraphs above differs 

in the creation of the refuge island and in the sizes of the rest 

parts. A detailed view can be seen in Figure 3. 

 

2.1.3 Tree filling and signal positioning 

 

Once all road-concerning ground parts are created, the next step 

consists in placing vegetation and traffic signs on the allowed 

ground parts. 

 

The best way to get a vegetation set of points is by the 

employment of an individual tree (IT) segmentation algorithm on 

real forest point clouds. Depending on the source of 

measurements, there are a lot of methods in the state of the art, 

like Zhong et al. (2017), Wang et al. (2021) or Dan Xie, (2020) 

for TLS point clouds and Lishuo Zhang et al. (2020), Parkan et 

al. (2015) or Smits et al. (2012) for ALS point clouds. 

Furthermore, the preferred scenario is that whose points come 

from a previously combination of ALS and TLS point clouds. 

 

Applying these algorithms provides a new set of vegetation 

points, V. Now, the DTM surface is filled with different segments 

of V, depending on the filling degree specified by the user (higher 

degrees imply more populated DTM’s). 

 

Finally, the last part of the geometrical design lies in the creation 

of traffic signs and barriers. 3D traffic sign models can be 

designed following the official normatives (Norma 8.1-IC de 

Señalización Vertical, 2014), or a segmentation method can be 

applied on a real road point cloud, analogously to the previous 

vegetation set. Some algorithms are presented in Soilán et al. 

(2016), Balado et al. (2021) and Wu et al. (2015). 

 

Figure 3. Simplified views of: (a) National road and (b) local 

road. 

Figure 2. Simplified view of a Highway point cloud and its 

parts. 
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Traffic barriers must be created from scratch since the road curve 

may differs between clouds. The graphical design followed the 

official Spanish normative (Orden Circular 35/2014 Sobre 

Criterios De Aplicación De Sistemas De Contención De 

Vehículos, 2014). Some examples are shown in the Results 

section. 

 

The main advantage of the geometrical design exposed before is 

the uncertainty range allowed. Most of the point sets defined 

before did not came from real point clouds; instead, they were 

created from scratch following some rules and official 

normatives. Applying some gaussian noise to each point set in 

the cloud can provide a scenario were a real scanner performed 

its measurements (Mei et al., 2018). 

 

Furthermore, considering that these point clouds are created in 

order to train deep learning models, this uncertainty range, i.e. 

the deviation degree between these clouds and real ones, can be 

low enough for achieving a good learning rate in artificial neural 

networks (ANN) since these models give probability ranges of 

belonging to the different classes shown before for each set of 

points (Yuen et al., 2021). 

 

2.2. Intensity simulation 

As mentioned at the end of the previous section, the geometrical 

methodology was exposed in order to create train datasets of deep 

learning models. For a better performance of these models, an 

additional dimension can be added to the labelled point clouds, 

as it is known that ANN’s work better with geometrical complex 

patterns when more features can be learned from them (Abiodun 

et al., 2018). 

 

In this work an intensity analysis will be done in order to simulate 

different spectral scanners at different laser wavelengths. With 

these simulations, ANN’s can associate not only the geometrical 

features to their labels, also they can use the spectral information 

of each point set for a properly identification of those geometrical 

patterns learned. 

 

First of all, the main idea of this part consists in recreate a spatial 

trajectory and in each point of that trajectory the spectral scanner 

will record all points of the clouds created before inside a 

predefined range. The spectral analysis of each point is made by 

the radar equation (Yan et al., 2012): 

  

 
(3), 

 

where Pᵣ is the total power received by the scanner, ρ is the 

spectral reflectance of the target, R is the range of the scanner 

(distance between scanner and target), a is the atmospheric 

absorption coefficient in dB/km, θ the incidence angle (i.e. angle 

between the laser pulse direction and the normal of the target’s 

surface in the impact point)  and C is a constant factor related to 

scanner features, such as the power emitted, the aperture diameter 

or the power vanished along the scanner volume. 

 

Since C can be assumed as constant in the same experiment, 

equation (3) can be rewritten as follows: 

 

 

(4), 

 

where can be shown that the fraction Pᵣ/C is proportional to the 

intensity (Kaasalainen et al., 2005). Also, it is known that the 

height evolution of a is (Höfle et al., 2007): 

 

• Height of 1000 m → a = 0,22 dB/km 

• Height of 2000 m → a = 0,17 dB/km 

• Height of 3000 m → a = 0,14 dB/km 

 

For ALS clouds, flight heights cannot be very large in order to 

get the spatial resolutions exposed in the previous section, so the 

atmospheric absorption approximately does not contributes: 

 

    

 
(5). 

 

Equation (5) shows the quantity that will be computed for each 

point in the cloud. 

 

 

Next step of this simulation procedure consists of the definition 

of a trajectory suitable for ALS point clouds, for example a grid 

of points at a predefined height. For the normal estimation of each 

point in the cloud, Lambertian surfaces are assumed among all 

sets with adaptive radius. This can be done straightforward with 

the library Open3D (Zhou et al., 2018). A sketch is shown in 

Figure 4. 

 

Finally, the spectral reflectance is a quantity that depends on the 

laser wavelength λ. The Spectral Library of the USGS (Kokaly et 

al., 2017) contains data of the spectral reflectances measured for 

different materials in the laboratory, so selecting a laser 

wavelength in a spectral range can provide the quantity Pᵣ/C and, 

consequently, an intensity estimator for spectral bands. Examples 

of the same cloud simulated at different spectral bands are shown 

in the next section. 

3. RESULTS AND DISCUSSION  

According to the geometrical and spectral design of the scenarios, 

some results obtained are shown in this section. First, Figure 5 

shows 3 examples of point clouds with highways, since is the 

most complex scenario as previously explained. Colour schemes 

of the images in the left side of Figure 5 (a, c, e) correspond to 

each point class available in highways scenarios i.e. terrain 

(DTM), vegetation, stony slope, shoulder, lane pavement and 

refuge island. On the other hand, images in the right side of 

Figure 5 (b, d, f) were coloured according to the Pr/C values of 

each point in the cloud. 

 

Figure 4. Illustration of the reflected angle θ for a laser beam 

(Yan et al., 2012). 
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Analogous, Figure 6 shows 2 examples of point clouds with (a-

b) national road and (c-d) forest environment. This last scenario 

is the simplest since all points in the cloud have the probability 

of belonging to just two classes: vegetation and terrain (DTM). 

 

 

Figure 5. Views of different highway point clouds colored by labels (a ,c ,e) and colored by Pr/C values at a laser wavelength 

of 900 nm (b, d, f). 

Figure 6. (a,b) Local road point cloud colored by labels and Pr/C values at 900 nm of wavelenght and (c,d) generic forest 

point cloud colored by labels and Pr/C values at 900 nm of wavelenght, respectively. 
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4. CONCLUSIONS 

Point clouds with multiple labels were created completely from 

scratch and the results shown in the previous section are very 

similar to measurements made by a real LiDAR scanner. This 

similarity is essential and the main key behind the ANN’s 

learning. 

 

The methodology exposed in this work was implemented in a 

Python program, achieving promising results for further deep 

learning architectures designs. This tool deals with 4 types of 

point clouds, and a maximum of 9 class labels per cloud. One 

way to improve the quality of these clouds is by the definition of 

more geometries and elements present in road and forest 

environments (with known reflectances). 

 

Furthermore, the possibility of creating these point clouds in 

different spectral ranges allow ANNs to associate each 

geometrical and spectral pattern to the correspondent class label 

in a more robust way. Combining the results of this method with 

point clouds taken by real scanners can improve not only ANN’s 

performance but also the development and testing of many 

segmentation algorithms based on Machine Learning techniques 

before applying them in real cases. 
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