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ABSTRACT:

Drones have been of vital importance in the fields of surveillance, mapping, and infrastructure inspection. Drones have played a vital
role in acquiring high-resolution images and with the present need for precision farming, drones have helped in crop classification and
monitoring various crop patterns. With the recent advancement in computational power and development of robust algorithms to carry
out deep feature learning and neural network, based learning such techniques have regained prominence in contemporary research areas
such as classification of common 2-D and 3-D images, object detection, etc. In our research, we propose a deep convolutional neural
network architecture (CNN) for the classification of aerial images captured by drones and high-resolution Terrestrial Hyperspectral
(THS or HSI) which includes 6-layers and with weights optimized along with the input layer, the convolutional layer, the max-pooling
layer, the fully connected layer, softmax probability classifier, and the output layer. We have acquired THS (using Cubert-GmbH
data) and drone agricultural data of seasonal crops sowed during the months of March-June for the year 2017. Crop patterns include
Cabbage, Eggplant, and Tomato with varying nitrogen concentrations in the region of Bangalore, Southern India. To study the influence
and impact of CNN, the ResNets model has been applied. ResNets model and architecture are combined with a deep learning network
followed by a recurrent neural learning network model (RCNN). The HSI input layer with corresponding ground truth data for the region
is fed into the ResNets model with a spectral and spatial residual network for the 7*7%139 input Hyperspectral Imagery (HSI) volume.
The network includes two spectral and two spatial residual blocks. An average pooling layer and a fully connected layer transform into
a 5*5%24 spectral-spatial feature volume further to a single output feature vector. At present we use an RMSProp optimizer for error
loss minimization which when applied to the drone data was able to achieve an overall accuracy of 97.16%. Similarly, for cabbage,
eggplant and tomato acquired through the same method we achieved overall accuracy at 87.619%, 89.25%, and 80.566% respectively
in comparison to ground truth labels. Drones and ground-based datasets equipped with good computational techniques have become
promising tools for improving the quality and efficiency of precision agriculture today.

1. INTRODUCTION datasets. Under image labeling, a class label is assigned to each

label, where each pixel ranges across a set of spectral channels.

Hyperspectral images help in determining and classifying every
pixel corresponding to different land covers and landscapes by
information gathered across band wavelengths in the electromag-
netic spectrum. The increase in spectral and spatial resolution
of hyperspectral images (HSI’s) pertains to two major obstacles
any remote sensing user faces. Also, when the number of train-
ing samples is relatively smaller it concerns the number of fea-
tures extracted, which further causes the well-known problem of
curse of dimensionality (also called as the Hughes Phenomenon)
(Chang 2003).

Firstly, identification accuracy diminishes with rising in the di-
mensionality of training and validation data and with the intro-
duction of hundreds of spectral channels.

Secondly, spatial resolution for identifying small objects is
enough but raises the problem of high correlation between neigh-
boring pixels.

Classifying each pixel with a certain land-cover or landscape
feature is the resultant of hyperspectral image analysis which
includes image segmentation, object recognition, land-use and
land-cover classification, target detection, and so on. Image label-
ing is a mandatory task for remotely sensed hyperspectral image

*Corresponding author.

There are three main approaches for hyperspectral image clas-
sification: pixel-based, spectral-spatial-based, and object-based
Ding et al. (2020). In a pixel-based approach, information is
stored under each pixel for various features throughout each of
these spectral channels which are thus, used to perform classifica-
tion. In spectral-spatial, the neighboring unknown and unlabeled
pixels are also used for classification. This part of image classi-
fication comes under transfer learning. The object-based method
classifies objects on the basis of color, texture, shape, and spectral
signatures profile underclass labels defined from one class into a
cluster of one category (Guo et al., 2018).

The relevant methods which are based on the spectral-spatial ap-
proach are found to be more accurate compared to other methods
as the challenge of dimensionality is taken well into consider-
ation and also, pixels are spatially related. The spectral-spatial
methodology has a diversified technique that includes cluster-
ing (k-means, ISODATA), label propagation, active learning, su-
pervised (SVM), semi-supervised, and deep convolutional neural
networks. Individual manual labeling is a time-consuming pro-
cess. Thus recent research has shifted towards the development
of classification models where few ground truth labels are enough
to classify (Acquarelli et al., 2017).

Furthermore, 3D CNNs were included to extract deep spectral-
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spatial features from raw hyperspectral imagery thus producing
good classification outcomes. Since 2015, the proposed deep
residual neural network ResNet has shown an advancement to the
convolutional neural networks that allow to update gradients and
weight functions with deep convolutional architecture Chen et al.
(2014). We propose here a Hyperspectral Imagery feature extrac-
tion method using convolutional neural networks combined with
residual neural network (ResNet) based pixel-wise classification.
Major highlights of this paper include :

1. Use of ResNet’s for high spatial dimension feature extrac-
tion and spectral channel-based HSI classification.

2. To carry out validation, batch normalization, and gradient
descent loss optimization for overcoming overfitting, under-
fitting, and falling accuracy results.

3. The check the significance of comparative residual block to
learn spatial and spectral representations separately through
which we can distinct and discriminate features that are fi-
nally extracted.

4. To predict and visualize the thematic classified map on the
basis of ground truth labeled data and carry out the valida-
tion assessment.

5. To develop the identification and classification procedure
for crop species and crop management intensity, which is
a prerequisite for the generation of Spatio-temporal and is
explicit of the thematic crop maps of selected transects in
Bangalore, southern India.

Hyperspectral remote sensors capture reflected radiation of tar-
gets throughout the optical spectrum in hundreds of spectral
bands with a very narrow spectral bandwidth (FWHM) thus cap-
turing the specific interactions of the spectrum, matter, and en-
ergy. Several studies have used hyperspectral measurements in
support of crop management such as crop type identification, crop
stress or damage, growth status evaluation. We have acquired
Terrestrial Hyperspectral (THS) ground-based and Unmanned
Aerial Vehicle (UAV) / Drone-based very high-resolution hyper-
spectral imagery using sensor FirefIEYE 185 - Cubert GmbH
with the spatial resolution in the order of 8nm, spectral chan-
nels varying from 450-980nm sampled at 4nm bandwidth, with
139 spectral channels, and power consumption limited at 12V
/ 8W for the region Gandhi Krishi Vignana Kendra (GKVK),
University of Agricultural Sciences, Bangalore, southern India.
The acquired agricultural data comprises seasonal crops sowed
from March-June for the year 2017. Crop patterns include Cab-
bage, Eggplant, and Tomato with varying nitrogen concentra-
tions. Considering above mentioned challenges, recent work has
worked in the direction to apply deep learning models to extract
distinctive and discriminating features. Convolutional neural net-
works (CNN) extracts feature including edges, color, shape and
integrates spatial and spectral features (Palsson et al., 2018).

The performance of assessment, prediction, and classification is
expected to reduce if supervised learning is used when compared
to active or transfer-based learning due to available labeled pix-
els such that no overlap between training and test pixels occurs.
This learning process is mainly part of the pixel-based method.
Recently, CNN’s have n-number of applications in pattern recog-
nition and computer vision tasks. The number of papers assures
CNN can deliver state-of-the-art results using specialized inputs
for HSI-based classification (Ozdemir 2016). 2D-3D CNN'’s
showcased feature extraction spatially and on spectral channels

that promise the best probable classification outcome. Small-
sized 2D and 3-D input HSI cubes are studied for carrying out
prediction and classification. These models generate thematic
maps which process raw HSI but the challenge to overcome is
that as the network goes deeper, the CNN model starts losing
its significance. This is where architectures like AlexNet, VGG,
GooglLeNet, ResNet have a keen role to play Yue et al. (2015).
Here, we have employed ResNet with a 2-D CNN model to train,
validate, test, predict, classify and finally perform accuracy as-
sessment on a raw HSI cube data set.

To tackle this challenge inspired by [3] we propose a semi-
supervised spatial and spectral residual architecture with multiple
consecutive blocks taking HSI characteristics into the account.
With captivation of spatial and spectral residual blocks, we ex-
tract discriminative features from HSI cubes which regard an ex-
tension to 2D CNN along with feature maps being extracted with
Conv3D layered batch normalization Li et al. (2017). The to-
tal parameters include 257,229 and trainable parameters include
256,589 thus non-trainable parameters are 640 which is substan-
tially very less.

Recent studies in face of these problems have tried to encompass
supervised deep learning models to extract/segment out features
for remotely sensed data for classification. For this, we are using
Rectified Linear Unit (ReLU) as the activation function (Zhu et
al., 2017).

f(x) =x" = max(0,x) (1)

ReLU solves the gradient vanishing problem and stops the inac-
tive neurons. The other reason that it is used is because of how ef-
ficiently it can be computed compared to more conventional acti-
vation functions like the sigmoid and hyperbolic tangent, without
making a significant difference to generalization accuracy (Ac-
quarelli et al., 2017).

2. STUDY AREA AND DATASET

The study area chosen lies in southern India in the state of Kar-
nataka in the metropolitan city of Bangalore. The dataset we have
used is scanned using Cubert Hyperspectral FirefIEYE SE S-185
sensor with a spectral resolution of 8nm with channel bandwidth
ranging from 450 - 980 nm with the 139 spectral channels. This
sensor has been mounted to UAV as well as Terrestrial Imager
(THS) to scan crop patterns in the region of Bangalore, Gandhi
Krishi Vignana Kendra (GKVK). Crops have been sown from the
period of March-June, 2017 which include crop varieties such as
cabbage, eggplant and tomato.

Figure 1: Data collections using Terrestrial Hyperspectral Imager
and Drone mounted with hyperspectral sensor

The hyperspectral camera that is being used is mounted on a UAV
platform and can is also mounted on the terrestrial laser scan-
ning (THS) device. It has a wavelength range between 450-980
nm with 139 spectral channels. The resolution of the imagery
is very fine ranging from 8 nm across band wavelength at 532
nm sampled at every 4 nm. Panchromatic image resolution is 1
Megapixel for every 2500 spectra per cube. The weight of the hy-
perspectral camera is 490 grams. Power consumption is 8 watts
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with a 12 volts power supply. The spatial dimensions range be-
tween 1000 * 1000 with spectral channels ranging at 139. The
camera can capture snapshots at sensor resolution 2:1 with cube
resolution 50*50%139 with a maximum of 15 frames per second
with measurements ranging from 1-1000 msec.

3. PROPOSED ARCHITECTURE AND RELATED
WORK

The deep learning framework comprises hierarchical layers of
nonlinear neurons that need to be triggered for creating feature
maps out of big/large frames of labeled images. CNN is a pop-
ular semi-supervised learning technique that currently has shown
the power of feature extraction in pattern recognition and com-
puter vision tasks. Generally, CNNs contain convolutional layers,
pooling layers, fully connected layers, and logistic or softmax-
based multi-class regression layers. There are other techniques
for hyperspectral image classification in response to CNN’s using
different architectures for single-layered pixels, vectored layered
pixels, the patch of labeled/unlabeled pixels, the 3D cube of sam-
ple pixels, and so on. Most hyperspectral images require Princi-
pal Component Analysis (PCA) to reduce redundant data/ remove
noise from the image data set. For dimensionality reduction, PCA
plays a vital role in carrying out analysis of hyperspectral images
(Acquarelli et al., 2017).

Cross-validation is a model validation technique for assessing
how the results of a statistical analysis will generalize to an in-
dependent data set. It is mainly used in settings where the goal
is prediction, and one wants to estimate how accurately a predic-
tive model will perform in practice. In a prediction problem, a
model is usually given a dataset of known data on which training
is run (training dataset), and a dataset of unknown data (or first
seen data) against which the model is tested (called the validation
dataset or testing set). The goal of cross-validation is to define
a dataset to "test” the model in the training phase (i.e., the val-
idation set), to limit problems like overfitting. Other techniques
break down the sample dataset into training and test set by defin-
ing a small fractional ratio (Chang 2003).

Other such methods include Stacked Auto-Encoders (SAE) with
2D patch and PCA, contextual deep CNN, CNN with 1D pixel
cubes, a deep CNN with 1D pixel spectra (Palsson et al., 2018).
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Figure 2: Architecture of 2D Deep Convolutional Neural Net-
work on hyperspectral imagery

The representative trait of DCNN’s in contrast to CNN-based

models is their spectral-spatial structure, imposing coarse spar-
sity and hierarchy by reducing a number of hyper-parameters.The
formulation of convolutional layers is:

F/ = ReLU(W/~' x F/ 4+ BJ) )

In equation(2) F(j) represents output of jth layer in the model
W(j-1) is kth convolutional filter bank,B(fij) denotes bias of jth
layer and ReLU(.) is an activation function.

To do the batch normalization, to regularize, and to speed up
the training process the batch normalization layers need to be
inserted into ResNet architecture to normalize and scale feature
maps into intermediate batches thus, it helps to prevent the over-
fitting problem and thus, also smoothly converges towards global
minima and does not require re-setting the hyper-parameters ev-
ery time. The batch normalization is defined as below (loffe et
al., 2015):

x* = (x*—E(x"))/(VAR(X")) 3)

In equation (3) X(i) denotes ith dimensional feature norm for
X, E(.) represents the expected value and VAR(.) is the variance
of the feature vector.

4. WORKFLOW AND FLOW-DIAGRAM

The below workflow will give a brief outline of how the whole
process is being carried out. We will discuss in the coming sec-
tion, how to deal with preprocessing of high-resolution imagery
using PCA and wavelet denoising techniques to remove unnec-
essary noise and remove the redundant band information. The
creation of training, validation, and test samples is the next step
in extracting features as feature maps. The model which is used is
ResNet pre-trained with 1.5 million images Duchi et al. (2011).
The labeled categories with information are gathered for difter-
ent class labels, these categories point to different classes. This
comparison happens in the prediction phase of the model. The
validation, training, accuracy, and errors are predicted as a func-
tion of different hyperparameter tuning. The cross-entropy func-
tion, cost/loss function, actual and predicted output is determined
Prasad et al. (2008). In general terms, cross-entropy is equal to
predicted label vector output - ground truth label vector. In terms
of formula it is as mentioned below:

1
Error = E * (Yactual - Ypredicted)2 (4)

The validation group keeps a check-up on the cross-validation
after the model has been trained and helps to predict the unknown

Xj Xj

BNCONV
RelLU

BNCONV

G(Xj, Wj) G(Xj, Wj)

Xj+1 Xj+1

Figure 3: Basic Architectural residual blocks. Residual frame-

work without batch normalization (left) and with batch normal-
ization (right)
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Figure 4: Process Workflow

test data. Monitoring the whole training set such that it measures
classification with validation, training, loss, and accuracy as a
function of epochs and iterations are carried out. Finally, the test-
ing group is used for the evaluation of unknown samples. The
trained model thus calculates on the basis of quantitative analy-
sis, prediction, and creates a thematic map of the classified image
(Petrakos et al., 2001).
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Figure 5: Flow-Diagram

Here, the 3D convolutional layered response with the induction
of batch normalization and CONV-3D convolutional layer with
ReLU function setting the weights and other relevant operations
guides us to produce desired classification quantitative analysis
and visualization thematic maps Guo et al. (2018). The proposed
network gives a general description of the cycle of workflow as
mentioned below:

Deep Network

Hyperspectral Raw
I

| o000 --- ooo|

Figure 6: Deep learning with ResNet Recurrent neural network
for hyperspectral image classification: Proposed deep network

N
X; = ReLU (log Y, Xy » Hik + bik) (5)
i=1

5. RESULT AND DISCUSSION- PART I : PRINCIPAL
COMPONENT ANALYSIS AND WAVELET NOISE
REDUCTION TECHNIQUE

Principal Component Analysis (PCA) plays a significant role
in hyperspectral image/spectral classification. Here, similar co-
related features which have the same distribution spread for them
eigenvalues and eigenvectors are found to have similar stats and
un-correlated features which are determined to have maximum
variance and spread for this we use covariance matrices (Prasad
et al., 2008).

cov(A)xW = A xW (6)

det(A —AxI)=0 7

Here, cov (A) is the covariance matrix. W is trans coupling or
transformation matrix, A is eigenvalues of the covariance ma-
trix. How does one determine if some eigenvectors are orthog-
onal or not? It is determined with the covariance matrix being
non-imaginary and non-symmetric or vice versa. The eigenvec-
tor corresponds to the first eigenvector having maximum vari-
ance and maximum spread. How much dimensional space is re-
quired is determined by eigenvalues, eigenvectors, variance, and
spread (Prasad et al., 2008). Single wavelet denoising transform
is mainly used in areas of image compression, feature segmen-
tation, feature extraction, image fusion, segmentation Prasad et
al. (2008). Wavelet transform decomposes the signal into smaller
levels of decomposition using scaling 7(z) and wavelet transform
techniques & (7):

Tey(t) =272 Y h(y)T(2"t —y) ®)
i=1

Eey(1) =272 Y g()E(2"t —) ©)
i=1

Here h(y) and g(y) are low pass and high pass filter coefficients
and x is the scaling factor. Inverse wavelet transform is applied to
generate the decomposed or compressed signal back to the origi-
nal signal.

Spatial profile of eggplant before and after restoring PCA with information on first and
Iastband

Original (band 1) Original (last band)

Restored (band 1) Restored (st band)

Figure 7: Spatial profile of eggplant before and after applying
PCA + wavelet denoising technique
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A baseline CNN does not constitute any more than one hidden
layer. Unlike any deep learning model or framework with
ResNet, we use CNN has no set of pooling or sub-sampling
layers or fully connected layers and it has only just one convo-
Iutional layer (Yue et al., 2015). The use of loss function for
training the standard L2 regularized cross-entropy error function
and cross-validation on a training pixel sample set (x,y) of P
pixels is represented as :

1
LOSScyn (W) = *;Zle <inOgYi + (1 —y;)log(1 *yi)>+

- [WP?)

Here, in equation (5) first term means cross-entropy error loss
minimization function and second terminology is L2 regulariza-
tion. Also y; = W (wp.y(wy.x;)) is network’s output,y; and Y,
are activation functions , x; is i-th pixel , W = [w1,w2] are the
weights from input to single hidden layer (w1) and from hidden
layer to output (w2) and y; is target label (Yue et al., 2015).

The hyper-parameters of CNN include:
. Learning Rate (1) (Default value used: 0.003)
. Momentum (Default value used: 0.9)
. Number of convolutional layers (Default value: 3)
. Size of convolutional kernels N (Default value used: 3,5,7)
. Stride for convolution s ([1 1 1])
. L2 regularization constant A
. Number of Epochs/Iterations (Default: epoch count is 12)

Table 1: Architecture for CNNCONYV and ResNet based Deep
Learning Models
Architecture Convolutional Layers Residual Blocks

CNNConv-4 3 None

CNNConv-6 5 None
ResNet-4 1 1
ResNet-6 1 2

The details of the architecture is mentioned in the above ta-
ble and the details of different layers of CNN and ResNet with
varying kernel sizes is mentioned below.

Overall Accuracy vs. Kernel Size with Increased Convolutional layers on Drone and THS raw data
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Kernel size 7*7

Kernel size 5*5
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Figure 9: Overall Accuracy vs Kernel Size with varying convolu-
tional layers and residual blocks
7. RESULT AND DISCUSSION- PART III: DEEP
RESIDUAL NETWORK MODEL AND
ARCHITECTURE

To effectively extract high-level invariant features, the Deep
Residual Networks model is applied. It can progressively learn
deep spatial-spectral features of hyperspectral data layer by
layer and extract high-level features. Using softmax regression
which is based on creation of high feature maps and visualizing
classified thematic map. Creating deep networks is not as simple
as adding layers Zhu et al. (2017). One problem is the vanishing
gradient problem, which affects the hyper-parameter as it effects
the rate at which converging occurs. Another problem is the
rate of fallout, if the depth of a network increases, the accuracy
doesn’t always rise but instead, it starts getting saturated and
falls outs rapidly Zhu et al. (2017). Residual Network can be
equated as mentioned below:

B(x) =A(x)+x (10)

Here in Eqn. (8), A(x) is termed as Residual function with input
x. Also B(x) is a non-linear function.To determine how A(x) is
related to B(x) we can determine a co-relation as:

A(x) = W3« Woo(Wx) +x (11)

Here, Wi, W,,Ws represents weights for different convolutional
layers and hidden layers. Also, @ represents an activation
function which is used to trigger an impulse thus, activating
neurons to update weights and biases. We have used ReLU
(Rectified Linear Unit) as an activation function to trigger the
neurons and update the weights and biases Zhu et al. (2017).
Finally, how well the residual block is equated is mentioned as:

X; = o(oWs (0Ws(@(Wix)))) +x (12)

The relation between output of the jth unit along with batch nor-
malization, for W; denoting weight parameters for the residual
structure is as shown below:

XH'I :max(O,Xj-i-G(Xj,Wj)) (13)

The details of invariant and extracted high-end features is as men-

tioned below:
Table 2: Details for different layers of CNN based layers and

ResNet layers with varying kernel sizes
Kernel Layers CNN-4 CNN-6 ResNet-4 ResNet-6
Kernel size (5*%5) 84.38 86.7 8832  90.58
Kernel size (7*7) 87.76 87.80 89.56  90.69
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. Extraction of feature maps under initial phase: Firstly, from
the hyperspectral cube having 7*7*%139 dimensions we are
creating the feature maps by reshaping raw pre-processed
denoised images and setting to 1-D spectral features. This
is achieved by flattening the raw image using pixel-based
kernel operation (convolution), sub-sampling and doing
the pooling operations Zhu et al. (2017). The original raw
reshaped is sub-categorized into Q spectral responses with
deviation { the formula is as below:

5 =vR 1< <QLG)FI<Kk<CH+W  (14)

With the bias W, s; is the jth spectral response. Before
doing the pre-processing, v is the initial spectral shape
length. To get the feature map, we get the two parts of basic
spectral response as independent variables. Thus feature
map is given by:

Fo=+/(5is1),1<i,j<Q1<k<Q 15)

where F; is kth spectral feature map extracted and Q is the
number of feature maps determined as part of the extracted
features. Thus, we get Q spectral features from 1D flat-
tened image. We reshape the flattened 1D shape image into
2D residual maps which are passed as an input to the deep
learning model inclusive of the ResNet architecture Zhu et
al. (2017), Yue et al. (2015).

. Up-sampling, Down-sampling and softmax regression clas-
sifier: At the output layer predicting a discrete variable
whether a grid of pixel intensities is represented by labels
asQoralora2ora3ora4label. This is a classification
and a label problem. Logistic regression which is a simple
classification algorithm was used for learning to make such
decisions Zhu et al. (2017).

1

~ e )

16)

P(y =1]x) = he(x)

Ply=0x)=1-Ply=1]x)=1-hey)  (17)

For the logistic regression SoftMax has been used to predict
the value of y; for the ith example x; using a linear function:
y = he(x) = O xx This is clearly not a great solution for
predicting labeled-values y; € 0,1,2,3,4 and so on (Zhu et
al., 2017).

The input to a convolutional layer is a 7 * 7 * 139 im-
age where 7 is the height and width of the image and 139
is the number of spectral band channels. The convolutional
layer will have k filters (or kernels) of size 5*5%24 where
5 represents the smaller dimension of the image and 24 is
the smaller subset of band spectral channels than total bands
of 139 obtained with different kernel window filters. The
size of the filters gives rise to the locally connected struc-
ture which is each convoluted with the image to produce k
feature maps of size 7—5+1. Each map is then sub-sampled
typically with mean or max-pooling over p*p where p €
(2,5). After activation with some ReLU layers, we can add
the pooling layers. Thus, it helps to down-sample the fea-
ture maps. A kernel window of minimum size 2*2 and stride
of length 1, helps to keep applying at the input volume and
output the size of 4*4 or 8*8 size (Li et al., 2017).

. Identifying total number of feature maps, hidden layers: As
more number of layers add the chances of test accuracy may
reduce even if training accuracy is very high (the problem

of overfitting). And another problem that can arise is high
bias and low variance in the training data (the problem of
underfitting). The right set of hidden layers and activation
function is used to minimize the weight factors and remove
the vanishing gradient challenges (Myasnikov 2016).

Input #1

Tnput #2

e - ReLU - Sigm - Tanh

sSingle depth slice
NI 2 | 4

max pool with 22 fiters
and stride 2 6|8

7|8
1]0 3|4
3|4

56
3|2
i 2

<

Figure 10: a. Neural Network Layer, b. Inputs, weights, bias,
activation function and output, c. Plot difference between ReLU,
sigmoid and Tanh, d. Hidden layers, e. Depth slicing with 2%2
max pooling kernel window and stride 2

y(x) = he(x) =¥+ (W' x + bias) (18)

Here, W represents the activation function which can either
be: ReLU, sigmoid or tanh.

4. Batch size, epochs and iterations: Batches of total samples
are fed to a hidden layer for training the model. Whenever
batch size is defined in the equation as a hyperparameter it
represents the sample size that are used for training, valida-
tion, testing. Smaller the batch size better is the response of
the hyperparameter tuning (loffe et al., 2015).

5. Learning Rate (n): Learning rate is the order in which
weights are trained and fed into forward or backward prop-
agation. These are applied mostly to weights and biases
at time of backward propagation loffe et al. (2015). The
learning rate used for this study was in the order of 0.01 for
stochastic gradient descent (SGD) optimizer and 0.0003 for
RMS prop optimizer. The weight vectors as a function of
learning rate and bias can be represented as:

Wi:Wg-n*%-ﬁ-bias(b) (19)

6. Gradient descent, Log-Likelihood function: Gradient de-
scent optimizes the weight such that it has to reduce the
cost function iteratively moving in the direction of the lo-
cal minima and the descent and is defined as the negative
gradient of weights as function of time. This cost or loss
function needs to be minimized to reduce validation errors
(Myasnikov 2016).

1 P
F=—9V F 2
Pi:zl k (20)

Here F}, points to loss likelihood or cross-entropy function.

F = —log(p(yx|xx)) 1)

In other words, how would we go about calculating the par-
tial derivative of cost/loss function with respect to 8 of the
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cost function (the logs are natural logarithms) is given as:

7(0) =~ L 3" yloghg() + (1 /) log(1 ~ g (<)
i=1

(22)
Our aim using gradient descent is to normalize and reduce
the effect of cost/loss function.

8. RESULT AND DISCUSSION- PART IV: OPTIMISER,
ERROR PROPAGATION REDUCTION

With the created ground truth labels, classification, prediction
and thematic classification maps are created with 6 different op-
timiser. Finally, the best suited model is used for prediction
and visualization. Ground labeled image is added in the semi-
supervised learning Kuo et al. (2011).The best suited optimiser
and reduction in error propagation is mentioned below:

Results and Analysis on prediction and classification on new drone image

Ground Truth Labels

HSI Drone Raw Data

Figure 11: HSI Raw imagery and ground truth labeled image

Results and Analysis on THS High Resolution Images for Cabbage (DCNN + RCNN+
RMSProp)

‘THS Cabbage Plot-5000 sampling month April Classified Thematic Map(RMSProp)
[ g .

Legend
| cabbage
aem Pipe

B 5ol
Figure 12: Results and analysis on THS high resolution imagery

for cabbage using DCNN + RCNN + RMSProp optimiser

Training Loss, Validation Loss and Training Accuracy, Validation Accuracy
as a function of number of epochs
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Figure 13: Training loss, validation loss, training accuracy, vali-
dation accuracy as function of number of iterations and epochs

Table 3: Confusion Matrix using RMSProp

Soil Cabbage Pipe Accuracy
Soil  2,55,456 8,822 119 96.61%
Cabbage 19,601 5,84,335 3,496 96.19%
Pipe 104 6,774 1,21,516 94.6%

Reliability 92.83% 97.40% 97.11% O.A

Overall Accuracy = 96.13%, Users Accuracy = 95.78%
Producers Accuracy = 94.81%
Omission Error(underestimation) = 1- users acc = 0.042
Commission Error(overestimation) = 1- producers acc = 0.051

Results and Analysis on Drone High Resolution Images using DCCN+ RCNN+ SGD
Optimization
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Figure 14: Results and analysis on drone high resolution imagery
using DCNN + RCNN + SGD optimiser

Training Loss and Validation Loss as a function of number of epochs
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Figure 15: Training loss, validation loss as function of number of
iterations and epochs

Training Accuracy and Validation Accuracy as a function of number of epochs

092 train_acc vs val_acc
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°
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Figure 16: Training accuracy, validation accuracy as function of
number of iterations and epochs

9. LIMITATIONS AND CONCLUSION

Limitations: The limitations of this research can be listed in a few
major points.
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1. Challenges occurred in Transfer learning responses were
much larger than anticipated, in which ground truth labels
prepared in a particular set were unusable in cases where
the test sample sets had changed.

2. Certain optimizers performed better whereas some had ex-
tremely poor performance.

3. ResNet model with deepened convolutional layers showed a
diminishing performance in accuracy.

4. Complex architecture hampers the overall performance by
increasing execution time.

Conclusion :

In the end, this research study works on the use of advanced
deep learning models and techniques for spatial-spectral crop
classification of UAV and THS hyperspectral images. Most of
the research work during earlier phases was confined to the use
of complex model architectures for standard but old datasets. A
lot of research studies and questions were raised on these stan-
dalone datasets by advanced deep learning model architectures
which in time became obscure in nature. This paper breaks the
barrier and addresses fresh problems and challenges pertaining
to high-resolution imagery. It also adds an additional possibility
of seeking multiple ways and means of determining ground truth
labeled data.
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