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ABSTRACT: 

Mapping the distribution of plastic covered greenhouses (PCG) is essential for any attempts to manage these complex areas of intensive 

agriculture. It is therefore important to understand how the spectrum of different PCG varies in order to establish its unique absorption 

features and how these can be utilised for mapping PCG from remote sensing imagery. This paper presents an analysis of the surface 

reflectance values of satellite image spectra for 50 PCG. The reflectance of these PCG, located in Almería (Spain), was studied in two 

seasons of the year (summer and winter). All single bands of WorldView-3 (WV3), Sentinel-2 MSI (S2 L2A) and Landsat 8 OLI (L8 

L2), together with Normalized Difference Plastic Index (NDPI) and Normalized Difference Vegetation Index (NDVI), were generated 

through an object-based image analysis (OBIA) approach for each PCG and season. The results showed the variability of absorption 

features and overall shape of the spectra for all PCG. The main differences in reflectance were attributed to the crops and the specific 

characteristics of their local management. A relationship between brightness and whitewashing (greenhouse roof painted with lime to 

provide shade and reduce the temperature inside the greenhouse, especially in summer) was found, showing the ability of whitewashing 

to temporally mask the spectral signature of the plastic film. 

1. INTRODUCTION

Greenhouse farming is an agricultural management system that 

has demonstrated its efficiency in intensifying food production. 

These systems constitute a feasible alternative to ensure food 

supply, one of the greatest challenges facing humanity in the 21st 

century (Aznar-Sánchez et al., 2020). 

The province of Almería, located in the semi-arid coastal plain of 

Southeast Spain, has a plastic covered greenhouses (PCG) area 

of 31,614 ha and an even larger crop-growing surface (45,680 

ha), thanks to the scheduling of two growing cycles per year. 

Over the last 18 years, PCG surface area has increased by 16%. 

These data make Almeria the province with the highest 

concentration of protected crop surface (greenhouses) in the 

world (Duque-Acevedo et al., 2020). This large concentration of 

PCG requires transformative solutions for social, economic and 

environmental challenges and processes (Castro et al., 2019). 

Remote sensing provides coverage of large areas with high 

precision and can be a very efficient tool for improved 

management across scales (Segarra et al., 2020). 

Periodic spectral data in the visible and infrared part of the 

electromagnetic spectrum (VNIR), acquired from various 

satellite sensors, offers an unlimited basic source of information 

(Pleniou and Koutsias, 2013). Remote sensing is the most cost-

effective method for large scale monitoring and analyses in 

agriculture. To date, the main remote sensing tools utilized by the 

agricultural sector are visible, near infrared (NIR), and short-

wave infrared (SWIR) sensors (Khanal et al., 2017). 

Several research lines have emerged throughout the 21st century 

based on emerging satellite data sources. As an alternative to 

pixel-based modelling, object-based image analysis (OBIA) 

provides a framework that can be used to integrate more complex 

data than the raw remote sensing signal by including different 

levels of spatial information (de Grandpré et al., 2022; Hossain 

and Chen, 2019; Jiménez-Lao et al., 2020). Spectral indexes 

represent one of the most used approaches to analyse data in the 

optical domain. However, optimal indexes should be designed for 

specific applications and particular instruments (Verstraete and 

Pinty, 1996). 

This work aims at exploring and characterizing the spectral 

properties of PCG by comparing the reflectance values of three 

different optical satellite sensors such as WorldView-3, Sentinel-

2 and Landsat 8. The mean reflectance values of each single 

band, brightness computed from RGB bands, as well as 

Normalized Difference Vegetation Index (NDVI) and 

Normalized Difference Plastic Index (NDPI), were studied for 50 

units of PCG and two seasons (winter and summer). 

2. STUDY SITE AND DATASETS

2.1 Study Site 

Figure 1. Location of the study area. 
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This investigation was conducted in Almería, located in the 

Southeast of Spain, specifically over an area with a great 

concentration of PCG. The study site comprised a rectangle area 

of about 5,000 ha centred on the WGS84 geographic coordinates 

of 36.7824°N and 2.6867°W (Fig. 1). 

 

2.2 Data set Pre-processing  

Seven cloud-free satellite images were acquired in 2020. They 

were taken in two dates (summer and winter) from three different 

sensors: WorldView-3 (WV3), Landsat 8 (L8) and Sentinel-2 

(S2). S2 data include both Sentinel-2A and 2B images.  

 

Two WV3 bundle images in Ortho Ready Standard Level-2A 

(ORS2A) format including 16 bands (panchromatic (PAN) with 

0.3 m ground sample distance (GSD), multispectral (MS) with 

1.2 m GSD, and short-wave infrared (SWIR) with 3.7 m GSD) 

were acquired on July 11 and December 25, respectively (Table 

1). A pansharpened image with 0.3 m GSD was attained by 

means of the PANSHARP module included in Geomatica v. 2018 

(PCI Geomatics, Richmond Hill, ON, Canada) from the PAN and 

MS images of WV3. For the two images, the coordinates of seven 

ground control points (GCPs), obtained by differential global 

positioning systems (DGPS), were used to compute the sensor 

model based on rational functions refined by a zero-order 

transformation in the image space (RPC0). A medium resolution 

10 m grid spacing DEM with a vertical accuracy of 1.34 m (root 

mean square error (RMSE)), provided by the Andalusian 

Government, was used to carry out the orthorectification process. 

Two WV3 orthoimages with 3.7 m GSD containing all the 16 

bands were generated using Geomatica v. 2018. Finally, the 

orthoimages were atmospherically corrected by using the 

ATCOR (atmospheric correction) module included in Geomatica 

v. 2018. This absolute atmospheric correction algorithm involves 

the conversion of the original raw digital numbers to ground 

reflectance values by applying the MODTRAN (MODerate 

resolution atmospheric TRANsmission) radiative transfer code. 

 

Three S2 images in level 2A mode (L2A) were acquired on July 

12, December 24 and December 26 from Sentinel-2A, 2B, and 

2A, respectively. The L2A product provides surface reflectance 

images divided in 100 x 100 km2 UTM/WGS84 projected tiles. 

This product has been systematically generated using Sen2Cor 

processor (Main-Knorn et al., 2015) over Europe since March 

2018, and was extended to a global scale in December 2018. The 

S2 sensor collects up to thirteen bands with three different 

geometric resolutions ranging from 60 m to 10 m GSD. S2 

images were freely downloaded from the European Space 

Agency (ESA)-Copernicus Scientific Data Hub tool. In this 

study, six 20 m GSD bands and four 10 m GSD bands were used 

(Table 1). These images were clipped according to the study area. 

Next they were co-registered with the WV3 pansharpened 

orthoimages (0.3 m GSD) using a first order polynomial 

transformation computed on 10 planimetric GCPs evenly 

distributed over the study area. 

 

Two L8 (Collection 1 Level-2 (L2) products) images were 

acquired on July 11 and December 29. They were freely 

downloaded from the U.S. Geological Survey (USGS) website 

through the EarthExplorer tool. The L8 OLI L2 product is 

considered as the official surface reflectance product for L8 

images. It is generated through the LaSRC code (Vermote et al., 

2016) at 30 m GSD (Table 1). These images were clipped 

according to the corresponding study area. After that, they were 

co-registered in the same way that the S2 images.  

 

A detailed view of six out of the seven images used in this work 

can be seen in Figure 2. In the case of S2, we decided to use two 

images for the summer season. Each pair of scenes was taken on 

the same day (preferably) or with and acquisition time difference 

ranging from 1 to four days.  

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

 

Figure 2. Detailed view (RGB) of six of the images used in this 

work: (a) WV3 3.7 m GSD, July 11; (b) WV3 3.7 m GSD, 

December 25; (c) S2 10 m GSD, July 12; (d) S2 10 m GSD, 

December 24; (e) L8 30 m GSD, July 11; (f) L8 30 m GSD, 

December 29. 
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WorldView-3  

Name  Range (nm) Resolution (m) 

Coastal 397–454 1.2  

Blue 445–517 1.2 

Green 507–586 1.2 

Yellow 580–629 1.2 

Red 626–696 1.2 

Red Edge 698–749 1.2 

NIR1 765–899 1.2 

NIR2 857–1039 1.2 

SWIR9 1184–1235 3.7 

SWIR10 1546–1598 3.7 

SWIR11 1636–1686 3.7 

SWIR12 1702–1759 3.7 

SWIR13 2137–2191 3.7 

SWIR14 2174–2232 3.7 

SWIR14 2228–2292 3.7 

SWIR16 2285–2373 3.7 

Sentinel-2 

Name  Range (nm) Resolution (m) 

Blue 458-523 10 

Green 543-578 10 

Red 650-680 10 

Red Edge 1 (RE1) 698-713 20 

Red Edge 2 (RE2) 733-748 20 

Red Edge 3 (RE3) 773-793 20 

NIR8 785-899 10 

NIR8a 855-875 20 

SWIR1 1565-1655 20 

SWIR2 2100-2280 20 

Landsat 8 OLI 

Name  Range (nm) Resolution (m) 

Coastal 435-451 30 

Blue 452-512 30 

Green 533-590 30 

Red 636-673 30 

NIR 851-879 30 

SWIR1 1566-1651 30 

SWIR2 2107-2294 30 

 

Table 1. Bands of WorldView-3, Sentinel-2, and Landsat 8 OLI 

used in this study. 

 

3. METHODOLOGY 

In this study, spectral signatures collected from WV3, S2 and L8 

images were first analysed to identify spectral difference in single 

bands over PCG land cover. In addition, NDVI (Rouse et al., 

1973) and NDPI (Guo and Li, 2020) were evaluated. Note that 

NDPI is a novel spectral index for detecting plastic materials 

based on WV3 SWIR bands.  

 

The reflectance spectra were evaluated using 50 well-distributed 

polygons over the study site, all of them located inside of 

individual PCG. These 50 manually segmented objects were 

delineated onto the WV3 pansharpened image. Furthermore, 

each polygon was digitized, adapting its boundary to the shape of 

each PCG and leaving an inside buffer of at least 10 m. This 

technique tried to avoid potentially mixed pixels located at the 

edges of the sampled PCG, which is a very usual issue when 

working on medium-resolution satellite imagery (Aguilar et al., 

2020). 

 

Trimble eCognition Developer v. 9.4 software was employed for 

the extraction of the mean surface reflectance values of all the 

pixels inside of each reference polygon from WV3, S2 and L8 

products. To do this, the chessboard segmentation algorithm 

included in eCognition was applied to a previously digitized 

thematic layer containing the 50 reference polygons. Through 

using this approach, the software only projects the vector file 

onto the images in order to obtain a boundary adapted to the 

pixels (sample) to be extracted inside the polygons. One 

eCognition project was conducted for each image and date (i.e., 

seven different projects were carried out). Figure 3 depicts the 50 

reference PCG polygons in blue, which were manually digitized 

on the WV3 pansharpened image generated on July 11. 

 

 
Figure 3. Reference PCG in blue over WV3 July 11. 

 

 

Finally, the mean surface reflectance values (digital numbers 

ranging from 0 to 10,000) were extracted for each one of the 

WV3, S2 and L8 bands shown in Table 1 for the two seasons 

tested. All the pixels (with an enhanced spatial resolution of 

about 1 m) within the OBIA segments were considered. NDVI 

and NDPI were also computed for each polygon and date, using 

the mean values attained from Red and NIR bands (NIR8a for S2 

and NIR2 for WV3) and SWIR bands of WV3 (SWIR10, 

SWIR12, SWIR13 and SWIR16) (Equations 1 and 2). 

 

It is important to note that NDPI only was computed for WV3 

images, while NDVI was calculated in all cases. Figure 4 shows 
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the flowchart that summarizes the method applied to obtain the 

features extracted from each reference polygon. 

 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅)
 (1) 

  

𝑁𝐷𝑃𝐼 =
(𝑆𝑊𝐼𝑅10 − 𝑆𝑊𝐼𝑅12) + (𝑆𝑊𝐼𝑅13 − 𝑆𝑊𝐼𝑅16)

(𝑆𝑊𝐼𝑅10 + 𝑆𝑊𝐼𝑅12) + (𝑆𝑊𝐼𝑅13 + 𝑆𝑊𝐼𝑅16)
 (2) 

 

 

 
 

Figure 4. Flowchart of the methodology applied in this work. 

 

 

4. RESULTS AND DISCUSSION 

4.1 Spectral properties of PCG 

The reflectance values for each spectral band (following the order 

depicted in Table 1 for each satellite) extracted from the sample 

of 50 PCG, including summer and winter data, are presented in 

Figure 5, Figure 6 and Figure 7 for S2, WV3 and L8 sensors, 

respectively. As it was described above, the spectral signatures 

of PCG were compared in two periods to obtain a better 

understanding of their spectral behaviour and potential 

discriminatory ability. According to Guo and Li (2020), the 

discrimination provided by the NIR and SWIR spectral channels 

is usually greater than that obtained by using only the visible 

bands. 

 

The spectral behaviour of the two periods turned out to be very 

similar for the three satellite imagery studied. The spectral 

signature presented higher variability over the summer period. In 

this case, the reflectance values ranged from 1,238 to 8,002 

digital number (DN) for S2, from 1,340 to 7,081 DN for WV3, 

and from 2,134 to 4,966 DN for L8 in the blue channel. However, 

the reflectance values showed narrower variability in the winter 

season. This fluctuation of the three sensors between periods, due 

to occasional sun glint effects and the presence of eventual roof 

greenhouse whitewash (greenhouse shading) that temporally 

masked the spectral signature of the plastic film, has been already 

described in Aguilar et al. (2021). In fact, whitewashed 

agriculture management technique is commonly used to control 

temperature by decreasing the radiation inside the greenhouse in 

southern Spain. Note that the energy reflected from the 

whitewash is not accumulated inside the greenhouse (Fernandez 

Rodriguez et al., 2003). The advantage of using whitewashed lies 

mainly in its price and its easy and economical application. 

Whitewashed is used during the periods of higher radiation, 

which coincide with summer season in northern hemisphere. This 

is the reason why more PCG appear with a characteristic white 

colour in the summer images than in winter ones (Figure 2). 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 5. Spectral signature plots extracted from S2 images for 

each of the 50 PCG samples. (a) Summer period. (b) and (c) 

Winter period.  

 

It should be noted that the S2, WV3 and L8 images showed 

higher reflectance values and greater inter-greenhouse variability 

in summer season than in winter. In the same way, the shape of 

the spectral signature for visible and near-infrared channels 

turned out to be more similar to the typical shape of outdoor crops 

during the winter period, just when the crop is usually fully 

developed (higher leaf area index) and greenhouse roofs are 

cleaner to increase the luminosity (especially photosynthetically 

active radiation (PAR)) inside the greenhouse. 
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(a) 

 
(b) 

 

Figure 6. Spectral signature plots extracted from WV3 images 

for each of the 50 PCG samples. (a) Summer period. (b) Winter 

period.  

 

 
(a) 

 

 
(b) 

Figure 7. Spectral signature plots extracted from L8 images for 

each of the 50 PCG samples. (a) Summer period. (b) Winter 

period.  

 
Figure 8. Greenhouse with black shading net marked with a red 

ellipse over a WV3 image taken on July 11. 

 

Observing the spectral signatures of the three sensors in the 

summer period (Fig. 5a, 6a and 7a), it can be made out a spectral 

signature with clearly lower values (represented in green). It 

corresponds to a greenhouse with a black shading net. This 

greenhouse is shown in Figure 8. During winter period (Fig. 5b, 

5c, 6b and 7b), we found two objects that, especially through the 

visible spectrum, had higher reflectance values than the rest. 

They are represented in orange and blue colours. This occurred 

for all three sensors tested. It is important to highlight that these 

are greenhouses that were whitewashed during the winter period 

to limit the vegetative growth of the crop (Figure 9). 

 

 
 

Figure 9. Whitewashed greenhouses marked with red ellipses 

over a WV3 image taken on December 25. 

 

4.2 Visual evaluation  

NDVI has been a principal vegetation index in multi-temporal 

vegetation monitoring, providing a quantitative value of the 

spectral contrast between red and near infrared surface 

reflectance (Tucker, 1979). The NDVI values obtained during 

winter were higher than those obtained during summer. False-

colour satellite images from WV3 (NIR1-Red-Green), S2 

(NIR8a-Red-Green) and L8 (NIR-Red-Green) (Figure 10) show 

a clearly light pink greenhouse colour over all satellite images in 

winter period. That is just when greenhouse cultivation was 

growing and, in most cases, fully developed. 

 

4.3 Analysis Based on Indices  

To analyse the whitewashing on the greenhouses through satellite 

images, the brightness feature has been used. It was computed as 

the average of the visible (RGB) bands.  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-585-2022 | © Author(s) 2022. CC BY 4.0 License.

 
589



 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

 

Figure 10. False-colour satellite images: (a) WV3 July 11; (b) 

WV3 December 26; (c) S2 July 12; (d) S2 December 24; e) L8 

July 11; (f) L8 December 29. 

 

In Figure 11, we can see the scatterplots relating NDPI and 

brightness values calculated on WV3 images for each PCG in 

summer period (Fig. 10a) and winter period (Fig. 10b). The 

relationship between brightness and NDPI values shows that high 

brightness values are related to low NDPI values in summer 

(Figure 11a). Overall, the whitewashed masked the plastic 

properties of PCG provoking that NDPI (plastic index) was much 

lower. It is noteworthy that, in Figure 11a, the point that had a 

lower brightness, which is more displaced to the left, was the 

greenhouse represented in Figure 8. Its unique characteristic 

black colour produced lower values in the visible spectrum (low 

brightness), although it could be successfully detected by 

applying the NDPI index (i.e., this greenhouse had a plastic roof). 

 

During the winter period, when the practice of whitewashed is 

not usually applied, the NDPI values looked like more stable. 

Two greenhouses, those represented in Figure 9, presented 

clearly higher brightness due to whitewashed. 

 

  
(a) 

 

 
(b) 

 

Figure 11. Scatterplots relating NDPI and brightness values for 

WV3 and each PCG in (a) Summer and (b) Winter.   

 

  
(a) 

 

 
(b) 

 

Figure 12. Scatterplots relating NDVI and brightness values 

computed on a) WV3 and (b) S2 images for each PCG in summer. 
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The scatterplots relating NDVI and brightness values computed 

on WV3 and S2 for each PCG in summer are depicted in Figure 

12. During the summer months, greenhouses, in addition to being 

mostly whitewashed, do not house growing crops or they are in 

very early stages. So, the NDVI values are usually very low. Note 

that in summer period it is even possible to find negative NDVI 

values, mainly when calculating this index from S2 data. Those 

negative values are attributed to the glint effect described in 

Aguilar et al. (2020). 

 

The corresponding NDVI and brightness values for the winter 

season are presented in Figure 13. The NDVI values followed a 

clear tendency to decrease when the brightness values increased 

for both WV3 (Figure 13a) and S2 (Figure 13b) sensors.     

 

 

  
(a) 

 

 
(b) 

 

Figure 13. Scatterplots relating NDVI and brightness values 

calculated on WV3 (a) and S2 (b) imagery for each PCG in 

winter. 

 

5. CONCLUSIONS 

In this study, an OBIA analysis of the reflectance values obtained 

by three different sensors (WV3, S2 and L8) over PCG landcover 

was carried out. 

 

When observing the extracted reflectance values, the first finding 

that stands out is the different spectral capacity of each of the 

sensors, being WV3 the sensor that collects the most wavelengths 

with the highest resolution (16 bands with a maximum 3.7 m 

GSD). On the other hand, the results obtained in the 50 PCG 

objects analysed show a concordance between the three sensors, 

which could lead to future studies in which they could be used 

together. 

 

It was observed a high variability between the objects classified 

as greenhouses in the study area. In this sense, there is a need to 

perform a previous clustering-based classification to 

differentiate, at least, whitewashed and black shading net 

greenhouses due to their extremely singular spectral response. 

Further studies undertaken in different study areas will allow a 

better understanding of the common spectral aspects of 

greenhouses over the world. 

 

Finally, the agricultural practice of greenhouse bleaching or 

whitewashing masked the original spectral properties of the 

greenhouse cover plastic. For a better understanding of this 

effect, further studies on both spatial and temporal brightness 

variability on greenhouses and its relationship with whitewashing 

should be carried out. 
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