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ABSTRACT: 

 

In recent years, various Convolutional Neural Networks (CNN) have been used to achieve acceptable performance on semantic 

segmentation tasks. However, these supervised learning methods require an extensive amount of annotated training data to perform 

well. Additionally, the model would need to be trained on the same kind of dataset to generalize well for other tasks. Further, commonly 

real world datasets are usually highly imbalanced. This problem leads to poor performance in the detection of underrepresented classes, 

which could be the most critical for some applications. The annotation task is time-consuming human labour that creates an obstacle 

to utilizing supervised learning methods on vision tasks. In this work, we experiment with implementing a reinforced active learning 

method with a weighted performance metric to reduce human labour while achieving competitive results. A deep Q-network (DQN) 

is used to find the optimal policy, which would be choosing the most informative regions of the image to be labelled from the unlabelled 

set. Then, the neural network would be trained with newly labelled data, and its performance would be evaluated. A weighted 

Intersection over Union (IoU) is used to calculate the rewards for the DQN network. By using weighted IoU, we target to bring more 

attention to underrepresented classes.  

 

 

1. INTRODUCTION 

Semantic segmentation is the process of building semantic maps, 

in which the input images are turned into classified raster regions. 

This field of study is critical to various machine vision tasks like 

medical image analysis (Gu et al., 2019; Hesamian et al., 2019), 

autonomous driving (B. Chen et al., 2017), and augmented reality 

(Guan et al., 2020).  

 

Development of Convolutional neural networks lead into models 

which could access great performance on the task of semantic 

segmentation. The Fully Convolutional Network (Shelhamer et 

al., 2016) was one of the most successful CNN-based 

segmentation models that fused the output layer with shallower 

layer’s output. Then encoder-decoder networks were introduced, 

which mapped the low-resolution encoder features to input 

images feature map (Badrinarayanan et al., 2016). Then U-Net 

was designed to learn from fewer training data in the biological 

microscopic imagery case, where there is scarcity of data 

(Ronneberger et al., 2015). Skip connections had been used on 

segmentation networks to improve the accuracy and deal with 

vanishing gradients. FPN model used feature pyramid to better 

propagate low information into the network (Lin et al., 2017). 

DeepLab and DeepLabv2 apply several atrous or dilated 

convolution (Zhao et al., 2017) of the same input with different 

rates to detect spatial patterns. In DeeplabV3 they created parallel 

atrous convolution layers, these layers are grouped as Atrous 

Spatial Pyramid Pooling (ASPP) (L.-C. Chen et al., 2017). Even 

though these models have achieved state-of-the-art results for 

semantic segmentation, the need for CNN models to process a 

considerable amount of high-quality data to generalize 

effectively and perform robustly is still an open problem. 

 

Preparing training data for semantic segmentation is time-

consuming and intense labour, which is an obstacle in taking 

advantage of abundant data being collected daily with various 

sensors. Thus, there is a need for a method that could actively 

learn to decrease the amount of data that needs to be labelled 

while keeping the same performance. 

 

Another issue with the data for supervised learning methods is 

that the real world datasets that are used for training, are 

inherently unbalanced. Naturally, some classes such as sky, 

vegetation and buildings occupy many more pixels than other 

classes, while some of these underrepresented classes are much 

more critical for some applications like self-driving cars. The 

imbalance is noticeable in the cityscapes dataset (Cordts et al., 

2016), which is from street views. In this dataset having 19 

classes, the six most underrepresented classes accumulatively 

occupy less than 2% of the pixels in the training dataset. In 

contrast, a class like a road occupies more than 36% of the pixels 

in the training set (Fig. 1). This imbalance reflects the imbalance 

in the performance of the models. 

 

Active learning is a field of study that addresses the need for a 

substantial labelled dataset by actively choosing part of the data 

to be annotated by an “oracle”. The approaches had been proven 

effective in reducing training size while keeping the same 

performance. Joshi et al., 2009 have developed a method based 

on uncertainty sampling to perform the image classification task. 

Later, an adaptive active learning method was proposed for the 

same task (Li and Guo, 2013). In this method, information 

density and uncertainty measures were combined with choosing 

critical instances to be labelled. Then deep reinforcement 

learning was used as an active learning technique (Fang et al., 

2017) for a Natural language processing (NLP) task. 

Konyushkova et al., 2019 used Deep Q-network (DQN) for 

active learning for the task of classification. In contrary, the task 

of semantic segmentation is a computationally complex problem. 
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Casanova et al., 2020 handled this problem by applying an end-

to-end reinforced active learning method using a DQN as an 

operational learning strategy to choose regions from the images 

that would provide the most information. Having the DQN 

choose from small regions of the image, they address the 

unbalance dataset issue based on the active learning strategy. To 

address the problem underrepresented classes is addressed by 

using mean IoU metric to reward the DQN network. 

  

In this work we aim to address the problem of underrepresented 

classes even further by using a reinforced active learning method 

and employing a weighted IoU score for rewarding the DQN 

network. We hope that by putting more weight on 

underrepresented classes we can increase the performance of 

network on these classes even more. We evaluated the 

performance of this method on the Cityscape dataset and reported 

the IoU score in comparison to other baselines while using 

various amounts of data for training.  

 

2. RELATED WORK 

There are so many recent works that address the need of the CNN 

models need for a vast dataset. The encoder-decoders use encoder 

models that had already been trained for the task of feature 

extraction. This method is generally known as transfer learning, 

in which a model would use the knowledge gained while solving 

a problem and make use of that knowledge for another but related 

task (Zhuang et al., 2020). These encoders, often called the 

backbone, help the models generalize well for a complex task 

while being trained on a smaller dataset. Some well-known 

backbones architectures are ResNets (He et al., 2015), Xception 

(Chollet, 2017), and Mobilenet (Howard et al., 2017). Even 

though transfer learning reduces the need for data severely, a 

large number of data is still needed for the model to learn the 

specified task well.  

 

Many semi-supervised and unsupervised learning methods were 

used to decrease the number of labelled data needed in recent 

years. Adversarial learning methods have been used to perform 

the task of semantic segmentation with less labelled data (Hung 

et al., 2018; Souly et al., 2017). These methods put more effort 

into finding regions that could be robustly predicted. Li et al., 

2020 proposed a way that uses of the mean teacher and student 

approach to perform the task of semantic segmentation on 

medical images. Bousias Alexakis and Armenakis, 2021 applied 

a semi-supervised semantic-segmentation method for change 

detection.  

 

Some active learning methods address the performance gap 

between semi-supervised and supervised methods by using active 

learning methods. In an earlier work done by Vezhnevets et al., 

2012, active learning was used to find the most informative nodes 

of conditional random field (CRF). However, this method 

depends highly on super-pixels quality. Another work by Nilsson 

et al., 2020 addressed the problem in source while gathering the 

data. They used the active learning method to guide the agent to 

collect the informative data.  

 

Reinforcement learning methods had been used to find the 

acquisition function for active learning. Ebert et al., 2012 

approach to reinforced active learning for classification was 

based on a Markov decision process (MDP) to create a feedback-

driven framework that learns the process during experience 

without the need for prior knowledge. All these methods only 

generalize learn the task with less data, dismissing the problems 

caused by unbalanced classes.  

 

(Kampffmeyer et al., 2016) recognized the problem of 

imbalanced dataset with remote sensing data and applied various 

CNNs to evaluate their performance on small objects in the 

image. (Chen et al., 2019) used a semi-supervised method which 

utilize maximum square loss instead of minimizing the entropy 

to prevent them from leaning on to straight forward strategy of 

choosing easy-to-transfer samples. (Konyushkova et al., 2019) 

proposed a general purpose data-drive reinforced active learning 

strategy. Their classification problem is much simpler than the 

semantic segmentation problem, which increases the 

computational cost of DQN training. Mackowiak et al., 2018 

proposed a strategy where they targeted choosing small regions 

from images to be labelled by human to maximize the 

performance of the network while reducing annotation labor.  

 

Casanova et al., 2020 approach to reinforced active learning for 

semantic segmentation used a data-driven, region-based method 

that reduces the oracle's labelling effort. This method addressed 

the class imbalance problem at its core by utilizing a mean 

intersection over union (MIoU) as a performance metric to 

evaluate the performance of the segmentation network. The 

Query network is rewarded for choosing informative regions for 

training the segmentation network that could improve the MIoU. 

Additionally, with this region-based approach, the model will 

have the chance to learn to choose regions from images with the 

most informative data that the segmentation model had relatively 

seen less of.  

 
 

Figure 1. The class distribution of the cityscape dataset  
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3. METHODOLOGY 

To increase the attention even further on the underrepresented 

classes, we propose to use a weighted average of IoU score for 

computing the reward of the DQN network. By weighing heavier 

the underrepresented classes while computing the reward, we 

anticipate that the DQN network would converge to selecting 

more of data from underrepresented classes, which improving the 

performance on these specific classes. 

 

In the proposed method we have utilized a Feature Pyramid 

Network (FPN) (Lin et al., 2017) as a semantic segmentation 

network and Deep Q-network as the query network. As illustrated 

in Figure 2 these two networks are connected to find the optimal 

policy for the Query network. The optimal policy would be 

choosing the most informative small regions that had been 

cropped from images in the training set, in a way that would train 

the segmentation network to perform well with the least amount 

of data needed to be labelled. The segmentation model has been 

pre-trained on a large dataset in order to converge well with less 

data.  

 

Additionally, by using weighted average IoU, we aim to place 

additional attention on underrepresented classes, so that the query 

network would prefer regions with underrepresented classes, 

which would lead the segmentation network receiving more data 

from these underrepresented classes in order to perform better. 

The active learning had been framed as Markov decision process 

(MDP). The query network is represented as a reinforcement 

learning agent which would allow the active learning strategy to 

learn from its own previous experience instead of relying of prior 

information.  

 

In first step for the data preparation, dataset is parted to four 

different sets.  

1) DT which would be the training data,  

2) DS is the state set which will be used for computing the state 

on from the results of segmentation network,  

3) The reward set DR, which will be used to calculate the reward 

of DQN network from evaluating the segmentation networks 

performance on this set, and 

4) Validation set which will be used to evaluate the performance 

of segmentation network after it had been trained with the data 

chosen by the query network.  

 

The reward and state set are chosen carefully from the data that 

would best represent the whole dataset. 

 

At first the state of DQN network is computed as function of 

segmentation network on the state set. Then an action pool is 

being created from regions that had been uniformly selected from 

unlabeled set. For each action, a sub-action representation has 

been calculated. Afterward, the query network uses an ε-greedy 

strategy to select sub-actions from action pool. The ε-greedy is 

an action selection policy in which the agent takes advantage of 

prior knowledge by exploitation while at the same time exploring 

the new options. This approach chooses the action which would 

prefer highest estimated reward most of the time. The human 

operator acting as “oracle” annotates the regions that had been 

chosen by the query network and these annotated regions are 

added to the training set. The FPN model is trained on the training 

set and its performance is evaluated based on the reward set. The 

improvement of the performance of the segmentation network on 

the reward set in one iteration compared to previous one, 

provides the query network agent with the reward indicating how 

well it did on choosing the most informative regions of the 

images. This loop continues until a predefined budget of labeled 

data is labeled by operator. Finally, after converging to the 

optimal policy for query network, the policy is used to choose 

regions from all the unlabeled set and the segmentation network 

is trained on with the chosen regions. Finally, its performance is 

evaluated on a validation set. 

 

For the segmentation network we used the feature pyramid 

network (Lin et al., 2017). FPN is a fully convolutional feature 

extractor that takes an image and creates several layers of feature 

map. The backbone convolutional architectures have no bearing 

on this procedure. As a result, it serves as a generic approach for 

constructing feature pyramids inside deep convolutional 

networks. As stated, this kind of network works especially well 

on segmenting the smaller objects in the image which usually in 

the procedure of encoding would become undetectable. The 

pyramid is built in two ways: from the bottom up and from the 

top down. In this work a ResNet50 is used as backbone for 

extracting features (He et al., 2015).  

 

Figure 2. The connections between the query network and segmentation network 
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Instead of using the Mean IoU (Equ. 1) metric to penalize the 

query network, we used a weighted average of IoU across the 

classes in order to put even more attention on the 

underrepresented classes. Intersection-Over-Union is a 

frequently used semantic image segmentation evaluation metric. 

The prediction confusion matrix (Figure 3) is used to compute 

IoU of each class. In our approach instead of taking the mean of 

IoU, we computed the Wc as the weight of each class to be 

inversely proportional to the fc frequency of that class 

(Mohapatra et al., 2021).  

  
 

TP FN 

 FP TN 

 

Figure 3. Confusion Matrix 

       IoU= 
TP

TP+FP+FN
 (1)                   𝑊𝑐 =

1

𝑙𝑜𝑔(𝑓𝑐+𝜀)
             (2)          

 

 

The query network contains two paths, one for state 

representation and another for action representation. These two 

paths are concatenated at the end to obtain global features. An 

entropy map of the regions is computed by using min, max and 

average pooling operation. Also, two distribution of KL distance 

between the possible regions, and unlabeled set and unlabeled set 

is added to action representation. Kullback-Leibler divergence, 

or simply, the KL divergence (also called relative entropy), 

quantifies how one probability is different from the other. State 

representation is completed by adding class distribution features. 

 

To find the optimal policy mapping each state to an action that 

maximizes the expected sum of future rewards we have used a 

DQN (Mnih et al., 2013). The DQN is trained by minimizing the 

loss based on temporal difference (TD) error (van Hasselt et al., 

n.d.) where we are considering SARSA transitions. The SARSA 

(State-Action-Reward-State-Action) transition which is defined 

as (st, at, rt, st+1, at+1) is an iterative algorithm for finding the 

optimal policy. In this case, the action is defined as selecting 

number of regions to be labeled by annotators. Then the network 

is trained using selected regions and the reward is afterwards 

calculated in a held-out portion of data. To stabilize the training, 

we use double DQN formulation in which action selection is 

decoupled from evaluation.  

 

4. EXPERIMENTS AND RESULTS 

4.1 Dataset 

We use the Cityscape dataset to evaluate the performance of the 

network (van Hasselt et al., n.d.). The dataset contains training 

set of 2975 RGB images with the size of 2048 × 1024 pixels. 

There are two versions of dataset with 19 and 35 classes, 

respectively; we used the 19 classes version. We chose 10 images 

for state set, 200 images for reward set, and 200 images for 

reward set and 150 images for training the query network. The 

rest of 2615 images considered unlabelled and are used in Dv, to 

evaluate the performance of the acquisition function. In other 

words, 12% of labelled data is used just to train the query network 

to obtain the optimal policy. In this process each image in the DT 

is split to 128 small regions with size of 128 ×128 pixels to create 

the action pool. In each step of training the Query network 

chooses 256 regions to be labelled. The DQN network is trained 

with budget of 3840 regions. 

 

4.2 Pre-training the segmentation network 

The FPN model is first pre-trained on the GTAV dataset (Richter 

et al., 2016). This dataset contains 24966 synthetic images which 

have been rendered using Grand Theft Auto 5 video game from 

car perspective in street scenery. There are 19 semantic classes in 

the synthetic dataset which makes it compatible with cityscape 

dataset. Then the model is finetuned on DT dataset. This pre-

training before the labelling process seems to be time consuming, 

however, it is a small amount of time compared to the time 

needed for labelling the whole dataset.  

 

4.3 Results 

We experimented with 5 sets of labelling budget for the query 

network which varies in the range from 1% of dataset to 5% of 

dataset. The performance of segmentation model is evaluated by 

mean IoU score. Figure 4 presents the results we obtained from 

evaluating the performance of our segmentation model on the 

validation set. The segmentation model had been trained on the 

labelled regions that had been chosen by the query network after 

it had already been trained on 12% of the dataset that we 

separated at the beginning. We compared our results with the 

three baseline results: i) Random which is the uniform random 

sampling of regions from action pool, ii) the Entropy method 

which is an uncertainty sampling method which applies the 

policy of choosing maximum pixel-wise Shannon entropy, and 

iii) BALD method which select the regions based on maximum 

cumulative pixel-wise BALD metric (Gal et al., 2017).  

 

 

 

As presented on Figure 4, the proposed RAlis method 

(Reinforcement Active Learning for image segmentation) both 

with mean IoU (RALis-MIoU) and weighted IoU (RALis-WIoU) 

perform better than other baselines. Contrary to our expectation 

the weighted IoU method results are quiet similar to results 

obtained by the mean IoU. Investigating further, we noticed that 

since the reward set is also the representation of the whole 

dataset, it is also severely imbalanced. Therefore, since the 

reward is computed as performance of the segmentation network 

on the reward set, the change of the weighted IoU does not lead 

to any sensible improvement using this method. Therefore, the 

effect of the reward set on learning process of Q-network should 

be further investigated in future work. 

 
Figure 4. Valid mean IoU score of methods compared across 

different budgets of labeled data. 
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Figure 5. Mean IoU on six underrepresented classes 

 

Figure 5 compares the performance of original RALis model 

with weighted IoU rewarding RALis model across various 

budgets of labelled data on six most underrepresented classes: 

motorcycle, rider, traffic light, train, bus and truck. The 

performance is very close to one another. 

 

Figure 6. Training and Validation IoU 

 

The training and validation IoU for RALis optimized by mean 

IoU and RALis optimized by weighted IoU are presented in 

Figure 6. The graph represents the learning behaviour of the 

reinforced active learning approach. In the smaller sample sizes, 

the gap between training and validation IoU is large, which 

suggests overfitting. As the number of budget increase, the gap 

shrinks to the point that validation IoU become even larger than 

the Train IoU, which suggests that the more budget the 

segmentation network has, the better It generalize.  

 

Figure 7. Training and Validation loss with 0.5% labeling 

budge 

 

Figure 7 graphs the Loss curves for RALis with mean and 

weighted IoU methods can help us to closely examine the 

learning behaviour of segmentation model. We can see that all 

terms decrease - as they were supposed to - during training. The 

consistent decrease of validation loss displays that the method 

had not overfitted even in the smallest labelling budget . Also, 

Figure 8 Display the training and validation loss in 5% labelling 

budget. The learning behaviours of both methods are reasonable. 

 

 

Figure 8. Training and Validation loss with 5% labeling 

budget 

 

5. CONCLUSION 

We used a data-driven region-based reinforcement active 

learning method for segmenting the data captured by mobile 

sensor on street scenery. A reinforcement learning agent 

performed the active learning process by converging to a policy 

based on ε-greedy approach. The ideal policy would choose the 

most informative samples from pool of small regions cropped 

from the image. The goal was to decrease the labor of annotation 

while keeping the same level of performance. 

 

State and action representation are defined in to be aware of the 

classes distribution. Additionally, by choosing the weighted IoU 

for calculating the reward for DQN network, we further increase 

the attention on underrepresented classes. By increasing the 

attention on underrepresented classes, the segmentation network 

results are better not only in general, but also on the 

underrepresented classes compared to other baseline methods.  

 

Even though, the proposed weighted IoU method did not achieve 

any noticeable improvement in results compared to the mean IoU 

approach, it casted a light on importance of reward and state set 

on this method. We plan to further study the effect of these sets 

on the training of the Deep Q-network. Additionally, we plan to 

use different segmentation models to study the effects of 

segmentation models on success of Q-network.  

 

Another important problem to be further studied, is the 

performance of this method on other type of data. As it had been 

mentioned before that this active learning method is data-driven. 

Therefore, we plan on studying the efficiency of this method on 

a dataset retrieved by UAV sensors. UAV datasets are usually 

even more imbalanced than street scenery, therefore, we look 

forward for applying this method on UAV image set. 
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