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ABSTRACT:

Currently, multimodal remote sensing images have complex geometric and radiometric distortions, which are beyond the reach of
classical hand-crafted feature-based matching. Although keypoint matching methods have been developed in recent decades, most
manual and deep learning-based techniques cannot effectively extract highly repeatable keypoints. To address that, we design a
Siamese network with self-supervised training to generate similar keypoint feature maps between multimodal images, and detect
highly repeatable keypoints by computing local spatial- and channel-domain peaks of the feature maps. We exploit the confidence
level of keypoints to enable the detection network to evaluate potential keypoints with end-to-end trainability. Unlike most trainable
detectors, it does not require the generation of pseudo-ground truth points. In the experiments, the proposed method is evaluated
using various SAR and optical images covering different scenes. The results prove its superior keypoint detection performance
compared with current state-of-art matching methods based on keypoints.

1. INTRODUCTION

Advances in local feature detector research have led to signific-
ant improvements in areas such as remote sensing image match-
ing, object recognition, photogrammetry, and 3D reconstruc-
tion. Therefore, various handcrafted keypoint detection meth-
ods have been developed, the most representative of which is
the scale invariant feature transformation (SIFT) (Lowe, 2004),
due to its keypoint feature being invariant under the translation,
rotation and scale changes. Furthermore, it also includes these
SIFT-like methods, such as SURF (Bay et al., 2008), Affine-
SIFT (Morel and Yu, 2009).

However, customizing practical algorithms for processing re-
mote sensing image keypoint detection remains a daunting task.
Firstly, due to remote sensing images involve changes in ground
features, radiation differences, and local distortions caused by
the imaging viewpoints, this leads to complex spatial geometric
relationships between image pairs. Therefore, the simple para-
metric models used in most existing handcrafted methods are no
longer sufficient to produce repeatable keypoints. Additionally,
there is no guarantee that the extracted features are repeatable
in complex and variable remote sensing image.

In recent years, deep learning-based methods for keypoint de-
tection have been hugely successful. The main reason is its
completely data-driven scheme that tries to abstract the distri-
bution structure from the input data. For example, SuperPoint
(DeTone et al., 2018) learns keypoints by pixel supervision of
artificial points. UnsuperPoint (Christiansen et al., 2019) uses
a concatenated network to train keypoints end-to-end in an un-
supervised manner, and adds non-maximal suppression to the
model to make keypoints uniformly distributed. However, the
lack of shape awareness of the feature points does not allow
for stronger geometric invariance. R2D2 (Revaud et al., 2019)
uses an expansive convolution strategy to maintain image size,
∗ Corresponding author(E-mail address:hanling@chd.edu.cn)

increasing the computational burden, while the keypoints iden-
tified by the network’s final detector are often at low levels of
structure (corners, edges, etc.). LF-Net (Ono et al., 2018) ex-
tracts the features of the keypoints and transforms the inter-
mediate features via a spatial converter, which requires mul-
tiple passes forward. This is only practically feasible for sparse
shape parameter prediction. D2-Net (Dusmanu et al., 2019)
produces a selection rule that derives keypoints from the same
feature maps used to extract feature descriptors, avoiding the
need to learn additional weights for the keypoint detector. How-
ever, these deep learning based keypoint detection methods give
a promising direction in natural image processing. However,
the working mechanism of these methods, which is to find the
correspondence between pairs of images by processing them
independently, would be difficult to apply to keypoint detection
in multimodal remote sensing images with radiometric differ-
ences. Moreover, the detection of critical points is hampered by
the fact that nonlinear radiometric differences between sar and
optical images do not provide enough true correspondence.

To solve the above problem, we propose a self-supervised key-
point detection network for multimodal remote sensing images.
The method does not require the use of ground truth keypo-
int locations as labels. Instead, we propose to learn the con-
fidence level of keypoints by computing the local spatial- and
channel-domain peaks of the output depth feature map, which is
actually an estimate of the keypoint likelihood. Due to the non-
linear radiometric differences between multimodal images, the
corresponding confidence values will be significantly different,
which will reduce the repeatability of keypoints screened by
confidence thresholds. Therefore, to improve the reproducibil-
ity of keypoints, we propose a Siamese detection network with
self-supervised learning for training keypoints with the same
confidence level. Also, the proposed detection network intro-
duces a multi-scale feature extraction approach of deformable
convolutional networks (DCN) (Dai et al., 2017) to improve the
localization accuracy of keypoints and make it flexible to re-
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Figure 1. (a)Self-supervised detection. First, a randomly selected image from a strictly pixel-aligned remote sensing image is
subjected to a projection transformation. Then, the warped image and the other image are simultaneously fed into the detection
network with shared weights for feature point extraction. Finally, the losses of corresponding keypoints are calculated by the
projection transformation relationship. (b)An overview of detection network. Nθ(I) = O represent the parameterization of detection
network , and θ denotes parameters that the network needs to be trained. The peakiness measurement of keypoints are calculated from
the local spatial(αcij) and channel domains(βcij)

solve geometric distortion between images

In short, the main contribution of this work is as follows. We
proposed a self-supervised keypoint detection network. This
network evaluates the confidence of keypoints by computing
local spatial- and channel-domain peaks of feature maps. We
design a Siamese detection network with self-supervised learn-
ing to optimize the confidence of keypoints simultaneously on
multimodal remote sensing image pairs. Moreover, we intro-
duce multi-scale and DCN operations for feature extraction.
Therefore, the keypoint detection network is robust to geomet-
ric and radiometric differences between multimodal images, which
can detect keypoints with high repeatability.

The rest of the paper is organized as follows. Section 2 intro-
duces the related work of the keypoint detection with different
methods. Section 3 presents our methods. Section 4 details the
effectiveness of the detection network. We conclude in Section
5.

2. RELATED WORKS

In this section, we review the above four types of registration
methods: intensity-based, feature-based, supervised learning-
based, unsupervised learning methods.

2.1 Handcrafted Detectors

Traditional keypoint detection methods use handcrafted features
to locate geometric structures, such as Harris (Derpanis, 2004)
and Hessian detectors (Beaudet, 1978) use first- and second-
order image derivatives to find corners or round points in an im-
age. Extended Harris to handle multiscale and affine transform-
ations, making the acquisition of keypoints invariant to scaling,
rotation, and translation, and robust to illumination changes and
limited viewpoint changes. SURF accelerates the process of de-
tection by using integral images and approximations of the Hes-
sian matrix. A multiscale improvement, called KAZE (Alcan-
tarilla et al., 2012), is proposed in which the Hessian detector
is applied to a nonlinear diffusion scale space. Affine-SIFT
proved the affine invariance of the feature descriptions that ob-
tained by varying the two camera axis orientation parameters
(i.e., latitude and longitude angles) left by the SIFT method.

2.2 Learned Detectors

Data-driven learning-based methods have had a deeper impact
on keypoint detection. We introduce a learning-based approach
to detect reproducible keypoints under drastic imaging changes
in weather and lighting conditions, through multiple binned lin-
ear regression models. (DeTone et al., 2017) proposed a point
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Figure 2. Deformable convolutional network. (a) is the common

convolution with the 3x3 kernel, and (b) is the deformable

convolutional network after the 3x3 convolution kernel with the

offsets.

tracking system driven by two deep convolutional neural net-
works (MagicPoint and MagicWarp), where MagicPoint oper-
ated on a single image and extracted significant 2D points and
MagicWarp operated on pairs of point images to estimate the
associated single-response. MagicPoint was extended to Super-
Point, which includes a salient detector and descriptor. (Revaud
et al., 2019) proposed a joint learning of keypoint detection and
description and local descriptor discriminative predictors while
outputting sparse, repeatable and reliable keypoints. LIFT(Yi
et al., 2016) implemented an end-to-end feature detection and
description pipeline including direction estimation for each fea-
ture. (Savinov et al., 2017) proposes to train a neural network in
a transform invariant manner and rank points, and then extract
points of interest from the top/bottom fractions of that rank-
ing. LF-Net (Ono et al., 2018) estimated the location, scale,
and orientation of features by jointly optimizing the detector
and descriptor.

3. METHODS

3.1 Self-supervised detection

A detailed description of proposed remote sensing image key-
point detection method is shown in Figure 1. Figure. 1(a) shows
the self-supervised detection process of the detection network,
where the first image is randomly selected from the strictly
pixel-aligned remote sensing images for projection transform-
ation (the matrix M is randomly generated). The projection
transformation is implemented on the optical image to obtain
o′. Let o′ and s be simultaneously input into a Siamese net-
work (two detection networks, where their weights are shared)
to predict the keypoint feature maps (PointA, PointB) using
self-supervised training. Finally, PointB is warped using M to
make it spatially consistent with PointA. Specifically, the aim
is to make them close in spatial distances, generating keypoints
with the same location. We can determine the true transforma-
tion relationships of the above image (o′, s) pairs. Moreover, we
use the Huber loss function to compute the loss between their
corresponding points. The Huber loss for PointA and PointB
is detailed as follows.

Lδ(y, f(x)) =

{
1
2
(y − f(x))2 for|y − f(x)| ≤ δ

δ|y − f(x)| − 1
2
δ2 otherwise

(1)
where δ is the optional hyperparameter, f(x) the predicted value,
and y is the ground truth value.

Figure 1(b) depicts the pipeline for keypoint detection network.
Let I be the remote sensing images. We focus our work on the
number of bands as 1, but emphasize that the network structure
does not depend on the number of bands for the input image.
We introduce DCN operations to enhance the geometric robust-
ness of keypoints in the decoding stage. Nθ(I) = O is used
to describe the mapping relationship from the image to out-
put results, where θ is the network parameter that needs to be
trained on, and O is the output. The peakiness measurement of
keypoints are calculated from the local spatial(αc

ij) and chan-
nel domains(βc

ij) respectively, additionally using Softplus to
activate the peaks to positive values. The detailed calculation
procedure is described in this subsection 3.2.

3.2 Detection network architecture

The detection network is designed to generate feature maps,
and extract the keypoints. The model is composed of different
neural networks, including CNN and DCN.

Network architecture. The detection network performs the
keypoint detection through the output feature maps. The archi-
tecture of the detection network is shown in Figure 1. In our
experiments, we use images with a size of 240 × 240 pixels
as input. The convolutional kernels of the CNN are all of size
3× 3 pixels, and each convolutional layer is followed by ReLU
(Agarap, 2018) and BN (Ioffe and Szegedy, 2015) layer. The
input images are first passed through CNN-0/1, then through
CNN-2/3, CNN-4/5 to reduce the size of the feature map, where
the number of their feature maps are 32/64, 64/64, and 128/128,
respectively. Finally, the output of CNN-5 is input to DCN-
0/1/2 for generating feature maps with geometric invariance.

Deformable convolutional network. Figure 2 depicts the struc-
turt of the DCN. The capability of feature extraction is en-
hanced by inserting offset (deformable convolution) in the con-
volution layer (Dai et al., 2017), which serves to enable the
network to learn the dynamic sensory domain when extracting
features to adapt to model geometric changes and can better ad-
apt to the deformation of regional objects. In the conventional
CNN operation, the input feature map is sampled using a regu-
lar grid R. For each position p0 on the output feature map can
be calculated by Equation 1.

y (p0) =
∑
pn∈R

w (pn) · x (p0 + pn) (2)

where pn is an enumeration of the positions listed in R. In the
deformable convolution operation, the regular grid R is expan-
ded by adding an offset, and the same position p0 becomes:

y (p0) =
∑
pn∈R

w (pn) · x (p0 + pn +Δpn) (3)

Since the offsets Δpn are usually fractional, they are imple-
mented by bilinear interpolation, and the number of channels
we use in experiments is 128. The rest of the parameter settings
are implemented in reference (Dai et al., 2017).

Keypoint detection. To obtain keypoints that are robust to scal-
ing changes, we use three stages of feature maps in the network
CNN-3/5 and DCN-2 for keypoint detection. Subsequently, the
outputs in the three stages are input to the upsampling network,
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Figure 3. Keypoint detection. The keypoints are determined

from the peaks in the local spatial- and channel domains. For

each position (i, j) and channel (c = 1, 2, ..., c) in the feature

map output by the detection network, the local spatial(αc
ij) and

channel (βc
ij) scores are calculated to generate the keypoint

confidence.

which are used to recover the original size and assign the cor-
responding weights. Keypoints are determined from the peaks
in the local spatial- and channel domains, as shown in Figure 3.
Specifically, for each position (i, j) and channel (c = 1, 2, ..., c)
in the feature map output by the detection network, the local
spatial(αc

ij) and channel (βc
ij) scores are calculated by:

βc
ij = softplus

(
yc
ij − 1

c

∑
t

yt
ij

)
(4)

where c is the feature map in the channel domain, yc
ij is a value

on the feature map (i, j). The activation function (Softplus)
(Zheng et al., 2015) serves to activate the keypoint feature map
to a positive value.

αc
ij = softplus

⎛
⎝yc

ij − 1

|N (i, j)|
∑

(i′,j′)∈N (i,j)

yc
i′j′

⎞
⎠ (5)

where N(i, j) is the set of 9 neighbors of pixel (i, j) and also
its own pixel value.

To consider these two criteria, we maximize the product of two
scores in all feature maps c to obtain a single score map. The
calculation formula is as follows:

γij = max
c

(
αc
ijβ

c
ij

)
(6)

CNN-3/5 and DCN-2 are rehabilitated to their original sizes by
upsampling for obtaining undistorted features on-scale, called
γ1, γ2, γ3, respectively. For those multiple scale features, they
are not assigned the same weight. This is because we have con-
sidered the abstraction of these features from low-level to high-
level features. The final keypoint feature map O is computed as
follows:

In CNN-3, CNN-5 and DCN-2 after keypoint detection gener-
ated γ1, γ2, γ3, and then assigned different weights to γ1, γ2, γ3.
The final keypoint feature map O calculation process is as fol-
lows:

O = Δ1γ1 +Δ2γ2 +Δ3γ3 (7)

where Δ1, Δ2 and Δ3 are weights, and Δ1 +Δ2 +Δ3 = 1.

3.3 Implementation Details

During the training process of the detection network, we use
a self-supervised approach to map images to keypoint feature
maps and globally optimize the network parameters using Huber
loss function to obtain keypoints with stable locations. To ob-
tain a more robust detection model, our training samples are not
limited to one sensor image, Conversely, we obtain image train-
ing models with different remote sensing sensors for different
scenes. During the training process, different weights are as-
signed to Δ1,Δ2,Δ3, where the weight combinations include
0, 0.1, 0.3, 0.6, and 1.0.

The network is trained to search for the optimal weight para-
meter combinations with the same other parameters. The lar-
ger value in the keypoint feature map indicates the higher the
degree that the point is critical. The model was trained using
Adam with an initial learning rate of 1× 10−3 and a batch size
of 16, on the RTX 2070 GPU.

4. EXPERIMENT

In this section, we first introduce the dataset used to train the
networks in subsection 4.1. Then, we describe the details of
evaluation metrics in subsection 4.2. In subsections 4.3 and
4.4, an ablation study is carried out to compare the performance
between the network combination and scale weight parameters
set in the detection network. In subsection 4.5, the overall per-
formance of our proposed method in the multimodal image is
evaluated.

4.1 Dataset

To train the network model, 10 pairs of optical and SAR images
from the world-wide region are acquired for the generation of
the dataset, Sliding image crop size of 240 × 240, total 357,000
pairs of sar and optical images The optical satellite sensor is
SkySat, and the RGB set of this data contains images with three
sharpened 8-bit bands with a spatial resolution of 0.8 m. The
SAR images were acquired by the Sentinel-1, and this data con-
tains all GRD scenes. Each scene has three resolutions (10,
25 or 40 m) and four band combinations (corresponding to the
scene polarization). For the experiments, we used a combina-
tion of V V + V H polarizations. These images include urban,
port, suburban, and rural scenes with a total coverage of about
3000 km2.

These data are aligned at the pixel level by manually selecting
hundreds of matching points in each image pair on the basis of
geographic matching. The training, validation and test set used
to train the network are cropped from the above matched image
pairs. In our experiments, we mix data from all scenes, ensuring
that the ratio of data from each scene in the training, validation
and test datasets are all 0.7/0.2/0.1, fed into the same model
for optimal training.

4.2 Evaluation metrics

We evaluate our method in the dataset mentioned above. This
dataset contains different scenes, where the optical and SAR
data are used as the reference and sensed images. The perform-
ance of the detection network and the cross-fusion matching
network is evaluated using the following evaluation protocol.
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(d)(c)(b)(a) (e)

Figure 4. Example of keypoint feature maps generated from different weight combinations. (a) is the original remote sensing image.
(b), (c), (d), (e) are keypoint feature maps result with weight combinations C3, C4, C7, C9, respectively.

Table 1. Evaluation result of repeatability performance by
different network combinations.

Network CNN Multiscale DCN Repeatability
NetBase Y N N 0.425

NetMS Y Y N 0.558

NetDCN Y Y Y 0.642

Repeatability. The pixels with the same position between two
images are recognized as a keypoint pair, indicating that the
keypoint pairs at this position is reliable. We use the repeatabil-
ity (n/N ) to evaluate the performance of the detection network,
where n,N are the number of repeatable and all keypoints ob-
tained.

The keypoint is identified at the same location in same scene
image, indicating that the keypoint at that location is repetit-
ive. In addition, we use the number of keypoints to evaluate the
performance of the detection network.

4.3 Ablation study

To aid in the design of the detection network described in Sec-
tion 3, we performed an ablation study to compare the per-
formance of networks with various architectures added. We
tested variants of the two-stage network of the detection net-
work, which were detailed in Table 1. The two components
were replaced with the original convolution. We generated test
datasets by cropping the data using the images presented above,
where the pixel value size of both optical and SAR images was
240 × 240. We evaluated the performance of the keypoint re-
peatability.

From Table 1, the addition of DCN obtained a significant reduc-
tion in repeatability. Therefore, DCN was used as our selection
framework for SAR and optical image matching, and all further
experiments were conducted with this framework.

4.4 Combination of scale weighting parameters

Different combinations of scale weight parameters might pro-
duce the same final loss in the training process of the detection
network. Nevertheless, the loss function was designed to op-
timize the accuracy of keypoint matching overall and does not
limit the number of matching points, allowing the network to
determine whether certain locations were keypoints based on
the input image. More specifically any location in the input
image could theoretically be a matching point. Therefore, the
number of keypoints that can be matched might vary. In exper-
iments, we analyzed the performance of the network in detect-
ing keypoints by changing the parameter combinations of scale
weights. The specific parameter combinations were shown in

Table 2, with the CNN-3, CNN-5, and DCN-2 weights vary-
ing between 0 and 1 and the sum of the weights being 1. We
conducted experiments using the training data mentioned in the
previous section. The parameter of the epoch with the same are
trained under each set of weight combinations while keeping
the other parameters consistent. We set the value of the keypo-
int confidence greater than 0.6 as the criterion for judging the
keypoints.

Table 2 listed all the weight combinations. The best experi-
mental results were marked in bold with the highest number of
keypoints at the combinations (0.1, 0.3, 0.6). The reason for
not obtaining a higher number of repeatability keypoints under
a single scale minght be that increasing the scales at different
levels enhances the network’s ability to obtain global inform-
ation with higher robustness. Under the combination of mul-
tiple scales, the higher weight is given to DCN-2, the higher the
number of keypoints obtained. Table 2 showed the probabil-
ity distribution of keypoint values under different combinations,
which was a statistical analysis made on test data. The values
of these keypoints were distributed between 0.0 and 1.0, where
N ′, µ denoted the average number of keypoints, mean value of
repeatability.

Figure. 5 provides additional insights about the keypoints gen-
erated with different weight combinations. To perform this eval-
uation, we select the keypoint feature maps generated by the
combination of C3, C4, C7, C9 in Table 2 (number of keypoint
matchesC3 > C4 > C7 > C9) for comparing the keypoint fea-
ture maps under the same scene image. The distribution shows
that keypoint feature maps with local maxima (local peaks) can
be generated with all different weight combinations; some com-
binations generate better ones, while some the opposite. And
from the comparison of C3 and C9, they show that the heat
map peaks of C3 combination are more discrete and each one
of them has better local smoothness. On the other hand, the
corresponding heat maps under the combination of C4 and C7

have irregular shapes and peaks that surround each other, lack-
ing more discrete and concentrated keypoints compared to C3.

4.5 Reproducibility of feature detection

In the feature detection process, the ability of the detection net-
work to extract keypoints that appear at the same location on
the image was critical for image matching. As a consequence,
we evaluated the performance of detection networks to obtain
repeatable keypoints using existing methods. For this purpose,
we compared it with state-of-the-art techniques: SIFT, SURF,
Affine-SIFT, and SuperPoint. Six pairs with different scene
types were selected for testing, including: urban (I1), suburban
(I2), industrial (I3), pond (I4), port (I5), and mountain (I6),
as shown in Figure 6, where each pair of images was pixel-
aligned, and with a size of 240 × 240. Nevertheless, to give
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Table 2. Weight combination and result, where N,µ denote the average number of matching points and mean value of REME,
respectively.

C1 C2 C3 C4 C5 C6 C7 C8 C9

(0, 0, 1) (0, 1, 0) (0.1, 0.3, 0.6) (0.1, 0.6, 0.3) (0.3, 0.1, 0.6) (0.3, 0.6, 0.1) (0.6, 0.1, 0.3) (0.6, 0.3, 0.1) (1, 0, 0)

N 430 450 498 457 477 422 449 435 413
µ 0.559 0.497 0.653 0.624 0.571 0.611 0.607 0.593 0.515

(f)(e)(d)(c)(b)(a)

Figure 5. Keypoint detection results. (a), (b), (c), (d), (e) and (f) are six pairs of images covered with different scenes including: urban,
suburban, industrial, pond, port, and mountain, where the first row are optical image and the second row are SAR images. Each pair of
images is pixel-aligned and has a size of 240 × 240, where the yellow points indicate repeatable keypoints, and conversely blue points
indicate non-repeatability.

Table 3. The result of keypoint repeatability. I1, I2, I3, I4, I5, I6
are urban, suburban, industrial, pond, port and mountain scenes
respectively, where ASIFT is the abbreviation of Affine-SIFT.

Two pixels threshold
I SIFT SURF ASIFT SuperPoint Proposed
I1 0.327 0.271 0.215 0.525 0.566
I2 0.358 0.256 0.141 0.546 0.547
I3 0.297 0.300 0.106 0.528 0.608
I4 0.366 0.207 0.252 0.506 0.511
I5 0.301 0.226 0.216 0.510 0.610
I6 0.285 0.159 0.107 0.434 0.556

insight in the detection network’ performance and especially to
enable obtain repeatable keypoints at the same location in the
same scene, we applied the number of repetitions of the detec-
ted matches to evaluate the network. In the experiments, the
keypoint feature maps generated by our proposed method were
arranged in the order from largest to smallest, and we selected
the keypoints within the two pixel error thresholds as the final
detection results.

Table 3 gave an overview results of detection for the keypoint
repeatability. It showed that our proposed detection network ob-
tained the highest keypoint repeatability compared to the bench-
mark method. SuperPoint and the proposed method were higher
than the hand-designed method, indicating the effectiveness of
the learning-based keypoint detection method. On I1, I2,I3, I4,
I3, I4, the repeatability of our proposed method was higher than
SuperPoint due to the fact that our proposed method considered
both SAR and optical image differences in a self-supervised
manner, which would facilitate cross-modal keypoint detection.
Figure 6 (a), (b), (c), (d) (e) and (f) showed the keypoint detec-

tion maps of our proposed method. Overall, the keypoint loc-
ations were basically concentrated in regions with richer tex-
tures. Fewer keypoints were obtained on the homogeneous re-
gion in Figure 6 (e). This illustrated that our proposed method
could suppress the generation of keypoints in homogeneous re-
gions, which would improve the robustness of the keypoint de-
scription. However, some keypoints were generated in the edge
regions of the image, which might affect the keypoint charac-
terization. Therefore, in the next study, we would further in-
vestigate the removal of edge keypoints.

5. CONCLUSION

In this paper, we propose self-supervised keypoint detection
networks for remote sensing image, which are shown to be less
sensitive to radiometric differences across modalities while still
providing repeatable keypoints. The trainable detection net-
work is combined to form a Siamese network for self-supervised
training to optimize the overall network parameters. We con-
ducted a series of thorough experiments to obtain an optimal
weight combination approach for keypoint detection.

We demonstrate that our trainable detection network is able to
obtain a higher number of reproducible keypoints in images
with nonlinear radiometric differences compared to existing key-
point detection methods. In addition, we test the detection net-
work on multimodal images with different scenes, and our method
obtains a high number of cross-modal keypoints for all scene
images, which proves the effectiveness of our proposed method.
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