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ABSTRACT: 

 

One of the important and high-level detailing contained within basemaps is the ‘building feature’. Though pre-trained Deep Learning 

(DL) models are available for Building Feature Extraction (BFE), they are not efficient in predicting the buildings in other locations. 

This study explores the need and the major issue of implementing DL models for BFE from Very High Resolution Remote Sensing 

(VHRS) satellite data for any given area. Though advanced DL models are invented, in order to implement them, huge amount of 

potential training data is demanded for feed in. the building typologies are highly subjected to the context of study area including soil 

characteristics, culture/lifestyle/economy, architectural style and the building byelaws. The study believes that availability of enough 

training data of contextual buildings as one of the concern for effective model training. The study aims to extract the buildings 

present in the study area from Pleiades 1A (2019) RGB VHRS data using simple Mask R-CNN instance segmentation model which 

is training on the native contextual buildings. Here, an automated method of generating the location-specific training data for a given 

area is followed using Google Maps API (2021). The generated training data when trained on a deep learning architecture and 

predicted by the input data yielded promising results. The prediction accuracy of about 98.41% specificity, 96.20% predictive 

accuracy and 0.89 F1 score are achieved. The methods adopted assist the planning/governing bodies to accelerate the qualitative 

urban map preparation. 

 

 

                                                                 
 Corresponding author 

1. INTRODUCTION 

Buildings are basic landscape features that form the urban 

fabric. Capturing and including buildings in map making 

process contribute to rich database that supports inter-

disciplinary and micro-urban studies. Extracting building 

features from optical remote sensing images has always been an 

active research in the field of computer vision.  

Techniques of feature extraction from satellite imagery mainly 

depend on the characteristics of feature, scene complexity, 

dataset quality (complexity and scale), context of the target area 

and the application of output. There are four broad methods of 

feature extraction from imagery dataset. They are pixel based 

classification, traditional object detection, the machine learning 

and the deep learning techniques. Pixel based method is mainly 

used to classify the built-up land cover from medium to coarse 

resolution images. This approach is followed when the feature 

size is negligible than that of the pixel size. Object detection 

method that deals with segmented objects and classifies them 

using feature properties in the image such as textural, 

contextual, spectral and geometry. This method is followed 

when the feature size is larger than that of the pixel size. 

Machine learning is a semi-automated and supervised learning 

technique that uses feature descriptors for recognition and 

classification algorithms to extract the features form the image.  

Deep learning is a recent, automated and data aided   technique 

that uses heavy convolution layers to extract the features in a 

single step. 

A novel study  by (Wang et al., 2014) performed a unique 

structuring element and had considered the statistical standard 

deviation of pixels within the kernel for differentiating the 

regions and the ridges within the multi-scale wavelet images, in 

order to have an efficient colour and texture-based multi-scale 

image segmentation. 

Researchers have also applied morphological Top-hat filters and 

K-means algorithm for automatic extraction of building 

footprints from VHRS data (Gavankar et al., 2018). The 

uniqueness of this study is that it has firstly thresholded the 

image into three parts (dark, medium and bright), and then 

extracted the buildings present within each threshold range so 

that the buildings with lesser spectral response can be identified 

and extracted separately. It further uses the dimensional 

properties to avoid the falsification of buildings. 

Building features don’t have the same spectral property always 

as they vary due to the age, the contrasting background, the 

colour of the roof, size, texture, etc. (Figure 1) Building features 

of the same location and from same source show variation as 

per built properties and the spatial arrangement. However, it is 
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found that building features, though have varied shape, size and 

texture, they possess similar contrast and brightness as 

compared to their adjacent features (Gavankar et al., 2018) and 

hence, top-hat morphological transform serves well for BFE. 

However, this algorithm found to be more effective in low-

building dense areas that are surrounded by the vegetation.  

 

 
Figure 1. Factors that cause variation in building features 

within the same location 

 

Building feature form spatial data meant the footprint of the 

building rooftop. The buildings possess variety of rooftops as 

per physical built characteristics of the building and its usage. 

Since the task of feature extraction also depends on the ground 

complexity, arrangement of the building features and the 

surrounding landscape features must also be considered. Hence 

the housing pattern, built density and contrast come into play. 

In order to conduct micro level urban analysis (such as thermal 

demand versus the layout planning & height regulations), it 

becomes essential to extract the individual building footprints 

within the given area. The studies done on BFE using space-

borne VHRS images adopting OBIA and machine learning 

techniques have the following limitations. 

 Each feature descriptor recognizes a specified 

texture/geometry/scale of the feature. BFE using single 

machine learning/object based method doesn’t extract all 

types of textured and colored buildings. 

 Buildings are minute features in VHRS dataset. Extracting 

individual building footprints using the above techniques is 

feasible only in the cases of low density with distinguishable 

contrasting surrounding features. It becomes extremely 

difficult to obtain a definite building boundary in the cases 

of high density areas with similar contrasting surrounding 

features. In fact, in urban context, the roads abutting to 

buildings show similar spectral response. Hence in most 

cases, the building features are extracted in groups instead 

being distinct. 

 Also, the roof design and the materials present on the roof 

contribute to the building boundary leakage which makes it 

hard to obtain the definite building boundary. 

Deep learning technique for BFE which has been an active 

application since three years is found to overcome the above 

limitations and yield satisfactory results.  

DL based semantic segmentation is proposed for BFE from 

VHRS in study (Li et al., 2019). In this study, huge training 

data of Worldview-3 from SpaceNet (VanEtten et al., 2018), 

along with the openly available building information from 

Google Maps, OpenStreetMap and MapWorld are fused 

together and augmented while post processing for boosting up 

the output accuracy. The study uses U-Net model which was 

performed on four cities i.e, Las Vegas, Paris, Shanghai and 

Khartoum and obtained precise building outlines with higher 

F1-scores 0.8911, 0.7555, 0.6266, and 0.5415, respectively. 

The study (Roscher et al., 2020) considered the input raster 

(Worldview II, 1PAN and 8MS bands) with 10,000 precisely 

digitized and the annotated building labels that covered 25% of 

the same study area as the input training data (and testing data) 

to the deep learning model and performed the instance 

segmentation (Mask-RCNN model) to predict and extract the 

remaining 75% of the building features within the study area. 

The training data contained mix of industrial and residential 

area with all land-use buildings and was considered as one of 

the efficient benchmark data (for ground truth training and 

testing of other algorithms) for old town of Semcity, Toulouse.  

In DesnseNet architecture, the feature reuse is made between 

each feature map in iterative concatenation. The study by (Yang 

et al., 2018) applies and evaluates four DesnseNet models i.e, 

Branch-out CNN, FCN, CRFasRNN and SegNet, on aerial 

images of 1M for multiscale semantic segmentation. The 

training data consists of 4000 RGB&NIR images selected from 

various locations across the country. In order to further improve 

the BFE at instance level and to identify the state-of-art CNN, 

the study proposed 9 different models using the above 

combinations of pre-trained CNN models, binary labelling, 

distance-transformed labelling and NIR band fusion. FCN-4s-

Bin, FCN-8s-Bin, FCN-4s-CRF-Bin, FCN-8s-CRF-Bin, 

SegNet-Bin, SegNet-Dist, SegNet-Bin-Fused, SegNet-Dist-

Fused and 3Conv-Dist are building extraction models are 

proposed, predicted on huge scale (entire US) and tested on 78 

spatially distributed sites for accuracy comparison. High 

Performance Computing (HPC) systems with multi-GPU 

memory was utilized for faster generation of large scale and 

accurate building maps. 

Building footprints in Yangon City are extracted by conditional 

GAN which is image to image transformation technique and is 

trained on image pairs (Aung et al., 2020). The input training 

and testing datasets are taken from GeoEYE (monocular optical 

RGB images) of Dagon Township. By changing the model 

parameters (learning rate, b1 –Adam and number of filters in 

initial convolution layer of generator and discriminator model), 

8 different training models were developed. The obtained 

output images of these models are converted to vector format 

for accuracy estimation with manually digitized polygons. The 

results of BFE show 71% of completeness, 81% of correctness 

and 69% of F1 score. The insights made from the study are 1. If 

the spectral properties of the buildings in the 

validating/predicting datasets are similar irrespective of the city, 

this cGAN pix2pix model, with same training parameters yields 

better feature extraction. 2.Though the rooftops are diverse (in 

terms of color and geometry), training pix2pix model with 

images from the given study area (i.e., features of same 

predictable area) would produce promising results.  

Urban cities are often congested in its downtown area. The 

building features are tightly packed with haphazard arrangement 

which makes BFE difficult. This bottleneck was attempted by 

using improved Mask R-CNN framework which detects the 

distinct building boundaries even in complex target area (Wen 

et al., 2019). The refined Mask R-CNN initially fixes the 
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bounding boxes of the detected buildings as per the minimum 

enclosing rectangles. Later, through rotation anchor (in RPN), 

these boxes are inclined along their principal directions (w.r.t to 

aspect ratio). Then in ROI align, after the anticlockwise 

rotation, feature regions are said to pass through multi-branch 

prediction network where additional RFB modules (using atrous 

convolution and inception block) are incorporated to the 

segmentation branch to deal multi-scale variability. In the end, 

the obtained rectangle bounding boxes are rotated clockwise. 

Large set of openly available Google Earth images is used as 

training data. 

Inferring from the literature, the major insights for effective 

deep learning based feature extraction are, 1. These models are 

driven by large amount of training data. 2. The building 

typologies are highly subjected to the context of study area 

including soil characteristics, culture/lifestyle, architectural 

style and the building byelaws. The main reason that DL 

technique yields significant results (in case of building 

extraction) is that the trained model not only learns to detect the 

building, but also learns the consistency/ diversity of building 

features within a region, the similarity between buildings and 

the background. (This is also a reason why the direct 

application of pre-trained models doesn’t serve the purpose). 

Since the training retains the contextual properties of the 

feature, it is important to ensure that training, validating and 

prediction datasets must not have large variation among them.  

Lack of enough training data is the reason why most of the 

cities don’t prefer application of DL technique. Creating a large 

amount of appropriate training data is really challenging task. 

Few studies took the advantage of publicly available data stores 

(such as SpaceNet, Inria, Kaggle). But these sources only 

possess datasets of few cities. The model trained on this data is 

not feasible to extract building in every location due to change 

in the context and characteristics. 

This study aims at generating a deep learning based building 

footprint extraction model which is trained on the contextual 

location specific training data using Google Maps. The output 

model generated is expected to extract the distinct building 

footprints in Pleiades 1A VHRS RGB data. The current study 

believes that training with native buildings is found to give 

better output. Hence the study follows a different approach of 

generating the location-specific training data of buildings from 

freely available data source using Google Maps API.  

Google maps are found to create potential training database for 

urban areas. Google Map products contain Google satellite 

(Raster RGB) (Figure 2) and the building footprint outline in 

Default Google Map (Figure 3).  

 

 

 

 

 

 

Figure 2. Google satellite Basemap layer 

 

Figure 3. Google Maps Basemap Layer 

 

2. METHODS AND MATERIALS 

2.1 Study Area and datasets 

A small area of about 26.33 hectare in Mohali region near to 

Chandigarh is considered as the target area (Figure 4) where the 

buildings within this site are predicted using the model 

developed in here.  

  

Figure 4. Key map of Study Area Figure 5. Pleiades pan-

sharpened data for target site 

Pan-sharpened Pleiades-1A RGB data for this selected site is 

used for predicting the building footprints (Figure 5). This data 

is acquired on 10th October 2012 and the spatial resolution of 

PAN is 0.5M and the 3band RGB MS data is 2M. 

 

2.2 Methodology 

Five major steps are involved for creating location-specific 

training data, BFE model and extraction of building footprints 

(Figure 6). Initially, sites within the same city region area 

selected. Then, generation of RGB image and vector label data 

from Google Maps API in the above sites have been carried out. 

Further, post processing of the above data for training is 

performed. Thereafter, the training of the model is done by 

Mask R-CNN architecture and the above training data. Finally, 

prediction of this model on Pleiades 1A data for the study area 

is done followed by accuracy assessment. 
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Figure 6. Methodology  

 

In the very initial step, a manual selection of sites of high 

building density area with varied building typologies within the 

same city region is done by keen observation of building 

properties. These site areas are marked in neat vector polygon 

layer. Since Chandigarh is the major urban area near to the 

study area, Chandigarh’s sites of higher density, the sites with 

matching building typologies w.r.t the study area buildings and 

the sites nearby the study area are chosen and marked. 

  

 

 

 

 

 

 

 

 

Figure 7. Location of sites selected for creating training data 

As Google Maps and Google Satellite are found to be the 

potential source to obtain the desired training data in the form 

of matched vector and raster for a given area, the next task is to 

generate an RGB raster and its corresponding building labels (in 

vector form) for these selected sites. 

The Google Satellite does not permit downloading data from it. 

However, Google maps API allow its users to create a map layer 

from it. Using the Google Satellite as the base layer, and the 

selected sites polygon layer as the mask layer, a map layer is 

generated for above selected sites for 19- January- 2021. It 

carries 0.5M 3band RGB information of the selected sites 

(Figure 8). The next step is to get the vector layer form Google 

Maps using its API. Although the vector tile is not allowed for 

downloading, the recently updated Google maps API allows its 

user to style the map and create a map layer. 

Google Maps (Figure 9) contains huge locational data (such as 

schools, malls, open areas, water bodies, road network, traffic 

information, etc.). Styling allows users to simplify and enhance 

the required landscape features as per the study/application 

while dealing with the subset of huge content from raster tiles. 

Here, the styling of Google Maps layer is done to enhance 

building features present in it. The styled Google map with 

highlighted building features is now kept as a base layer, and 

the selected sites polygon layer as the mask layer, a map layer is 

generated from it (Figure 10). This carries 3band image of 

styled map with building polylines information for the marked 

sites. In order to obtain the vector building polylines, this 3band 

raster is initially said to undergo raster class segregation 

(background and buildings). Now using ArcScan (raster clean-

up and vectorize tools), vectorization of the all the foreground 

features is performed. Finally, the above vector is converted 

into polygons and an attribute field of ‘building’ (annotation) is 

added. The resultant would be the vector building layer file with 

annotations (Figure 11- has the annotated vector buildings layer 

overlaid on Google satellite image).  

 

Figure 8. Google Satellite base 

layer -in High density area 

 

Figure 9. Default Google Map 

 

Figure 10. Styled Google Map 

 

Figure 11. Vectorized building 

labels and raster map layer 

 

Once, both the raster and the vector building annotation layer is 

made available, post processing of this data was carried out by 

proper square tiling. 

Below are the characteristics of the images used:  

 Total number of bands- 3 (R,G,B)  

 Total no. of image grids for site locations – 

16,244  

 (with augmentation & padding)  

 CRS- GCS WGS1984 (epsg-4326) 

 Vector Annotation format: Shapefile  

 Each image tile – 256 x 256  

 Stride – 128 x 128 

 Spatial Resolution - 0.5M 

 Total no. of feature labels 2,67,342 

 

2.3 Model training 

As aimed for obtaining distinct building boundaries, the study 

uses deep learning based instance segmentation model, Mask 

RCNN architecture for training. In instance segmentation, each 

object within the same class will be assigned with an instance. 

As Mask RCNN, a state-of-art framework which is built on top 

of Faster R-CNN is one of the recent deep learning models that 

best support instance object detection (and segmentation), it is 

chosen for BFE.  Mask RCNN = (Faster RCNN) + (FCN Mask 

Head). FasterRCNN is widely used for object detection. It 

returns the class label & the bounding box for each individual 

object that is detected within the image by incorporating an 

attention mechanism using Region Proposal Network (RPN).  

Mask RCNN, and additionally it possesses a branch which is 

responsible for generation an object mask (/segmentation mask) 

within the detected object region called semantic segmentation 

(Figure 12).  The architecture of any single DL model contains 
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a ResNet50 CNN backbone (Encoder) for feature extraction 

(based on huge convolution operations) and two Decoders 

(1FCN classifier-for predicting the classes & Bounding Boxes   

and 1Mask head for segmenting the objects detected). 

 

Figure 12. Architecture of Mask-RCNN 

In the first stage, FasterRCNN uses ResNet50 (Residual 

Network with fifty hidden layers in architecture) as one entire 

CNN backbone model to extract feature map 

(creating/highlighting the features) from the input image. The 

convolution blocks in resnet50 architecture run on the logic of 

switch connections. In Second stage, the task is to determine 

and create the set of regions/RoI (Region of Interest)/bounding 

boxes (of the objects) within the feature map using RPN 

protocol. All the other portions of the image leaving these 

regions are considered as background and are not processed 

further in 3rd stage.  Faster RCNN, in the context of Mask 

RCNN, in the third stage, considers both the feature map and 

the determined regions (foreground features of the above stage) 

to perform standardization of these regions using ROI Align for 

better accuracy by preserving the spatial orientation of features 

with no data loss. In fourth stage, using dense layers on the 

output from ROI Align, classification is performed to return the 

class label of the object in each ROI. In the last stage, using 

FCN mask head, the pixel-based segmentation/object masking 

is performed on these standardized and classified object regions 

of the above stage.  

3. RESULTS 

3.1 Model training  

As discussed earlier, Google map layers from Google API has 

been utilised in this study for training the model (Figure 13). A 

large amount of training data has been ingested and learning 

rate of the model is improved with continuous ingestion of 

training data (Figure 14). It can be seen that with each epoch, 

training loss and valid loss values kept on improving (Figure 

15). Figure 16 shows the finally obtained model results. Left 

side image shows ground truth data while right side image 

shows model outputs. It can be seen that there is high 

correspondence of model outputs with ground truth data.  

 

Figure 13. Training data image tiles along with building 

mask 

 
 

3.1.1 Trained Model Statistics: 

 

Figure 14. Learning rate of the model 

 

Figure 15. Details of the 

trained model (epochs, 

training loss and valid 

loss) 

 

Figure 16. Model results, 

left sided images 

represent ground truth 

data, right sided images 

represent predicted 

building footprints 
 

 

3.2 Building Footprint Extraction  

Implementation of model on the entire selected study area 

results (Figure 17) shows individually extracted buildings with 

great correspondence with base image. It proves that use of 
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open data sources from OSM (for vector label) and Google 

earth (as raster) for training can benefit the faster preparation of 

the efficient training data. The OSM building vector file is 

available for major cities. Selecting the city nearby the study 

area and extracting them for training would generate a better 

training data. This method can be beneficial in creating faster 

and accurate urban database. 

 

 

Figure 17. Building footprint extraction on Pleiades 1A RGB 

data using the Model 

 

3.3 Accuracy Assessment 

Accuracy assessment of extracted building footprints with 

digitized footprints yielded high level of accuracy with 98.41 

specificity (Figure 18 and 19). The predictive accuracy is 

found to be 96.20 with FPR of only 1.58 (Table 1).  

 

Figure 18. Ground truth buildings 

 

Figure 19. Accuracy estimation 

 

 
 

 

Accuracy Measure Value 

Sensitivity/True Positive Rate (TPR) 86.77 

Specificity/TNR 98.41 

Predictive Accuracy 96.20 

PPV/ Precision 92.77 

NPV 96.94 

F1-Score  0.89 

FPR 1.58 

PPR 30.37 

NPR 7.45 

False Positive Fraction (FPF) 7.22 

False Negative Fraction (FNF) 3.05 

Table 1: Accuracy estimation 

 

4. CONCLUSION  

The study explores different reasons why traditional object 

based and the machine learning based feature extraction 

techniques, while dealing with VHRS imageries, have limitation 

especially in case of buildings. In order to produce high quality 

urban maps for micro analysis or detailed damage estimation 

during disaster, ‘building footprint’ turn to be an inevitable 

landscape urban features those to be included in the maps. 

Hence deep learning techniques are found to be a ray of hope to 

extract definite building features from VHRS satellite data. 

Though pre-trained DL models are available, they are not 

efficient in predicting the buildings in other locations.  Since 

being data driven learning technique, one of the greatest 

bottlenecks for implementing these deep learning models 

directly on any given area to predict buildings is the training 

data as there is high subjectivity due to context of study area 

that includes soil characteristics, culture/lifestyle/economy, 

architectural style and the building byelaws.  

Creating a large amount of appropriate training data is really 

challenging task as DL methods being data driven learning. 

This study overcomes this challenge by generating large amount 

of training data that is trained on the native buildings of the 

same city region as of the study area. It performs building 

footprint extraction on 2012 Pleiades 1A data RGB data and 

entire training data is produced using Google Maps API. 

Google maps carry building locations for most of the cities 

worldwide. As Google Maps and Google Satellite are found to 

be the potential source to obtain the desired training data of 

matched building polygons and raster for a given area, this 

advantage is further utilized for effective model generation to 

detect buildings of a specified place.  

The extraction results are promising and the estimates of the 

accuracy are 98.41% Specificity, 96.20% Predictive accuracy 

and 0.89 F1 score. In this study, contextual building 

information is used as training data. Even by using a simple 

Mask R-CNN technique high accuracies are obtained. Here, 

2021 RGB training data is used to predict 2012 RGB buildings. 

Any other RGB data with similar building properties as that of 

training data, when predicted by the model, irrespective of 

timelines and data source, better results are acquired. This can 

be a greater help in emergency disaster periods to generate 

instance maps using other VHSR RGB data. The model 

displayed the high accuracy obtained for this study even in high 

density built up area of Chandigarh city. It should be noted that 
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India has high density of built up in some parts of its cities 

being the second most populous country and large number of 

urban population. Automatic extraction of building footprints 

especially in high density built-up is the need of the hour for 

sustainable and long term planning of these cities. Developing 

an efficient model for automatic extraction of all the buildings 

within the given urban area would greatly serve over crowded 

cities/towns 
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