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ABSTRACT: 

 
Online camera calibration technology can estimate the pose of the camera onboard in real time, playing an important role in many 
fields such as HD map production and autonomous vehicles. Some researchers use one vanishing point (VP) to calculate the pitch and 
yaw angle of the onboard camera. However, this method assumes that the roll angle is zero, which is impractical because of the 
inevitable installation error. This paper proposes a novel online camera orientation determination method based on a longitudinal 

vanishing point without the zero-roll hypothesis. The orientation of the camera is determined in two steps: calculating the pitch and 
yaw angles according to vanishing point theory, and then obtaining the roll angle with lane widths constraint which is modeled as an 
optimization problem. To verify the effectiveness of our algorithm, we evaluated it on the nuScenes dataset. As a result, the rotation 

error of the roll and pitch angle can achieve 0.154° and 0.116° respectively. Also, we deployed our method in the “Tuyou”, an 

autonomous vehicle developed by Wuhan University, and then tested it in the urban structured road. Our proposed method can 
reconstruct the ground space accurately compared with previous methods with zero-roll hypothesis.  
 
 

1. INTRODUCTION 

As cameras are widely equipped on mobile platforms like 

autonomous vehicles and robots, accurate extrinsic calibration 

becomes increasingly important for vision-based algorithms. 

Traditional manual calibration methods tend to use control points 

in the calibration field with special targets. However, these 

methods are impractical in outdoor scenes where cameras should 

be automatically calibrated online. Due to the ups and downs of 

the road, the poses of onboard cameras are changing continuously 

during driving, which introduces the errors related to the pose of 

the camera and influences the robustness of vision-based 

applications, such as lane keeping assist and lane departure 

warning.  

Some researchers utilize VO (Vision Odometry) to measure the 

relative orientation change of the camera (Jeong and Kim, 2016). 

Based on VO, other researchers obtain the relative pose between 

camera and other onboard sensors whose poses are known, via 

hand-eye calibration (Tsai and Lenz, 1989; Wang et al, 2019). 

These methods require a large amount of computation and 

heavily rely on texture information. The main disadvantage of 

these methods is that they can only obtain relative poses between 

two adjacent frames. If one frame is lost, the calibration system 

is exposed to the risk of invalidation. 

Three orthogonal vanishing points in the image can be used to 

calculate the intrinsic and extrinsic parameters of the camera 

(Hartley and Zisserman, 2003; Orghidan et al, 2012). However, 

for a camera mounted in the front of the vehicle, it is difficult to 

obtain three stable orthogonal vanishing points. On the structured 

road, the intersection of lanes in image space provides a stable 
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Figure 1. Bird’s eye view (BEV) and the effect of camera’s roll 

angle. (a) An image captured by an onboard camera whose roll 

angle is not zero. (b) BEV with zero-roll hypothesis. (c) BEV 

considering the roll angle 

(a) 

(b) (c) 
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longitudinal vanishing point. While another two orthogonal VPs, 

namely, the horizontal vanishing point and the vertical vanishing 

point, often intersect at infinity, which suffer numerical 

instability. Moreover, on the structured road, it is impractical to 

find three orthogonal VPs all the time. Therefore, many 

researchers only use the longitudinal VP to calculate the camera’s 

pitch and yaw angle and assume that the roll angle is zero (Zhao 

et al, 2014; Lee and Zhou, 2016; Yang et al, 2016). However, this 

zero-roll hypothesis is inappropriate. On the one hand, the roll 

angle is not strictly zero due to the installation error. On the other 

hand, inevitably, the roll angle changes continuously during 

driving. This will directly affect the stability of autonomous 

vehicle applications such as lane keeping assist. 

Researchers usually use inverse perspective mapping (IPM) to 

map image space into ground space (Bertozzi and Broggi, 1998; 

Aly, 2008; Oliveira et al, 2015) and obtain bird’s eye view (BEV) 

image to measure the distance to the adjacent lane lines, in 

applications like lane keeping assist. In BEV, targets on the 

road’s surface have the same scale as the real world. Generally, 

the widths of lanes on the structured road are equal. As a result, 

lanes in BEV usually have the same width. Besides, if the actual 

lanes’ widths are known, the widths measured in the BEV should 

be equal to their actual values. However, the inappropriate zero-

roll hypothesis will introduce errors. The error of the roll angle 

will deform the lanes’ widths in BEV as shown in Figure 1. When 

the camera rotates anticlockwise around the optical axis of the 

camera, the lanes on the left become narrower and the right lanes 

become wider. The zero-roll hypothesis will bring more errors to 

vehicle lateral positioning.  

This paper firstly deduces a formula for calculating the pitch and 

yaw angle based on VP without the zero-roll hypothesis. Then, a 

pipeline is proposed to estimate VP and measure lanes’ widths. 

Finally, fixing the pitch and yaw angle, we further model the 

solution of the roll angle as an optimization problem with lane 

width constrain in BEV. 

 

2. GENERAL FORMULA TO CALCULATE PITCH 

AND YAW 

2.1 Problem Statement 

As shown in Figure 3, there are mainly three coordinate systems 

in this paper: the road coordinate system (𝑋, 𝑌, 𝑍), the camera 

coordinate system (𝑋𝑐 , 𝑌𝑐 , 𝑍𝑐) and the image coordinate system 

(𝑥, 𝑦). The origin of the camera coordinate system coincides with 
the origin of the road coordinate system. The camera is mounted 

at a height 𝐻  above the ground. The rotation matrix is 

represented by 𝑹 and the translation vector is represented by 𝒕. 
Since the origin of the road coordinate system and the camera 

coordinate system overlaps, 𝒕 = 𝟎 . 𝑹  can be expressed as a 
function of the roll angle 𝜃𝑟, pitch angle 𝜃𝑝 and yaw angle 𝜃𝑦. In 

photogrammetry, the Euler angular order of the 𝑹 matrix is often 
roll-pitch-yaw. In this paper, the Euler angular order is adjusted 

to pitch-yaw-roll, to avoid the influence of the roll angle on the 

pitch and yaw angles. The 𝑹 matrix is defined as follows.  
 

𝑹(𝜃𝑝, 𝜃𝑦 , 𝜃𝑟) = 𝑹𝒑𝒊𝒕𝒄𝒉𝑹𝒚𝒂𝒘𝑹𝒓𝒐𝒍𝒍                                              

= (

1 0 0
0 −sin𝜃𝑝 −cos𝜃𝑝
0 cos𝜃𝑝 −sin𝜃𝑝

)(

cos𝜃𝑦 −sin𝜃𝑦 0

sin 𝜃𝑦 cos𝜃𝑦 0

0 0 1

) 

(
cos𝜃𝑟 0 − sin𝜃𝑟
0 1 0

sin𝜃𝑟 0 cos𝜃𝑟

)                                        (1) 

 

Where, 𝑹𝒑𝒊𝒕𝒄𝒉, 𝑹𝒚𝒂𝒘, 𝑹𝒓𝒐𝒍𝒍  are the rotation matrices corres-

ponding to each angle. In order to be consistent with the 
definition in most IPM literatures, this paper defines the pitch 
angle in the horizontal direction as 0, which differs from the value 

defined by Euler’s angle by 𝜋/2, so the 𝑹𝒑𝒊𝒕𝒄𝒉  has different 

forms. 

 

For any given point 𝑷 = (𝑋,𝑌, 𝑍)  in space. The relationship 

between the road coordinates and image coordinates of 𝑷 can be 
described by the pinhole camera model.  
 

𝜆 (
𝑥
𝑦
1
) = 𝑲𝑹𝒑𝒊𝒕𝒄𝒉𝑹𝒚𝒂𝒘𝑹𝒓𝒐𝒍𝒍 (

𝑋
𝑌
𝑍
) (2) 

 

where   𝑲 = intrinsic matrix,  𝜆 = normalization scale 
 

Figure 3. Definition of coordinate systems. 

Figure 2. Flow chart of the proposed method 
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2.2 Definition of Vanishing Point 

As shown in Figure 4, the point on the line passing through the 

point 𝑿𝟎 and with direction 𝑫 can be expressed in the following 
formula. 
 

𝑿(𝜏) = 𝑿𝟎 + 𝜏𝑫 (3) 
 

Vanishing point 𝑽 is the point on the line at infinity (Hartley and 
Zisserman, 2003).  

 
𝑽 = lim

𝜏→∞
𝑿(𝜏) (4) 

 

The image coordinate of VP is only related to the direction 𝑫. 

For simplicity, let 𝑿𝟎 = 𝟎. Also, since the 𝑌 axis is parallel to the 

direction of the road, let 𝑫 = (0,1,0)𝑇 .  Combining equation 
(3)(4), the VP can be expressed in equation (5).  
 

𝑽 = lim
𝜏→∞

(0, 𝜏, 0)𝑇 (5) 

 
2.3 Calibration Based on Vanishing Point 

Combining equation (2) and (5), VP’s image coordinates (𝑣𝑥, 𝑣𝑦) 

can be expressed in equation (6).  
 

(

𝑣𝑥
𝑣𝑦
1
) = lim

𝜏→∞
𝑲𝑹𝒑𝒊𝒕𝒄𝒉𝑹𝒚𝒂𝒘𝑹𝒓𝒐𝒍𝒍 (

0
𝜏
0
) 

              = lim
𝜏→∞

𝑲𝑹𝒑𝒊𝒕𝒄𝒉𝑹𝒚𝒂𝒘 (
0
𝜏
0
)         (6) 

 
Let, 
 

𝑲𝑹𝒑𝒊𝒕𝒄𝒉𝑹𝒚𝒂𝒘 = (

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

) 

 
Then equation (6) can be expressed in the form of the collinear 
equation.  

 

{
 

 𝑣𝑥 = lim
𝜏→∞

𝑎12𝜏

𝑎32𝜏
=
𝑎12
𝑎32

= 𝑐𝑥 −
𝑓𝑥

cos𝜃𝑝
tan𝜃𝑦

𝑣𝑦 = lim
𝜏→∞

𝑎22𝜏

𝑎32𝜏
=
𝑎22
𝑎32

= 𝑐𝑦 − 𝑓𝑦 tan𝜃𝑝        

(7) 

 
where  (𝑐𝑥 , 𝑐𝑦) = camera optical center 

 (𝑓𝑥, 𝑓𝑦) = the focal length 

 

Based on equation (7), the pitch and yaw angles can be calculated. 

{
 

 𝜃𝑝 = arctan
𝑐𝑦 − 𝑣𝑦
𝑓𝑦

𝜃𝑦 = arctan(
𝑐𝑥 − 𝑣𝑥
𝑓𝑥

cos𝜃𝑝)
(8) 

In equation (8), the pitch and yaw angles are independent of the 

roll angle. During the derivation, only the order of Euler angles 

is specified, and no assumptions are made on the roll angle. In 

other words, the pitch and yaw angles can be obtained from 

equation (8) regardless of the change of the roll angle. This is 

important for the further calculation of the roll angle. 

 

3. VANISHING POINT ESTIMATION AND LANE 

WIDTH MEASUREMENT 

Up until now, the pitch and yaw angles of the camera can be 
calculated from the VP of the lane lines. Besides, as mentioned 

before, to further estimate the roll angle, the lane width is used as 
a constraint to solve the optimization problem. Therefore, it is 
necessary to detect the lane lines on the image, estimate the 
vanishing point, and measure lanes’ widths. 
 

3.1 Lane Detection and Vanishing Point Estimation 

Recently, lane detection methods based on convolutional neural 
networks (CNN) have become mainstream and achieve state-of-

Figure 4. Definition of the vanishing point 

Figure 5. Pipeline of lane detection. (a) Original image. (b) 

Segmentation mask. (c) Lanes expressed as piecewise linear 

model 

(b) 

(a) 

(c) 
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the-art performances (Chen et al, 2017; Zou et al, 2019; Qin et al, 

2020). As shown in Figure 5, a self-developed CNN is used to 
get the segmentation mask of the input image. Then, following a 
series of post-processing processes including denoising (Xiao, J 
et al, 2018), contour detection (Suzuki, 1985), Douglas-Puke 
sampling, and center points extraction, we finally obtain lanes in 
the image and describe it as a piecewise linear model.  
 
Then, we estimate VP based on Gaussian spheres (Collins and 

Weiss, 1990; Rother, 2002) using the lanes detected before. As 
shown in Figure 6, a Gaussian sphere is a unit sphere whose 
center is the camera's optical center. Each line in the image 
corresponds to a great circle on the Gaussian sphere. Two great 
circles of two parallel lines in space will intersect at a point on 
the Gaussian sphere. The ray from the sphere’s center to the 

intersect is the vanishing direction (VD) 𝑫𝒗 (Barnard, 1983; Lee 
and Yoon, 2019). VD is orthogonal to the normal of great circles 

of parallel lines. Suppose the two endpoints of a line segment 𝒔 

in the image are 𝑷𝟏  and 𝑷𝟐 . Then the normal vector 𝒏 of the 

great circle corresponding to the line segment 𝒔 can be expressed 

as 𝒏 = (𝑲−𝟏𝑷𝟏) × (𝑲
−𝟏𝑷𝟐) . By orthogonality, we have 𝒏 ∙

𝑫𝒗 = 𝟎. If there are 𝑁 line segments, we have 
 

𝑨𝑫𝒗 = 𝟎 (9) 
 

where  𝑨 = [𝒏𝟏,… , 𝒏𝑵]
𝑇 

 

Equation (9) can be solved by singular value decomposition 

(SVD). Then VP’s image coordinate 𝒗 = (𝑣𝑥, 𝑣𝑦)
𝑇

 can be 

calculated. 
 

𝒗 = 𝑲𝑫𝒗 (10) 
 
Since lane lines are represented in the piecewise linear model, 
this method can also work on unstructured roads. The time 

complexity of this algorithm is 𝑜(𝑁). 

 
3.2 Roll-Sensitive Inverse Perspective Mapping 

IPM is a technology which can map image coordinates (𝑥, 𝑦) to 

road coordinates (𝑋, 𝑌) . For simplicity, previous studies 
(Bertozzi and Broggi, 1998; Aly, 2008) usually assume that the 
roll angle is zero. However, such an assumption may bring non-
negligible errors to the subsequent lane width calculation when 
the roll angle is large. 
 

According to equation (2), the relationship between (𝑥, 𝑦) and 

(𝑋, 𝑌) can be expressed by the following equation. 
 

(
𝑋
𝑌
−𝐻

) =
1

𝜆
𝑹(𝜃𝑝, 𝜃𝑦 , 𝜃𝑟)

−1
𝑲−1 (

𝑥
𝑦
1
) (11) 

 

Let 
 

𝑹−1𝑲−1 = (

𝑏11 𝑏12 𝑏13
𝑏21 𝑏22 𝑏23
𝑏31 𝑏32 𝑏33

) (12) 

 
Substituting into equation (11), we get 

 

{
 

 𝑋 = −𝐻
𝑏11𝑥 + 𝑏12𝑦 + 𝑏13
𝑏31𝑥 + 𝑏32𝑦 + 𝑏33

𝑌 = −𝐻
𝑏21𝑥 + 𝑏22𝑦 + 𝑏23
𝑏31𝑥 + 𝑏32𝑦 + 𝑏33

(13) 

 

3.3 Lane Width Measurement 

In this paper, the piecewise linear model is used to describe the 
lane lines, i.e., the lane lines are represented as broken lines. A 

broken line consists of vertices and edges. Denote 𝐿 =
{𝑃1,… ,𝑃𝑛 , 𝑠1 ,… 𝑠𝑛−1} , where 𝐿  denotes a broken line, 𝑃𝑖   
denotes a vertex, 𝑠𝑖  denotes an edge and 𝑛 denotes the number 

of the vertices. For any given point 𝑃, the distance 𝑑 (𝑃, 𝐿) from 

the point 𝑃 to the broken line 𝐿 is defined as the shortest distance 
to all edges. 
 

𝑑(𝑃, 𝐿) = min
𝑖=1,…,𝑛−1

𝑑𝑖𝑠𝑡(𝑃, 𝑠𝑖) (14) 

 

Where, 𝑑𝑖𝑠𝑡(𝑃, 𝑠𝑖) is the distance from the point 𝑃 to the line 
where edge 𝑠𝑖 is located. 
 

Suppose there are two broken lines 𝐿1 , 𝐿2. Let 𝐿1 = {𝑃1
1,… , 𝑃𝑛

1 ,
𝑠1
1 ,… 𝑠𝑛−1

1 }  and 𝐿2
2 = {𝑃1

2 ,… , 𝑃𝑚
2 , 𝑠1

2 ,… 𝑠𝑚−1
2 } . The distance 

between two broken lines 𝑑(𝐿1, 𝐿2) is defined as the average 
distance from each vertex to another broken line. 
 

𝑑(𝐿1 , 𝐿2) =
1

𝑚𝑛
(∑𝑑(𝑃𝑖

1 , 𝐿2)

𝑛

𝑖

+∑𝑑(𝑃𝑖
2, 𝐿1)

𝑚

𝑖

) (15) 

 
4. CALCULATE ROLL USING LANE WIDTH 

CONSTRAIT 

In Section 2, the pitch and yaw angles are calibrated based on the 
VP. Then we need to estimate the roll angle. In BEV, the lane 
widths are influenced by the roll angle. When the camera rotates 

clockwise around the 𝑌 axis, the lanes on the left become wider 
and the right lanes become narrower. When the camera 
calibration parameters are accurate and the ground is 
approximately flat, the lanes in BEV obtained by IPM should 
match their scale in real world. This characteristic can be used to 
accomplish the calibration of the roll angle. 
 
4.1 Roll Calibration Without Prior Lane Width 

In structured roads, the widths of adjacent lanes are usually equal. 
This means that the widths of different lanes in the BEV should 
be equal and the variance of the widths of multiple lanes should 
be zero. Utilize this property, an optimization problem can be 
built. 
 

𝜃𝑟
∗ = argmin

𝜃𝑟
∑(𝑑𝑖(𝜃𝑟) − 𝑑̅)

2
𝑁−1

𝑖=1

(16) 

 

where      𝑁 = the number of lane lines 

𝑑𝑖(𝜃𝑟) = 𝑑(𝐿𝑖 , 𝐿𝑖+1), 𝑑̅ = the mean of 𝑑𝑖 

Figure 6. The Gaussian sphere. 
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When fixing the pitch and yaw angle, the lane’s width is a 

function of the roll angle 𝜃𝑟. 
 

Since the relationship between 𝜃𝑟and 𝑑𝑖  is difficult to express 
explicitly, the above optimization problem is difficult to solve 
directly in the continuous numerical space. Therefore, we use a 

search-based algorithm to solve 𝜃𝑟 . Assume that 𝜃𝑟  obeys the 

normal distribution, i.e., 𝜃𝑟  ~ 𝑁(𝜇, 𝜎). According to the property 
of normal distribution, 99.7% of the values lie within three 
standard deviations of the mean, which is called as three-sigma 

rule. So, let 𝜃𝑟 ∈ [𝜇 − 3σ, 𝜇 + 3𝜎]. After limiting the upper and 

lower bounds of 𝜃𝑟, if the resolution of 𝜃𝑟 is further specified, the 

value of 𝜃𝑟 can only be taken in a finite set of real numbers. Then, 
the brute-force searching method can be used to solve the 
problem.  
 
The pipeline of solving the roll angle is shown in Figure 2. Firstly, 

using CNN and a series of post-processing processes, 𝑁 sorted 

lane lines 𝓛 = {𝐿1 , 𝐿2 , … , 𝐿𝑁}  are obtained. According to 
equation (9)(10), the image coordinate of VP (𝑣𝑥, 𝑣𝑦)  is 

estimated. Based on the VP, the pitch and yaw angles (𝜃𝑝, 𝜃𝑦) of 

the camera can be calculated according to equation (8). Fixing 𝜃𝑝 

and 𝜃𝑦 , the optimal roll angle 𝜃𝑟
∗  is determined by searching 

which minimizes the variance of lane widths in BEV. As for how 

to calculate the lane widths, we first project lanes ℒ from image 
space to ground space according to equation (13), and then 
calculate the distance between adjacent lanes and calculate the 
variance from equation (15). 
 
This proposed method does not require scale information and 
only requires that there are at least two lanes in the image. The 
actual width of the lanes and the mounting height of the camera 
do not affect the solution of the roll angle.  
 

4.2 Roll Calibration with Prior Lane Width 

When the widths of lanes are known, the optimization model can 
be obtained by simply modifying equation (16) as follows. 
 

𝜃𝑟
∗ = argmin

𝜃𝑟
∑(𝑑𝑖(𝜃𝑟) − 𝑑𝑖)

2

𝑁−1

𝑖=1

(17) 

 

where  𝑑𝑖 = real width of the 𝑖 th lane 
 
Compared with the method proposed in Section 4.1, this method 
can even work in the scenes with only one lane and in the roads 
whose lanes’ widths are not equal, if the widths of lanes and the 

height of the camera are known.  
 

5. EXPERIMENT 

We quantitatively evaluated our algorithm on the nuScenes 
dataset (Caesar, H., 2020) which contains a large amount of 

synchronized camera and pose data. The onboard front camera 
collects images in urban scenarios including structured roads. 
The pose data is obtained from an accurate localization system 
that takes into account IMU, GPS, and HD LiDAR maps. We 
take the pose data as ground truth. The proposed method 
estimates the absolute orientation in road coordinate system. 
However, the orientation provided by the dataset is relative to the 
global coordinate system. As a result, the yaw angle is different 

in the most of time, and the pitch and roll angle will differ when 
driving along a slope or inclination. Therefore, we take the error 

of relative orientation (Geiger, A., 2012) as the metric to describe 

the accuracy of the calibration algorithm.  
 

The rotation errors are shown in Figure 7 and their mean values 
are shown in Table 1. The error of the yaw angle is relatively 

larger than the other two, which is influenced by the fact that the 
horizontal location of the vanishing point is relatively sensitive 
to the lane centrelines extraction error. Also, the non-zero 
curvature of the lane line will introduce errors to VP estimation. 
 

Rotation Error Roll (°) Pitch (°) Yaw (°) 

Mean 0.154 0.116 0.568 

 
We also tested the proposed method on “Tuyou”, an autonomous 
vehicle that equips cameras mounted on the roof of the car (see 
Figure 8.). The focal length of the camera we used is 3.6 mm and 
the size of the image is 1920 x 1080. We tested our algorithms 
on real urban road scenarios, including main roads, highways, 
and intersections.  

 

 

It’s difficult to obtain the ground truth of the camera’s orientation, 
especially in outdoor scenes without special targets. We use the 
proposed roll-sensitive IPM to reconstruct the ground and 

Figure 8. “Tuyou” autonomous vehicle 

Table 1. Rotation errors analysis 

Figure 7. Rotation errors 
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compare the result with other online calibration methods with the 
zero-roll hypothesis. Applying IPM, the bird’s-eye view can be 
easily generated. Figure 9(b) shows BEVs using the camera 
parameters calibrated by Yang’s method (Yang et al. 2016) 
which assumes the roll angle is zero. Figure 9(c) demonstrates 
the result using the parameters calculated by our proposed 
method. Because of the installation error, our onboard camera did 

not strictly mount horizontally and the roll angle was about 2°. 
As shown in the figure, due to the inappropriate zero-roll 

assumption, the BEV generated by Yang’s method is deformed 
systematically. On the contrary, by calibrating the roll angle, our 
method successfully reconstructs the ground space. It indicates 
that we can use the proposed method to rectify the installation 
error. 
 
The total running time of the proposed algorithm is about 75ms 
where lane detection and corresponding post-processing pipeline 
take 40ms, camera calibration takes about 35ms. In camera 

calibration, the calculation of the roll angle takes up most of the 

running time, about 34.5ms. Here we choose 𝜇 = 0 and 𝜎 = 1°. 
And we set the resolution of roll angle when searching is 0.1°. 
The rapid running speed allows the proposed algorithm to run in 
real time onboard.  
 

6. CONCLUSION 

In this paper, we proposed a roll-sensitive online camera 
calibration method without the zero-roll hypothesis. Previous 
studies assume that the roll angle is zero, and calibrate the pitch 
and yaw angles by a longitudinal vanishing point. With lane 
width constrain, our proposed method can calculate the three 
Euler angles of the camera based on only one VP in the image. 
This method can be used to rectify the camera’s installation 
angular errors and determine the orientation of the camera online. 
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