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ABSTRACT 
In the field of industrial metrology, there is a rising need for 3D information at a very high resolution for micro -measurements and 
quality control of transparent objects such as glass bottles (beer, wine, cola, cosmetics, etc.). However, such objects are particularly 

challenging for optical-based 3D reconstruction methods and systems such as photogrammetry, photometric stereo, structured light 

scanning, laser scanning, typically resulting in poor metrological performances. Indeed, these methods require the surface of the object 
to diffusely reflect the incoming light, which is not the case with the glass material where refraction and absorption phenomena do not 
permit their use. Over the years, various methods have been investigated and developed to avoid the coating (or powdering) treatment 
often used to make transparent objects opaque and diffusely reflecting. Most of the approaches require either some a priori knowledge 

of the transparent object or assumptions about how light interacts with the surface. This paper provides a general overview of state-of-
the-art 3D digitization methods for optically non-cooperative surfaces featuring absorption, scattering, and refraction. The paper 

reviews research works summarizing them into four categories including shape-from-X, direct ray measurements, hybrid, and learning-
based approaches. Moreover, we provided some 3D results to better highlight the advantages and disadvantages of each method in 

practice when dealing with transparent objects. 

 
1. INTRODUCTION 

In the field of industrial metrology, there is a rising need for 3D 

information at a very high resolution for quality inspection (i.e., 
shape and textures) and 3D monitoring over time of 
manufactured products. 3D object reconstruction is generally 
performed using either active (range-based) or passive (image-

based) methods (Blais, 2004; Remondino and El‐Hakim, 2006; 
Remondino et al., 2013; Ahmadabadian et al., 2019; Karami et 

al., 2021). However, these methods are not directly applicable to 
the 3D reconstruction of transparent objects such as glass bottles 

(beverages, cosmetics, oil, etc.). This is mainly because glass 
does not diffusely reflect the incoming light and, also, for passive 
methods, do not have a texture of their own needed for image 
matching tasks. Instead, because of refraction and specular 

reflections, their appearance depends on the object’s shape, 

surrounding background, and lighting conditions with light 
traveling through the surface, distorting or changing the path of 

the light in the process. This makes standard techniques 
inappropriate, causing large errors, and most often failures in the 

process of 3D reconstruction (Figure 1). One of the traditional 
approaches generally used in industrial sectors to deal with such 
objects is to spray a thin layer of powder onto the object's surface 
(Figure 1) to make its surface opaque and diffusely reflecting 

(Palousek et al., 2015; Lin et al., 2017; Pereira et al., 2019). This 
supplementary treatment, on the other hand, is challenging, time‐
consuming, and may not always be feasible in real-time 3D 

inspection of industrial components (Pereira et al., 2019; Karami 

et al., 2022). Moreover, the added layer could increase the overall 
volume of the object and may negatively affect the final accuracy 
depending on the powder thickness and its homogeneity 
(Palousek et al., 2015; Pereira et al., 2019).  

Over the years, various approaches have been investigated and 
developed to avoid the coating treatment. Most of them require 

either some a priori knowledge of the transparent object’s shape 
or assumptions about how light interacts with the surface.

 

a) Image samples before and after powdering b) Camera network c) 3D reconstruction 

   

Figure 1. 3D reconstruction results for a glass bottle (400x80x80 mm) and a plastic bottle (300x70x70 mm) (a) using photogrammetry 
and 36 images (ground sample distance – GSD ≈ 38 µm) acquired with a turntable (b). Without powdering, no results are achieved.  
Only after powdering a successful 3D result can be obtained (c). 
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A comprehensive review was provided in (Ihrke et al., 2010), 
which presents a taxonomy of nine object types to describe light 

transport, ranging from ideally diffuse to a more complicated 
surface with absorption, scattering, and refraction. This work was 

further completed by Mériaudeau et al. (2012), in which all 
techniques were categorized based on the physical interactions in 

conjunction with developed techniques like transmission, 
reflection, and emission. Stolz et al. (2016) proposed a short 
overview of only polarimetric imaging-based methods for 3D 
measurements of transparent objects.  

1.1 Aim of the work 

This paper aims to provide an updated and general overview of 
3D reconstruction approaches for optically non-cooperative 
surfaces, in particular transparent ones (Figure 2). It reviews the 

most related research works, summarizing them into different 
categories, including shape-from-X (distortion, silhouette, 

reflection, polarization, heating), direct ray measurements, 
hybrid, and learning-based approaches. The main benefits and 

drawbacks, as well as their applications in industrial sectors, are 
also discussed and assessed. Moreover, for some techniques, we 
provide a comparative or visual evaluation to show, with 
practical examples, the advantages and disadvantages of each 

method when dealing with transparent objects. 

 
Figure 2. General taxonomy of 3D digitization of transparent and 
glass surfaces. SFS and SFP are the abbreviation for Shape from 
Silhouette and Shape from Polarization, respectively. 

 
2. STATE OF THE ART 

In this Section, we are summarizing many research works related 
to the 3D measurement of transparent surfaces into four different 

categories: shape-from-X, direct ray measurements, hybrid, and 
learning-based approaches. 
 
2.1 Shape from X 

Several approaches known as Shape from X techniques have 
been developed for extracting shape information from 
2D images, where X could be distortion, Silhouette, reflection, 
polarization, heating, and so on. 

Shape from distortion, also known as Deflectometry, is one of 
the earliest methods specifically developed for transparent 

objects. This technique recovers the 3D shape of an object by 
analyzing the distortion of a known pattern placed behind or near 

the surface. This approach has been investigated for long to 

reconstruct either mirror-like surfaces (Tarini et al., 2005), 
liquids (Murase, 1990; Jähne et al., 1994), or solid refractive 
surfaces (Ben-Ezra and Nayar, 2003; Wetzstein et al., 2011; 

Tanaka et al., 2016; Kim et al., 2017). The 3D reconstruction of 
refractive surfaces is more complex than the corresponding 
specular, or textureless surfaces because the ray path depends on 

the refractive index in addition to the dependence on the surface 
normal (Wu et al., 2018; Lyu et al., 2020). These approaches are 

also limited to the recovery of a single refractive surface or the 
reconstruction of parametric surface with simple geometry and 

therefore are not generalizable if not with approximation to a 
wider range of object categories (Wu et al., 2018; Lyu et al., 

2020). 
Shape from Silhouette (SFS) is a well-known 3D reconstruction 
method applied to a wider range of object categories. This 
method reconstructs the 3D shape of an object using a sequence 

of images taken from different views, where the silhouette of the 

object is the sole relevant feature of the image. Depending on the 
geometric projection of the imaging system (e.g.: telecentric, 
central perspective) the silhouette of the object at each station 

(image) can be seen as the base of a prismatic /conic volume in 
three-dimensional space. The silhouette itself represents the 
locus of tangent points on the straight line departing from the 
perspective center of the camera (for a central perspective). By 

intersecting the pyramidal volumes, which is also known as 
Space Carving, a 3D reconstruction of an object can be generated. 
This method was first presented by Baumgart in 1974. Since then, 
various versions of the SFS have been proposed. For example, 

(Martin and Aggarwal, 1983; Kim and Aggarwal, 1986) used 
volumetric descriptions to represent the reconstructed shape. 

Following this, some works (Potmesil, 1987; Ahuja and 
Veenstra, 1989) used an octree data structure to speed up the 3D 

reconstruction process. Szeliski (1993) built a non-invasive 3D 
digitizer using a turntable and a single camera with SFS as the 
reconstruction method.  
As shown in Figure 3, SFS can recover the 3D shape of an object 

regardless of the object’s property and shape as long as the region 

of the object in each image is distinguishable from the 
background (Figure 3-red and yellow boxes demonstrate how a 
non-distinguishable background affects the 3D model). On the 

other hand, as photogrammetric 3D results directly depend on the 
object’s surface property, the method completely failed to 
reconstruct the object’s 3D shape before powdering the surface 
due to the refraction of the light (Figure 1). 

However, the accuracy of SFS is directly depending on the 
silhouette boundary binarization, which can be done using 
automated or user-defined global thresholding of an image. In 
many cases, it might be difficult to determine the optimum 

threshold for distinguishing transparent objects from the 
background. As a result, the silhouette of an object may be 

reduced or increased, making the resulting 3D model smaller or 
larger than the real size of the object or making it noisier. To 

evaluate this, 3D results achieved with SFS were geometrically 
compared against photogrammetric data where its surface was 

coated, and the generated 3D model was of relatively higher 
accuracy than those of SFS.  

The quantitative analysis in Figure 3 shows that the accuracy of 

the generated 3D data using the SFS approach before powdering 
was 0.6mm, while after coating the surface, it decreased slightly 
to 0.51mm. This is due to the fact that, without powdering, 

refraction makes it more difficult to identify the object's 
silhouette on the captured images and distinguish it from the 
background. 
Moreover, another primary issue with SFS is that concavities on 

an object's surface remain unseen, finding it unsuitable for 
reconstructing the inside of a hole or concave areas (Figure 3-red 
and brown boxes). To deal with this issue, Zuo et al. (2015) 

incorporate internal occluding contours into traditional SFS 

methods to recover the concavities on an object's surface. Wu et 
al. (2018) and Lyu et al. (2020) started with an initial 3D shape 

reconstruction generated from traditional SFS, and then 
gradually optimizes the model. 
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a) Without powdering b) With powdering 

        
 RMSE: 0.6mm RMSE: 0.55mm   RMSE: 0.51mm RMSE: 0.5mm 

Figure 3. Quantitative analyses for the SFS-based 3D results on the two transparent objects of Figure 1. Using the 3D data achieved 

with photogrammetry on the powdered objects (Figure 1), the RMSE of a cloud-to-cloud comparison is computed. 

Shape from reflection/refraction is also another approach 

introduced for the first time by Morris and Kutulakos (2007) to 

recover the 3D shape of the transparent object. This approach 
usually describes the behavior of rays as they passe through a 

refractive object by controlling the background behind the 
refractive object (Morris and Kutulakos, 2007; Yeung et al. 2011; 

Yeung et al. 2015; Han et al., 2015; Han et al., 2021). 
However, the data collection of this method may result complex 

and ineffective, and it is necessary to manually rotate a spotlight 
around the hemisphere to illuminate the object and a reference 

sphere from various angles. Following a similar idea, Yeung et 
al. (2011, 2015) used a more convenient data collection method 
to obtain the specular reflection information on the surface of a 
transparent object and applies the graph cut theory to recover and 

optimize the normal vectors, consequently the depth map. 
Although the results are insufficiently precise for industrial 
inspection, they are promising for 3D computer graphics 
animation.  

Iwabuchi et al. (2011) also presented a similar method based on 
inverse ray-tracing. This method uses multiple sensors placed 
around a transparent object with simple geometry and can 

recover the shape and refraction index of the object. Chari et al., 

(2013) proposed a method that combines both geometric and 
radiometric information to do reconstruction. The position and 
direction for each light-path were recovered and combined with 
light radiance at the beginning and end of each light-path. More 

recently, Han et al. (2015, 2021) employed a single camera that 
was set in place with a refractive object in front of a checkerboard 

background. The approach required two images with the 
background pattern placed in two different known locations. 

However, the approach required a change in refractive index, 
necessitating immersion of the object in water, which is a 
significant disadvantage for industrial purposes. 
Shape from Polarization (SFP) Miyazaki et al., (2002, 2003, 

2004), Miyazaki and Ikeuchi (2005), Huynh et al. (2010), Cui et 
al. (2017), Sun et al. (2020) recover the 3D shape of an object 
from polarization information of the reflected light. The basic 
principle is that after capturing the polarization information such 

as the intensity, degree of polarization, polarization phase angle, 
the surface normal can be recovered by analyzing the relationship 
between the surface normal and the polarization image formation 

model. This method has been applied on different object types 

with various reflection properties such as dielectrics (Huynh et 
al., 2010), black (Miyazaki et al., 2016), metal (Morel et al., 
2006), translucent (Chen et al., 2007) and transparent (Miyazaki 
and Ikeuchi, 2005; Huynh et al., 2010; Cui et al., 2017) objects. 

This method is also quite robust and stable to different lighting 
conditions such as indoors, outdoors, or under patterned 
illumination as long as incident light is unpolarized (Durou et al., 
2020). These methods calculate surface normals, which must 

afterward be converted into a height map. However, the results 

are highly vulnerable to noise since they depend solely on the 

weak shape cue supplied by polarization and do not ensure 
integrability (Durou et al., 2020). The ambiguity in polarization 

analysis is also one of the main issues for this approach. To 
resolve the azimuth and zenith angle ambiguity, for example, 

Miyazaki et al. (2002) used the polarization degree in the far-
infrared wavelength for estimating the surface orientation instead 

of the visible wavelength. Morel et al. (2006) recommended 
using active lighting. Stolz et al. (2012) proposed a multispectral 

method for determining the optimal zenith angle, and Garcia et 
al. (2015) used circularly polarized light. More recently, 
ambiguities in this approach are adjusted by combining with 
other approaches in which rough geometric information is 

provided such as Multi-View Stereo (Miyazaki et al., 2004; Zhu 
and Smith, 2019) binocular stereo vision (Tian et al., 2022), light-
path triangulation (Xu and Qiao, 2016; Xu et al., 2017) and etc. 
(Durou et al., 2020). 

Shape from heating is another technique for 3D reconstruction 
of transparent objects (Eren et al., 2009) that, unlike the 
previously described approaches, ignores the refractive 

properties of the object. Laser range scanning of transparent 

objects is possible using an IR laser rather than visible light 
since long-wave and thermal infrared spectrum is not refracted 
by glass. This technique is based on the principle of infrared 
thermal imaging, in which the infrared source heats up the object, 

and then the IR-sensitive sensor detects and records the 
geometric surface information of the object. Aubreton et al. 

(2013) also demonstrated a very similar approach for high 
specular objects utilizing high-power lasers. Since these 

approaches utilized single laser spots as activating light sources, 
their measurement areas and acquisition speed are restricted 
owing to the time required for scanning. There are additional 
limitations in spatial resolution and precision because of the size 

of the laser dots. To overcome these restrictions, Wiedenmann et 
al. (2015) developed a demonstrator system based on a CO2 laser 
with a single thermal camera and phase-shifting projection 
technique of sinusoidal heat patterns. Brahm et al. (2016) 

developed a stereo-vision configuration consisting of two 
uncooled long-wave infrared (LWIR) cameras to detect the 
emitted heat radiation from an object induced by a pattern 

projection unit generated by a CO2 laser. More recently, 

Landmann et al. (2019) demonstrated real-time 3D thermographs 
with a 30-frames per second frame rate (fps). This technique is 
well suited to applications where the geometry or temperature 
distribution of the objects is rapidly changing. Landmann et al. 

(2021) developed a simplified and robust projection approach 
based on a focused single thermal fringe that can rapidly scan 
across the object's surface. Higher intensities were obtained using 
such focused single thermal fringe compared to multi-fringe 
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projection, which increased acquisition speed while improving 
measurement accuracy. 

 
2.2 Direct ray measurement 

Direct ray measurement techniques, which detect light rays 
directly, have for long been utilized for refractive surface 3D 

reconstruction. Kutulakos et al. (2008) published 
foundational work on measuring the geometry of refractive 
objects using light-ray correspondences. By mapping the light 
rays which reach and depart from the object, the geometry of 

transparent objects characterized by depths and surface normal 
can be determined. As shown in Figure 4, The projection of a 
point is defined by the 3D path(s) that light would take to reach 
the camera, given an arbitrary 3D point p, a known viewpoint c, 

and a known image plane. As expressed by Kutulakos et al. 
(2008), refractive surface reconstruction problems are expressed 
as N-K-M triangulation, where N represents view-points required 

for reconstruction, K represents refractive surface points on a 

piecewise linear path, and M represents the number of calibrated 
reference points along the ray exiting the refractive object. 

 
Figure 4. The geometry of N-K-M triangulation expressed by 
Kutulakos et al. (2008). To reach point q on the image plane, 

the light path from p crosses three surfaces, including 
refractive and mirror-like ones, passing from three vertices, 
v1, v2, and v3, which form four segments. The objective of 
light-path triangulation is to estimate the normals and 

coordinates of the vertices using the known coordinates of c, 

q and p. 

However, methods based on light-path triangulation are known 
to have collinearity ambiguities as the 3D surface point can be 

located anywhere along the optical ray that passes through the 
pixel. To remove the ambiguity, Tsai et al. (2015) assumed that 

the light rays are refracted twice. They recovered the geometry 
of a transparent object with only one monocular image using a 

monitor controlling the background image without even needing 
to immerse the object in the water. 
Some researchers (Morris and Kutulakos, 2011; Ding et al., 
2011) employed stereo/multiple cameras to record the 

refractive surface, relying on a cross-view normal consistency 

constraint: the normals computed using the pixel-point 
correspondences obtained from multiple viewpoints must be 
consistent. Alternatively, some studies have been conducted (Ye 

et al., 2012; Wetzstein et al., 2011; Tsai, 2020; Tsai et al., 2021) 
to estimate ray-ray correspondences utilizing specific devices 
such as Bokode (Ye et al., 2012) and light field probes (Wetzstein 
et al., 2011; Tsai et al., 2021) by capturing the incident rays 

released from the background and the exiting rays traveling to the 
camera. Although 3D results appear to be highly promising, the 
high cost of such devices is an important downside of these 
approaches. In addition, one of the main common shortcomings 

of the aforementioned approaches is that they provide only 
dependable normals but noisy depths. To provide the boundary 

condition for the integration of normal, they need to presume a 
planer surface near the boundary (Ye et al., 2012; Ding et al., 

2011) or approximate the border using noisy depths (Morris and 

Kutulakos, 2011; Wetzstein et al., 2011). To address the 
restrictions mentioned above, Qian et al. (2016, 2017) propose a 

position-normal consistency based on a global optimization 
method to restore depth maps of the surface from front and back. 

Similarly, Kim et al. (2017) proposed a method based on 
optimizing the object's shape and refractive index to minimize 

the disparity between observed and simulated 
transmission/refraction rays traveling through an object. It 
cannot, however, be applied to any non-symmetric objects. 
Following that, Wu et al. (2018) expanded this technique and 

provided the non-intrusive method to reconstruct the whole 

geometry of a transparent object; nevertheless, the results are 
always over-smoothed due to their independent optimization and 
multi-view fusion of recovered point clouds. Lately, Lyu et al. 

(2020) expanded this work by optimizing directly the surface 
mesh generated from the SFS method using differentiable 
rendering algorithms. However, these approaches rely on feature 
correspondence across several views to discover similar features 

for triangulation, requiring more assumptions and constraints 
making it insufficient for actual industrial applications that must 
struggle with a wide range of circumstances or environments. 
 

2.3 Hybrid methods 

This group of methods includes combinations of different 

approaches. The primary goal of combining two techniques is to 
overcome the constraints of one method by leveraging the 

strengths of the other, allowing complete and precise 3D 
reconstruction of optically non-cooperative objects to be 
generated. For instance, SFS is considered a more suitable and 
practical approach to reconstruct the 3D shape of transparent 

objects regardless of object’s property and shape. However, the 
concavities on an object's surface remain unseen. Therefore, 
some works (Kampel et al., 2002; Tosovic, 2002) have been 
conducted to correct the problem of SFS by combining a 

structured light method. 
Some researchers have also tried to merge the range sensor and 
silhouette information to provide more reliable sensor data on 

transparent objects. For instance, Chiu et al. (2011) described a 

method to improve Microsoft Kinect depth maps by employing a 
cross-modal stereo path derived from disparity matching between 
the Kinect's included IR and RGB sensors. Narayan et al. (2015) 
merged the silhouette information and depth images on the 2D 

image domain, which can improve 3D reconstruction for concave 
and transparent objects with interactive segmentation. Ji et al. 

(2017) also combined silhouette information and depth from an 
RGB-D sensor to retrieve the missing surface of transparent 

objects. First, they seek the 3D region from multiple views that 
includes the transparent object using incorrect depth led by 
transparent materials. The 3D shape was then retrieved inside 
these noisy areas using SFS technology. 

Another solution developed to deal with transparent surfaces is 
to combine SFP with other approaches such as light-path 
triangulation (Xu and Qiao, 2016; Xu et al., 2017), conventional 
raytracing (Miyazaki et al., 2007), Multi-View Stereo (Miyazaki 

et al., 2004; Zhu and Smith, 2019), binocular stereo vision (Tian 
et al., 2022). For instance, Miyazaki et al. (2007) developed a 
polarization raytracing approach, which combines traditional 

raytracing (calculates the path of light rays) with SFP (calculates 

the polarization state of the light). Starting with an initial shape 
of the transparent object, by modifying the shape, the difference 
between the input polarization data and the rendered polarization 
data obtained by polarization raytracing was minimized. 

More recently, He et al., (2022) developed a pipeline based on 
the fusion of the laser tracking frame to frame (LTFtF) method 
and stereo vision to distinguish and extract the reflected laser 
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lines on the front surface from several laser reflection candidates 
caused by the refraction of the transparent objects. 

 
2.4 Learning-based methods 

Recently, many researchers have used (machine or deep) 
learning-based approaches to solve the problem of measuring 3D 

transparent objects. These approaches could be categorized into 
three groups as follows. 
 
2.4.1 Multi-view 3D reconstruction  

Li et al. (2020) suggested a physically-based network for 
generating the 3D geometry of transparent objects using multiple 
images acquired from different viewpoints while also taking into 
account light transport patterns. More similar to Lyu et al. (2020), 

this method (Li et al., 2020) optimizes surface normals 
corresponding to a back-projected ray from both sides of the 
object using an in-network differentiable rendering layer, given 

the visual hull construction as an initial 3D reconstruction. 

Despite the fact that their method is less restrictive than previous 
ones (Wu et al., 2018; Lyu et al., 2020) that utilized multi-view 

images, it still requires the environment map and the object's 
refraction index. It is also difficult to be used in real-time 

applications because of the time-consuming optimization 
procedure. Furthermore, these data-driven algorithms rely on 

training synthetic images since getting a significant quantity of 
real image training data is difficult (Lyu et al., 2020). 

 
2.4.2 Depth completion (from partial RGB-D depths) 

These approaches use different learning-based methods to fill in 
missing depths (where transparent objects are) acquired with an 

RGB-D sensor (Figure 5). Sajjan et al. (2020) presented a deep 
learning approach (named ClearGrasp) for predicting the 3D 
geometry of transparent objects partly surveyed with an RGB-D 
sensor. Deep networks are used to identify masks, occlusion 

borders, and surface normals given RGB images, and then the 
initial depth is optimized using the network predictions. The 
optimization, however, needs transparent objects having 

interaction boundaries with non-transparent objects. Otherwise, 

the depth of the transparent region remains unpredictable. Figure 
5 shows an example of a depth completion using the method of 
Sajjan et al. (2020): the missing parts of the scene (where both 
transparent objects are located) are predicted and the new point 

cloud is more complete.   
Zhu et al. (2021) proposed another learning-based technique 

which uses a local implicit neural representation built on ray-
voxel pairs that can generalize to unseen objects and fill in 

missing depth on given noisy depth maps.  
 
2.4.3 Monocular shape prediction 

This group of approaches requires only a single image as input in 

order to predict the 3D shape of transparent objects. Stets et al. 
(2019) proposed a deep convolutional neural network (CNN) 
method for determining depths and normals of a transparent 
object using a single image obtained under an arbitrary 

environment map. More recently, Eppel et al. (2022) presented a 
method for predicting 3D points of transparent objects straight 
from an image taken from unknown source using an advanced 

neural net that is independent of camera parameters. In this 

method, each pixel in the predicted map is assigned with the X, 
Y, Z coordinates of a point rather than the distances to that point. 
To train the net, 50k transparent container images containing 13k 
different objects, 500 different environments, and 1450 material 

textures were utilized. A total of 104 real-world transparent 
images of various containers with depth maps were also utilized. 
Instead of using absolute XYZ coordinates to calculate the 
training loss, the distance between pairs of points inside the 3D 

model was utilized, making the loss function translation 
invariant. 

Unlike previous methods, this approach does not require camera 
parameters and can work with images from unknown cameras. 

The method was designed for specific manipulation applications 
of transparent chemical bins but with specific re-training 

operations, it could be generalized to other objects. Figure 6 
shows some results obtained using the method presented in Eppel 
et al. (2022). It can be seen that the predicted 3D shape is only an 
approximate 3D shape with also anisotropic scaling issues 

remaining unsolved. 

 

3. CONCLUSIONS 

This paper presented a general overview of 3D digitization 

methods for non-cooperative surfaces featuring absorption, 
scattering, and refraction. The paper reviewed the most relevant 

research works, summarizing them into four categories, 
including shape-from-X, direct ray measurements, hybrid, and 

learning-based approaches. Shape from silhouette has become a 
popular 3D reconstruction method for static objects. Besides, the 
accuracy of SFS is directly dependent on the binarization of 
acquired images, making it difficult to determine the optimum 

threshold for distinguishing transparent objects from the 
background. 
Shape from reflection may also be used to generate a precise 3D 
reconstruction of transparent objects with complex, 

inhomogeneous interiors when additional limitations are taken 
into account. However, data collection is more complex making 
it difficult and unsuitable for many real-time applications.   

Approaches based on the shape from heating appear to be very 

promising for 3D reconstruction of optically non-cooperative 
objects compared to other approaches. However, their resolution 
is limited since the incident illumination's wavelength is 
significantly longer than visible light. In addition, high-resolution 

IR cameras are quite expensive. 
SFP is a quite accurate method and its recent integration with 

other technologies like light-path triangulation, traditional 
raytracing, and Multi-View Stereo indicates some further 

possibilities. 
Most light path-based approaches for refractive object shape 
reconstruction rely on feature correspondence across several 
views to discover similar features for triangulation. To simplify 

and make the problem more affordable, the majority of the 
techniques use assumptions and constraints. As a result, the 
application window of their approach becomes too limited, 
making them unstable and untrustworthy for actual industrial 

applications that must struggle with a wide range of 
circumstances or environments. 
More recent learning-based approaches learn directly from real 

or synthetic training data and do not require assumptions or 

constraints such as controlled data acquisition, darkroom 
environments, or other limitations. Nevertheless, these 
approaches are still significantly less accurate than traditional 
methods, making them unsuitable for industrial applications 

where accuracy, reliability, and traceability of 3D measurements 
are mandatory. In our experience, learning-based approaches can 

deliver a rough 3D shape of transparent objects which can only 
be utilized for low accuracy applications. Nevertheless, learning-

based methods have demonstrated encouraging results with a 

cost-effective and re-trainable approach. 
However, training such algorithms need huge datasets annotated 
for the specific case. And there is still a gap between real-world 

and synthetic images, making it difficult to generalize to real-
world input datasets. 
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a) Input Image b) Input incomplete RGB-D depth c) Depth completion 

   
Figure 5. Depth completion using a learning-based method (Sajjan et al., 2020): a depth map of a scene with two transparent objects 
(glass bottle and tea cup) placed at the scene. Given an RGB input image (a) with an uncompleted depth map (b), the missing areas 
from input depth were predicted (c). 

a) bottle of water b) glass bottle c) transparent teacup 

   
Figure 6. Learning-based 3D reconstruction of three transparent objects (bottle of water, glass bottle, and teacup) from a single 
image based on Eppel et al. (2022). 
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