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ABSTRACT:

In this work, a method to predict the rheological properties of ultrasonic gel, as a reference substance of cement paste, is presented.
For this purpose, images are taken with a stereo camera system which show a mixing paddle moving through the ultrasonic gels of
different consistency, thus setting them in motion. A digital elevation model (DEM) and a corresponding orthophoto are created
from the image pairs using classical image matching and orthoprojection methods. These are used as inputs into a Convolutional
Neural Network (CNN), which predicts the support points of a flow curve which classically have to be determined in a rheometer
in the laboratory. A simple network architecture consisting of a small number of convolution layers is compared with a pre-trained
ResNet-18, which is fine-tuned using gel images. In a second series of experiments, rheological parameters, which alternatively
need to be deduced from the flow curve in a separate step, are determined directly from the images. In the third series of experiments,
the influence of different factors is tested, such as the position of the cameras relative to the direction of paddle movement and the
importance of the DEMs and orthophotos in the training. It is shown in this paper that it is possible to predict the rheological
properties of the ultrasonic gels with a suitable setup with a satisfying accuracy.

1. INTRODUCTION

Concrete is one of the most widely used building materials in
the construction industry; in Germany alone, the production
volume of ready-mixed concrete in 2020 was over 50 million
m3 (BTB, 2021). To conserve natural resources, demolition
material (concrete, masonry, rock) from the deconstruction of
buildings can be reused in concrete production in the form of
recycled aggregates. In today’s construction industry, however,
mineral resources tend to be downcycled rather than recycled,
although according to the German Federal Statistical Office, the
construction sector was responsible for more than 55 % of the
total German waste generated in 2019 (Statistisches Bundesamt
(Destatis), 2021). One of the reasons is the fact that the proper-
ties of the demolition materials to be recycled vary widely and
can negatively influence the new concrete to an unknown degree
– here in particular the fresh concrete properties (workability,
tendency to segregate). To overcome this problem, more ce-
ment can be used in the concrete mixing process when working
with recycled aggregates to compensate for these fluctuations.
However, this is a solution that is neither environmentally nor
economically justifiable, because large amounts of CO2 are re-
leased during the production of cement. If the properties of
the freshly mixed concrete could already be determined dur-
ing its mixing process, it would be possible to compensate the
unknown negative effects, which mainly result from the use of
recycled materials and from variations in the mixing process,
e.g. with suitable additives.

The ReCyCONtrol1 research project aims at achieving this
goal. To this end, one part of the project is the observation of
∗ Corresponding author
1 https://www.recycontrol.uni-hannover.de/de/

the concrete mixing process using optical stereo sensors. The
aim is to evaluate the flow behaviour of the concrete in real-
time and, thus, to predict its rheological properties. Based on
this data, the concrete can then be specifically adjusted towards
the desired characteristics.

To describe the rheological properties of concrete, the Bingham
model is used in most cases (Yahia et al., 2016), which is de-
scribed by the plastic viscosity η in Pa·s and the yield stress τ0
in Pa. These values describe the relationship between the shear
rate γ̇ in 1/s and the shear stress τ in Pa by

τ = τ0 + ηγ̇. (1)

The difference to a Newtonian fluid (such as water) is that a
certain shear stress, the yield stress, must first be reached in or-
der to set the substance into motion. Plastic viscosity, on the
other hand, describes how flowable a substance is when it is
in motion. While the plastic viscosity of fresh concrete can be
roughly estimated visually by experts during the mixing pro-
cess, this is not the case for the yield stress. In this work,
Deep Learning is used to identify both quantities, as the net-
work learns correlations between the values and the visual ap-
pearance itself without the need for expert knowledge.

As a first step and proof of concept, it is shown that it is pos-
sible to determine the rheological properties of Bingham fluids
in motion from image data. Since working with fresh concrete
always involves a lot of effort and since the time that can be
worked with the fresh concrete before it hardens is limited, this
work uses coloured ultrasonic gel mixed with water to varying
degrees, a substitute which is a commonly used reference sub-
stance for cement paste (one of the main components of con-
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crete (Neroth and Vollenschaar, 2011)). Clay granulate is used
to simulate the aggregate in the concrete. Thus, more tests can
be carried out where different camera and illuminant positions
are tested – especially with regard to 3D reconstruction.

In this paper, a learning procedure is presented that uses a
digital elevation model (DEM) and an orthophoto, both de-
rived by classical photogrammetric methods, to predict rhe-
ological properties. A regression is performed by a Convolu-
tional Neural Network (CNN), which outputs specified values
describing the rheological properties in each case. The main
contribution of this paper is to prove the general possibility to
extract rheological properties from images of Bingham fluids.

The paper next gives an overview of current research on auto-
mated processes in the construction industry. In section 3, the
methodology used in this work is presented. The data set is
described in section 4 including the data generation and the de-
termination of the reference values. Finally, in section 5, the
experiments are presented and the results are discussed. Sec-
tion 6 concludes the paper and discusses future work.

2. RELATED WORKS

Automatic processes for the quality assurance of concrete are
not widespread in the construction industry. Research in the
automation of processes exists in the field of hard concrete,
among others. (Song et al., 2020) present an approach to per-
form a semantic segmentation of concrete sections using Deep
Learning to determine air voids. In (Coenen et al., 2021), a
semi-supervised approach is used to segment the concrete ag-
gregate, which can be used to determine the particle distribu-
tion. However, an important research point is whether or not
the quality of a concrete can be predicted before it is used.

On the construction site, the quality of the fresh concrete is
currently checked with classical manual methods, such as the
slump test. By taking a stereo image of the ”concrete cake”,
(Tuan et al., 2021) show that the manual slump measurements
can be replaced by image measurements. The authors argue that
human involvement requires time and effort and also has lim-
ited accuracy, while the proposed method, not requiring human
involvement, has many potential advantages and ensures a bet-
ter reliability of results. An automatic classification into slump
cases via Deep Learning has also shown success. However, the
concrete is only assessed in the mixed state and must be dis-
posed of, if the quality is insufficient. Methods with which the
quality can be determined before or during the mixing process
are therefore of significant importance.

In (Chidiac and Mahmoodzadeh, 2009), the most common
models of concrete technology and literature for determining
the plastic viscosity of concrete based on its composition are
reviewed. The results show that there are different ways pre-
dicting plastic viscosity from model to model and there are
variations in the results, too. The most recent work predicting
concrete properties based on its composition is (Nguyen et al.,
2020). Using a hybridization of a Least Squares Support Vector
Machine (LSSVM) and Particle Swarm Optimization (PSO),
the yield stress is determined in addition to the plastic viscosity,
leading to good performance. However, none of the models can
handle the use of recycled aggregates, as their composition can
vary considerably, leading to different water demands during
the concrete mixing process for instance.

In (Lau Hiu Hoong et al., 2020), the problem of fluctuations in
recycled aggregates is addressed and a near real-time method
is developed to determine the composition of the recycled ag-
gregate. The methodology is based on image analysis using
a CNN. With the help of this method, the recycled aggregates
can be pre-sorted based on their quality. It might be possible to
extend the models for rheology prediction with the previously
mentioned method, but uncertainties in the prediction are still
to be expected due to fluctuations in the mixing process.

Even if the desired mixing ratios are known, inaccurate ratios
can still occur in the mixing process. In (Yang et al., 2020),
a method is developed to monitor this ratio by taking images
of the fresh concrete immediately after mixing and using Deep
Learning methods to perform a multilabel classification that as-
signs the concrete to one of five classes of water-to-binder-ratio
and sand-to-aggregate-ratio, and one of three classes of nominal
maximum particle size of coarse aggregate classes.

Both, (Li and An, 2014) and (Ding and An, 2018) evaluate im-
ages of concrete from the mixing process in a single-shaft mixer
based on its workability. While (Li and An, 2014) use classical
image analysis methods and determine the slump flow values
and the V-funnel flow time by extracting the shape of the con-
crete in the mixer using pre-defined features, (Ding and An,
2018) show that it is also possible to determine the two values
using Deep Learning, the method is thus independent of human
experience and insights into the appearance of concrete with
different rheological properties, once training data have been
acquired.

The methods mentioned above usually only attempt to automate
tests (e.g. the slump test) that are still carried out by human
hands on the construction site. It has been shown that the re-
lated values can also be determined to a certain degree during
the mixing process. Our aim is to predict the rheological prop-
erties from information acquired during the mixing process by
automatically determining a flow curve from which values for
the two rheological properties of yield stress and plastic viscos-
ity are determined. Based on a reference flow curve from the
laboratory the method is evaluated. In principle, it runs in real-
time, thus, suitable additives can be added directly during the
mixing process.

3. DEEP LEARNING FOR RHEOLOGICAL
PROPERTY DETERMINATION

3.1 Introduction

Our goal is to develop a method that can predict the rheolo-
gical properties of a Bingham fluid serving as reference sub-
stance for fresh concrete by observing the mixing process with
imaging sensors. This method should then be adapted to real
fresh concrete, however, this second step is beyond the scope
of this paper. Using Deep Learning, the properties of the sub-
stance which simulates fresh concrete are to be determined via
a regression model. A CNN learns features of recorded images,
which show a mixing paddle moving through the reference sub-
stance at different time steps. Since it is assumed that additional
information can be derived from the three-dimensional surface
shape of the flowing substance, we use a stereo camera system
in our approach.

It is of course possible to feed the network with the two stereo
images as input. The network then has to implicitly learn the
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3D surface information assumed to be relevant for the task to
be solved. In a second scenario, the 3D information can be cal-
culated beforehand and then used directly as input. Since in the
first scenario less information is provided and the rest (here the
DEM) consequently has to be learned, more training data tends
to be needed. Given, that training data is scarce, the second
scenario is investigated in this work. In a two-step procedure,
first the 3D surface of the concrete is calculated from the cap-
tured stereo images using classical image matching methods. In
order to co-register the images and the DEM, an orthophoto is
then calculated from the input images. Consequently, the input
of the CNN is a two channel image consisting of the orthophoto
(as greyscale image) and the DEM. In our work photogram-
metric processing is carried out using the commerical software
Agisoft Metashape2.

The outputs of the CNN are either the support points of the flow
curve (9 output neurons in our case) or the regression paramet-
ers (2 output neurons) – calculated from the flow curve –, which
have a direct link to two important quantities in concrete rhe-
ology, i.e. plastic viscosity and yield stress. Both approaches
are tested because, although in most cases the main interest lies
in the plastic viscosity and the yield stress, there are different
methods to determine these from the flow curve, and thus an
individual calculation can still be carried out when predicting
the flow curve. Another point is that the flow curve contains ad-
ditional information that can be analysed by building material
experts, if desired.

In the following subsections, the used CNN architectures are
described as well as the training procedure.

3.2 Network architectures

We use two different network architectures in this work: The
first one is a simple architecture, here referred to as Default
CNN, which consists of 7 convolution layer with a 5x5 ker-
nel and a stride of 2, each followed by batch normalisation and
ReLU as activation function. A fully connected layer maps the
features to the 9 or the 2 output neurons. In total, this architec-
ture has 377 457 and 376 106 parameters, respectively, which
are estimated from scratch in the training process. This archi-
tecture was chosen because for a CNN it has relatively few para-
meters, which in itself is also a type of regularisation and can
thus prevent overfitting to the training data.

Another method to deal with limited amounts of training data
is to use a pre-trained network. The weights of these networks
serve as good initial values and are adapted during re-training.
For a first set of experiments, an existing CNN architecture pre-
trained on the ImageNet (Deng et al., 2009) is used. However,
the first layer and the last layer must be completely trained from
a random initialisation, since a different number of input chan-
nels and of output neurons are needed. We are aware that the
weights are pre-trained on RGB imagery, but the assumption is
that the pre-trained weights can still be a support in the training
process. Also, for this reason, all layers are re-trained, i.e. not
only the last layers are fine-tuned.

In preliminary experiments, different architectures were tested,
all with a small number of layers (ResNet-18 (He et al.,
2016), VGG-11 (Simonyan and Zisserman, 2015), GoogLeNet
(Szegedy et al., 2015) and AlexNet (Krizhevsky et al., 2012)).
All of these architectures have shown very similar performance,

2 https://www.agisoft.com/

which is why only the experiments with one architecture are
presented in this paper; we have chosen ResNet-18. Having a
2-channel input and an output layer consisting of 9 neurons, the
ResNet-18 architecture has a total of 11 177 993 trainable para-
meters, which is roughly 30 times more than what the Default
CNN has.

3.3 Training

Training of the Network is carried out as follows. The network
weights ω are iteratively adjusted by minimising an error func-
tion E(ω). In this work, the mean squared error (MSE) is used.
For a batch of N samples, the squared difference of all K out-
puts ŷkn of a sample xn and the corresponding true values yk are
averaged over all outputs of all samples. This gives

E(ω) =
1

N

N∑
n=1

En(ω,xn) =
1

N ·K

K∑
k=1

N∑
n=1

(yk
n − ŷk

n)
2.

(2)

As another tool to prevent over-fitting in addition to those men-
tioned so far, weight decay is used. It is added with a factor of
λ to the error function and is a penalty term for large weights,
leading to

E(ω)← E(ω) + λ
∑
l

ω2
l . (3)

4. DATA GENERATION

4.1 Image acquisition

Ultrasonic gel is regularly used as a reference substance for
cement paste (one of the main components of concrete) to in-
vestigate rheological properties (Haist et al., 2020). A major
advantage of using ultrasonic gel is that its rheological prop-
erties – unlike cement paste – remain constant over a longer
period of time, which means it can be used several times for
experiments. In an experimental set-up, we currently use grey-
coloured gel mixed with water to varying degrees. To simulate
the aggregate in the concrete, clay granulate is added. The mix-
ture is then filled into a horizontal channel and set in motion
with a mixing paddle. This process is recorded in several runs
with a stereo camera system. A graphical illustration of the
set-up can be seen in Figure 1. The cameras used in this work
are Grasshopper 3 USB cameras with a focal length of 8 mm.
The 1920 px x 1200 px images were acquiesced at a frequency
of 30 Hz. A trigger signal was sent from one camera to the
other when a picture was taken. To check the synchronicity, an
LED array was used in which 20 LEDs display a time in mil-
lisecond intervals. By combining the LEDs that were switched
on and off, a time stamp was generated, which confirmed that
the stereo image capture indeed occurred at the same instant in
time. A challenge was the placement of the camera together
with the illumination so that the ultrasonic gel would not reflect
too strongly and thus, lead to errors in the 3D reconstruction and
beyond. For this reason, the channel was completely darkened
and two lights were placed in a way that they did not shine dir-
ectly on the gel.

For each of the 21 mixed gel samples, we recorded at least 14
image sequences; the mixing paddle moved towards the cam-
eras in 7 sequences, and in the other 7 sequences, the paddle
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Figure 1. Experimental set-up for data generation. The geometric dimensions can be found in the top view (right).

(a) left camera (b) right camera

Figure 2. Pair of original images of sample 19, acquired at the
same point of time. In the upper left part of each image, the blue

LED panel can be seen.

moves away from the cameras. Each sequence consists of 40
image pairs. A DEM with an corresponding orthophoto of size
360 px x 679 px was then created from each stereo pair and was
smoothed over 5 time steps over each image sequence with a
box filter. By defining the datum of the 3D coordinates using
stable markers located on the edge of the channel, the results
of all pairs refer to an identical coordinate system. A challenge
regarding the reconstruction were the occlusions caused by the
mixing paddle. In Fig. 2, a pair of images is presented. Fig.
3 shows the depth maps and the orthophotos of three different
samples of the ultrasonic gel. The images also depict the erro-
neous reconstruction in the orthophoto and the blurred depth in
the depth image behind the mixing paddle caused by occlusion.

4.2 Reference values

As a reference, the different gel samples are placed in a vis-
cometer in a laboratory, and a flow curve is determined through
nine support points. The measurements were carried out with
the Viskomat NT from Schleibinger3. 370 ml of each sample
is placed in a rotatable round vessel and a paddle is immersed.
The torque (Nmm) needed to obtain a certain rotational speed
of the vessel (min-1) is then measured at 9 different rotational
speeds (50, 40, 30, 20, 10, 8, 6, 4, 2 min-1) for 30 s each, starting
at the highest speed. All samples should have been measured
twice, but due to device failures in eight cases only one meas-
urement was usable.
3 http://www.schleibinger.com/

Figure 4 shows the flow curves of the 21 samples and indicates
the support points. It is noticeable that there is a clustering of
flow curves with similar values in the middle of the value range
and that the value gaps between the samples are larger towards
the outside. From these measurements, the yield stress and the
plastic viscosity can be derived.

For the experiments in which the yield stress and the plastic vis-
cosity are to be determined directly, the related reference values
are calculated from the flow curve using the method from (Haist
et al., 2020). Here, a regression is calculated from the almost
linear part of the flow curve (between 20 and 50 min-1). With
the multiplication of previously determined factors, the slope
m in Nmm·min and the y-axis intersection n in Nmm of the
regression line can be mapped to plastic viscosity in Pa·s and
yield stress in Pa.

In table 1, the values of the support points and the correspond-
ing regression parameters are listed. The difference to a second
measurement, if it exists, is given in brackets. It can be seen
that there were sometimes larger differences in a measurement
for the same sample (e.g. sample 19 and sample 23). Especially
for the eight samples of which there is only one measurement,
it is difficult to assess, how much they can be trusted.

5. EXPERIMENTS

5.1 Rationale

In the experiments, the following aspects are investigated. First,
a comparison between the Default CNN architecture with a ran-
dom initialisation and the pre-trained ResNet-18 is carried out
for the prediction of the nine support points of the flow curve.
In the second series of experiments, the regression parameters
of the flow curve, which have a direct link to plastic viscos-
ity and yield stress, are determined directly. These can then be
compared with the regression parameters obtained by calculat-
ing a regression from the predictions of the support points from
experiment 1. The third set of experiments deals with the in-
fluence of individual variables, either by working only with im-
ages in which the mixing paddle moves towards or only away

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-711-2022 | © Author(s) 2022. CC BY 4.0 License.

 
714

http://www.schleibinger.com/


(a) Sample 1 (b) Sample 12 (c) Sample 19

Figure 3. Examples of the input data: Generated orthophoto and depth map of different samples. The green arrows show the moving
direction of the paddle. If the direction of movement is towards the camera (a), the DEM primarily shows a pile of gel that the mixing
paddle creates in front of it. If the direction of movement of the paddle is away from the camera (b and c), the reconstruction mainly

shows the groove that the paddle pulls through the gel. In the DEM, green corresponds to a higher and blue to a lower elevation.
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Figure 4. Plot of the flow curves generated in the rheometer. The
different coloured lines show the measurements of the ultrasonic
gel samples. The grey vertical lines show the points of the flow

curve to be predicted.

from the camera. Especially for future use, it is interesting to
see whether or not the network can generate more precise in-
formation about the behaviour of the substance in front of or
behind the mixing paddle. In addition, the influence of the
orthophoto and the DEM is tested by training with only one
of the two inputs. The input for the CNN is considered to be
individual independent images and/or DEMs without any con-
nection in time. The fact that the input comes from image se-
quences is thus not exploited in the research reported here and
will be investigated in future work.

5.2 Training configuration

The available samples are divided into training (15 samples),
test and validation set (3 samples each). To do so, 3 splits are

randomly generated so that the evaluation can be done on dif-
ferent samples. In figure 6, the first column shows the distri-
bution of the samples in the individual sets. The network train-
ing is performed with Stochastic Gradient Decent (SGD) using
a Nesterov momentum of β = 0.99 based on the formula of
(Sutskever et al., 2013). The learning rate for the Default CNN
architecture is set to 1 · 10−2, while a learning rate of 1 · 10−3

is used for the ResNet-18 architecture. A lower learning rate
showed better results for the validation set in some prelimin-
ary tests with the pre-trained networks, probably because the
weights are already rather accurate and do not need to be ad-
justed too much further. The weight decay parameter was set
to λ = 1 · 10−3 for both architectures. These parameters were
determined in preliminary tests. Training is carried out for a
maximum of 1000 epochs (an epoch comprises one run of the
complete training set), but is terminated prematurely if the val-
idation accuracy has not improved for 250 epochs. The eval-
uation is then carried out with the parameters that showed the
best accuracy during validation.

The grey values of the orthophotos are normalised per sample
to mean 0 and standard deviation 1. In the DEMs, all images in
a sequence are subtracted from the mean elevation determined
immediately before the sequence was acquired and thus show-
ing a horizontal plane without the mixing paddle. Afterwards,
all datasets of all samples are multiplied by the same factor, so
that the value range is between -1 and 1.

For numerical reasons, the reference values are also scaled to
the interval [0,1]. In detail, this means that the reference points
of the flow curve were divided by 300. For the regression para-
meters, the slope is not scaled and the y-axis intercept is divided
by 200. Thus, the intercept point lies in a similar range of val-
ues as the slope. If two reference measurements are available,
one of the two is randomly selected per training sample. In the
validation and test, the mean value of the two measurements or
regression parameters is chosen as the true value. Data aug-
mentation was carried out by randomly changing the brightness
and contrast of the orthophotos in a certain interval. The DEMs
are augmented by adding the same random value to each pixel
of the dataset.

To evaluate our results for each sample, the Mean Absolute Er-
ror (MAE) is used. This means that the absolute difference of
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Table 1. Reference values determined with the rheometer. In addition, the parameters are given, which result from a regression
between the support points 20 min-1 and 50 min-1. In case two measurements were available per sample, the mean value is given. In

addition, the difference between these measurements is shown in brackets (large differences are indicated in red). The sample number
in the first column is only used to refer to individual samples.

Sa
m

pl
e

# rheometer measurements Regression param.
Torque

slope m
[Nmm·min]

inters. n
[Nmm]

[Nmm]

support points [min-1]
2 4 6 8 10 20 30 40 50

4 42 (2) 48 (0) 53 (2) 57 (-1) 59 (-2) 71 (-1) 78 (-1) 85 (0) 90 (-1) 0.6 (0.0) 58 (-1)
2 50 (-) 54 (-) 62 (-) 64 (-) 67 (-) 81 (-) 91 (-) 97 (-) 102 (-) 0.7 (-) 68 (-)

25 58 (-2) 64 (-1) 70 (2) 75 (-1) 79 (-1) 95 (4) 106 (3) 114 (3) 119 (-2) 0.8 (-0.2) 81 (8)
18 65 (-) 70 (-) 80 (-) 83 (-) 88 (-) 103 (-) 114 (-) 122 (-) 129 (-) 0.8 (-) 88 (-)
22 66 (2) 74 (0) 81 (0) 86 (0) 91 (-2) 105 (-2) 117 (-2) 127 (-1) 135 (-3) 1.0 (0.0) 87 (-1)

1 74 (9) 84 (8) 90 (2) 94 (-1) 98 (2) 120 (1) 130 (5) 141 (4) 149 (3) 1.0 (0.0) 101 (2)
21 76 (-1) 84 (-2) 92 (-2) 98 (1) 103 (-1) 121 (-2) 135 (-3) 145 (-2) 153 (-5) 1.1 (-0.1) 101 (-1)
16 77 (-) 86 (-) 93 (-) 98 (-) 105 (-) 121 (-) 132 (-) 131 (-) 146 (-) 0.8 (-) 107 (-)
20 78 (4) 86 (2) 93 (3) 100 (2) 105 (2) 123 (3) 137 (2) 145 (0) 154 (0) 1.0 (-0.1) 104 (6)

7 79 (-) 88 (-) 94 (-) 103 (-) 108 (-) 125 (-) 140 (-) 150 (-) 159 (-) 1.1 (-) 104 (-)
3 80 (-) 87 (-) 94 (-) 103 (-) 106 (-) 124 (-) 138 (-) 150 (-) 158 (-) 1.1 (-) 103 (-)

10 84 (-) 92 (-) 105 (-) 108 (-) 116 (-) 133 (-) 148 (-) 159 (-) 168 (-) 1.2 (-) 111 (-)
17 84 (3) 93 (1) 101 (1) 106 (4) 110 (3) 130 (-4) 146 (0) 155 (1) 163 (1) 1.1 (0.1) 111 (-6)
14 85 (1) 96 (1) 104 (2) 111 (2) 116 (2) 135 (3) 148 (2) 160 (4) 168 (4) 1.1 (0.0) 114 (1)
13 91 (3) 99 (3) 109 (1) 115 (0) 121 (-2) 139 (0) 154 (1) 166 (4) 175 (3) 1.2 (-0.2) 117 (2)
11 96 (-) 104 (-) 116 (-) 123 (-) 126 (-) 149 (-) 162 (-) 176 (-) 186 (-) 1.2 (-) 125 (-)
24 97 (2) 108 (4) 118 (3) 126 (3) 132 (2) 154 (-1) 169 (0) 183 (-2) 192 (-2) 1.3 (-0.1) 130 (0)
19 112 (6) 125 (7) 135 (10) 142 (7) 150 (9) 174 (8) 193 (11) 206 (13) 218 (12) 1.4 (0.1) 147 (6)
23 122 (-5) 136 (-1) 149 (1) 158 (2) 164 (-2) 191 (3) 209 (4) 224 (-2) 234 (-6) 1.4 (-0.3) 164 (11)
12 139 (2) 156 (2) 165 (1) 174 (2) 183 (4) 213 (0) 233 (6) 251 (3) 264 (5) 1.7 (0.1) 180 (-1)

9 148 (-) 166 (-) 180 (-) 190 (-) 202 (-) 234 (-) 259 (-) 278 (-) 293 (-) 1.9 (-) 198 (-)

each prediction to its true value is averaged over all samples.
In addition, the standard deviation is used to show the preci-
sion of the predictions. For the experiments in which the 9
support points are predicted, the MAE is averaged over the sup-
port points for a more compact representation. Furthermore, the
Root Mean Square (RMS) of the standard deviations (corres-
ponding to the root of the mean variance) of the support points
is calculated in these cases.

5.3 Results and Discussion

In this section, the results of the three experiments are presented
and discussed.

5.3.1 Experiment series 1: In figure 6, the predictions for
the images of the test samples of all test splits are plotted. In
addition, the mean value over all predictions of a sample and
the reference values are shown. Table 2 lists the MAE and the
standard deviation across the predictions. The given standard
deviation can also be seen visually in the plots. The MAE av-
eraged over all support points lies between 3 and 10 for the
Default CNN and between 3 and 14 for the ResNet-18. In gen-
eral, it can thus be said that it is possible to predict the support
points of the flow curves of individual samples with both ar-
chitectures, while the Default CNN performs a little better in
accuracy. For samples whose flow curves tend to be outside the
range of the other values (samples 4 and 12), the prediction is
not very accurate, however. Especially in split 3, an extrapola-
tion has occurred in the test set for sample 4. The mean value of
all predictions of sample 12 in split 2 agrees with the results of
Default CNN (compare Fig. 6 (b)), but the standard deviation
is rather high. With ResNet-18 on the other hand, the predic-
tions are more precise, but the mean value over all predictions
is less accurate. The MAE is also lower for the Default CNN
for sample 12.

If the differences between two measurements are looked at
in table 1, it can be seen that also the determination in the

Table 2. Performance for DefaultCNN and ResNet-18: MAE and
RMS of the standard deviation of the 9 predicted support points.

Split 1 Split 2 Split 3
Sam. # 17 23 18 11 3 12 11 4 21

MAE [Nmm]
def. CNN 3 6 3 6 7 8 5 10 5
ResNet-18 3 9 3 5 4 13 6 14 6

RMS of standard deviation [Nmm]
def. CNN 4 8 4 8 9 11 6 1 2
ResNet-18 4 8 4 6 5 6 6 3 5

viscometer is subject to errors. For example, the difference
between two measurements in a support point for sample 23 is
as high as 6. Under these circumstances, the prediction accur-
acy achieved can be considered a success. Overall, the Default
CNN delivers a slightly lower MAE and is therefore also used
for the further experiments. One reason for this may be that
the much smaller number of parameters alone forces the net-
work to generalise better. Moreover, the ResNet is pre-trained
on RGB images, whereas here, the input is a greyscale image
and a DEM.

5.3.2 Experiment series 2: Table 3 shows the results of the
second series of experiments. It can be seen that the direct
determination of the regression parameters does not have any
advantages with respect to experiment 1, which is somewhat
surprising. The reason may be that the regression parameters
are somewhat prone to error, since they are only determined by
four support points. For example, the difference in the slope
of the regression lines from both measurements is 0.3, which
is a large difference compared to the range of slope values of
all samples lying between 0.6 and 1.9. If training is then car-
ried out directly with such an erroneous measurements, this can
lead to unstable results, whereas, when training is done with all
9 support points, a single inaccurate value is not as significant.
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Table 3. Prediction of the regression parameters by (a) direct
learning and (b) post-calculation from predicted support points.

Split 1 Split 2 Split 3
Sam. # 17 23 18 11 3 12 11 4 21

MAE slope m [Nmm·min]
(a) 0.1 0.2 0.1 0.1 0.1 0.1 0 0.1 0.2
(b) 0.1 0.1 0 0.1 0.1 0.1 0 0.1 0.1

standard deviation slope m [Nmm·min]
(a) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0
(b) 0 0.1 0 0.1 0.1 0.1 0.1 0 0

MAE y-axis intercept n [Nmm]
(a) 4 7 5 5 3 6 7 11 5
(b) 3 7 4 6 6 8 4 10 4

standard deviation y-axis intercept n [Nmm]
(a) 5 7 6 6 4 6 6 4 4
(b) 4 7 4 8 8 10 5 1 2

5.3.3 Experiment series 3: Figure 7 and table 4 show the
results of the third set of experiments. Similar observations
can be made as for the previous experiments, such as the mis-
classification of sample 4. It should be noted that training only
with orthophotos gives worse results than training only with
DEMs. When using only images from sequences where the
direction of movement of the mixing paddle is the same, the
results show a higher accuracy for the mixing paddle moving
away from the camera, suggesting that the groove the mixing
paddle leaves behind is a clearer indication of the rheological
properties than the somewhat elevated parts of the surface.

Table 4. Variation of input sources: MAE and RMS of the
standard deviation of the 9 predicted support points.

Split 1 Split 2 Split 3
Sam. # 17 23 18 11 3 12 11 4 21

MAE [Nmm]
def. CNN 3 6 3 6 7 8 5 10 5
DEM only 4 7 3 4 4 6 5 10 4
ortho only 5 23 6 6 11 21 7 15 16
away fr. cam. 2 4 3 5 3 3 4 9 4
tow. cam. 7 4 3 7 8 7 4 8 4

RMS of standard deviation [Nmm]
def. CNN 4 8 4 8 9 11 6 1 2
DEM only 4 9 4 5 6 8 5 1 3
ortho only 7 9 6 8 9 16 9 4 5
away fr. cam. 3 3 4 4 4 5 5 1 2
tow. cam. 3 5 4 8 8 9 5 1 3

6. CONCLUSION AND FUTURE WORK

The results of this work have shown that it is possible to de-
termine the rheological properties of ultrasonic gel, used here
as a reference substance for cement paste, on the basis of im-
age data, considering the potential inaccuracy in the determina-
tion of the reference values. This is in contrast to what experts
can visually achieve: they typically can determine the approx-
imate viscosity of concrete during the mixing process, but not
the yield stress. It should be noted, that while viscosity and
yield stress are actually two independent variables, in our ex-
periments, these two quantities are highly correlated. Figure 5
shows this correlation. Thus, it is possible that in our experi-
ments the yield stress (y-axis intercept) could only be determ-
ined by its correlation with the plastic viscosity (slope). This
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Figure 5. Correlation of the determined regression parameters.
Each point represents one sample.

presumption needs to be tested in future research.

It is also noticeable that the standard deviation of the predictions
of a sample can be relatively high, while still almost predicting
the true value on average, leading to the assumption that random
rather than systematic errors dominate the results. If this finding
turns out to be correct, it should be considered for following ap-
plications to predict the rheological parameters based on several
images where the mixing paddle is located at different positions
in the image. In this sense, the use of the Long-Short-Term-
Memory (LSTM) methodology (Hochreiter and Schmidhuber,
1997), which allows the processing of entire image sequences,
should also be investigated. In this way, inaccurate results from
some images could be compensated for.

In future work, the same setup will be tested with real concrete.
Even though this work has shown that the prediction of the flow
curve based on images only (here: orthophotos) is more diffi-
cult, monoscopic approaches should still be considered for use
with concrete, because the appearance of concrete, such as col-
our and reflections, could be a reliable indication of its rhe-
ology.
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(c) ResNet-18

Figure 6. Results for the test sets of 3 different training splits. All predictions of the images belonging to a sample are shown with a
thin line in the colour of the respective sample. The thicker dashed lines in the darker colours mark the average prediction values over

all test images of a sample. The thicker solid lines in the same colour indicate the reference value (in case two measurements were
available, both are plotted).
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(a) Training with DEMs only.
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(b) Training with orthophotos only.
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(c) Training only with images from sequences in which the paddle moves away from the camera.
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(c) Training only with images from sequences in which the paddle moves towards the camera.

Figure 7. Results for the test sets of 3 different training splits. All predictions of the images belonging to a sample are shown with a
thin line in the colour of the respective sample. The thicker dashed lines in the darker colours mark the average prediction values over

all test images of a sample. The thicker solid lines in the same colour indicate the reference value (in case two measurements were
available, both are plotted).
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