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ABSTRACT:

Surface normals play a pivotal role in most shape analysis applications. As such, their accurate computation has received a con-
siderable amount of attention over the years. In heritage sites, where entities of complex shape are prevalent, the development of
reliable means to estimate them becomes even more important. When approaching the computation of normals, not only the shape
complexity becomes a factor, but also the nature of the data, specifically the point density and noise level. To handle both shape
and data quality-related aspects, this paper proposes a new method for the computation of surface normals, focusing on entities of
complex form. We consider portable laser scanners as our data acquisition source, as such scanners offer efficient site coverage.
Nonetheless, as portable scans are characterized by relatively sparse point clouds and noisy responses, their processing becomes
a challenge. While existing research focused on the development of robust estimation methods, their application scope exhibited
some limitations in preserving sharp features. Here, we demonstrate how the use of the L0 norm optimization framework, which
features an inherent ability to preserve sharp transitions, with no need to introduce assumptions about the scene structure, can ac-
commodate such a problem. Results show improved performance compared to common normal computation schemes with more
reliable and accurate estimations of their form.

1. INTRODUCTION

Surface normals are a fundamental feature used for describing
the outline and shape of geometric entities. Therefore, their
reliable estimation plays a pivotal role in almost any shape
analysis-related application, e.g., feature extraction, geometric
and semantic segmentation, denoising, or saliency computation,
to name only a few examples (Pauly et al., 2003; Lange and
Polthier, 2005; Demarsin et al., 2007; Grilli et al., 2017; Arav
and Filin, 2020). Accordingly, the study of reliable methods to
compute them has been receiving great attention over the years,
specifically while considering the effect of noise and underlying
surface form (Sanchez et al., 2020).

In heritage sites, where the shape complexity of architectural
details is evident, a reliable and accurate computation of nor-
mals becomes even more involved. There, however, consid-
erations of efficient coverage of sites, whose dimensions may
be considerable, introduce a trade-off between detail and span
(Patrucco et al., 2019; Bronzino et al., 2019). In recent years,
the advent of portable laser scanning (PLS) platforms improved
accessibility and flexibility of 3-D documentation, allowing to
decimate the time on site considerably. However, and in con-
trast to the more traditional terrestrial laser scans, portable data
are sparser and their quality, noise-wise, is low. The noisy
nature of PLS data is affirmed by algorithmic failure and poor
results in the estimation of geometric primitives reported by
related studies (Xia et al., 2020; Wang et al., 2020). In that
respect, direct normal estimation from such scans becomes a
challenge over complex surface forms and around discontinu-
ous elements (Zhang et al., 2022). Moreover, the ambiguity of
the definition of point cloud normals around sharp features re-
mains an ongoing research problem still addressed by research-
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ers (Boulch and Marlet, 2012; Huang et al., 2013; Nurunnabi et
al., 2015; Zhang et al., 2018; Sanchez et al., 2020).
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Figure 1. Normal computation of a sparse and noisy point cloud
around a corner and an edge linking two faces. Results

demonstrate performance of the PCA, edge-aware resampling
(EAR), and our L0 based solution.

Existing research into normal computation has mainly focused
on the application of robust estimation methods applied mostly
to simple shapes characterized by dense point clouds, and usu-
ally required adequate weighting strategy and iterative calcula-
tions (Huang et al., 2013). To address the singularity problem,
studies either required correct identification of feature points
from noisy responses or resorted to heuristics designed for spe-
cific cases, i.e., the intersection of two planes (Zhang et al.,
2018; Sanchez et al., 2020). As they either require low-level of
noise or introduce assumptions about the underlying surfaces,
the scope of their application may be limited.

Aiming to address these challenges, we propose in this paper
a robust surface normal computation solution based on the L0

minimization framework. Such a solution addresses the low
resolution, noisy responses, and shape complexity. We demon-
strate how the singularity around edges can be solved in a
simple manner, without the need for the identification of fea-
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Figure 2. Overview of the selected models on the groin vault

tures from noisy responses. Experiments on complex elements
of heritage sites suggest the proposed method outperforms pre-
vious studies, visually and quantitatively.

2. RELATED WORK

Early work approached normal estimation by using plane-fitting
(Jain and Ho, 1987). Hoppe et al. (1992) proposed to ana-
lyze the neighborhood covariance through a principal compon-
ent analysis (PCA) to deduce the direction. Such estimation
is sensitive to noise and is also limited in its assumption of
the underlying structure. Later, Sun et al. (2007) proposed to
couple surface normal estimation with a point cloud denoising
in a two-step strategy that iteratively updates the point normal
while smoothing the positions. Similarly, Lipman et al. (2007)
and Huang et al. (2009, 2013) presented a locally optimal pro-
jection (LOP) operator for points denoising based on the L1

median and then estimated the surface normals from the consol-
idated data. Their approaches performed well in the presence of
noise and outliers, at the cost of an over-smoothed pointset and
the loss of sharp features.

Alternatively, Boulch and Marlet (2012) proposed a direct nor-
mal estimation method that utilized a voting strategy inspired
by the Hough transformation as a means to extract the ac-
tual normals. Such a majority-win approach effectively en-
hances the discontinuities, yet requires a massive collection of
triplets to obtain the discrete probability distribution of pos-
sible normals per point. Nurunnabi et al. (2015) proposed a
random sampling consensus (RANSAC)-based estimation, by
effectively detecting outliers and eliminating their effects. Both
methods are robust to outliers yet computational expensive,
hence limited in broader applications.

Zhang et al. (2018) sought a smooth normal field that minimizes
a cost function based on weights assigned to neighboring points
pairs depending on their normal likeliness. Liu et al. (2020) pro-
posed the computation of normals in transition areas by firstly
identifying feature points through orientation discrepancy ana-
lysis. The singularity around transitions was solved by iter-
atively dividing neighbors of features into subgroups through

normal similarity and internal consistency analysis. Such an ap-
proach requires the identification of feature points and utilizes
normal discrepancy at intersections. Therefore, it is sensitive to
noise. Recently, Sanchez et al. (2020) applied M-estimators to
estimate normals by an iterative weighted PCA. Their approach
sought to identify points on the intersection of surfaces through
curvature estimation and initialization of a weighted PCA by
providing two initial raw guesses. Zhang et al. (2022) addressed
the limitations in multiple plane intersections and proposed to
solve the normal ambiguity by employing iterative weighted at-
tributes adjustment. Their approach is based on robust least-
squares fitting, and therefore provided high fidelity outcome,
but required a careful weighting strategy due to the iterative
manner by which it was performed.

Evaluation of the application of most reviewed methods demon-
strates that experiments were largely performed on datasets
where the actual noise level was limited and the data was re-
latively dense. Such setups are not prevalent when using com-
mon portable laser scanners. The review has also demonstrated
that existing approaches address discontinuities in a rather al-
gorithmic manner, usually attempting to handle edges. Being
heuristic by nature they are less designed to handle more com-
plex cases.

3. METHODOLOGY

Rather than coupling point cloud denoising and normal estima-
tion, we propose direct attribute optimization using an L0 min-
imization by which we obtain a locally smooth and edge-aware
normal field. As a starting point, we use the iterative reweighted
minimization least-squares (IRLS) method. We compute the ei-
genvector associated with the smallest eigenvalue of a weighted
tensor form. For the set of normalized weights, {wj}j=0,··· ,n,
associated with the neighbors of a point xi, the weighted tensor
is defined by Eq. (1):

T =
1

n

n∑
j

wj(xj − x̄)⊗ (xj − x̄) (1)
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where ⊗ is the outer product, xj is 3-D neighboring point, j =
1, · · · , n, and x̄ is the centroid of the set of points (the mean of
neighbor points). Defining δj,i = xj − xi, and rj = ⟨v3, δj,i⟩
the projected distances of δj,i on v3, the eigenvector associated
with the smallest eigenvalue, we follow Sanchez et al. (2020)
strategy to compute:

Wj =

(
η

η + r2j

)2

(2)

and wj :

wj =
Wj∑n

k=1 Wk
(3)

where η is firstly initialized as the maximum of squared projec-
tion distances and decreases at each iteration to favor smaller
inlier residuals. Unlike the plane-fitting-based filtering model,
this process is iterative, where we constantly identify outliers
and eliminate their effect by adjusting their weights. For spee-
dup, the principal components of T, given by the eigenvalues
and eigenvectors, λj and vj , such that:

Tvj = λjvj, j ∈ {1, 2, 3} (4)

are computed in a closed-form rather than applying a general
decomposition of the roots.

Defining the characteristic polynomial aλ3+bλ2+cλ+d = 0,
the eigenvalues are computed as follows:

λ1 = µ+ 2ν · cos θ
λ2 = µ+ 2ν · cos θ + 120o

λ3 = 3µ− λ1 − λ2

(5)

where:

µ =
tr(T)

3

ν =

√
tr
(
(µ · I−T)2

)
6

θ =
1

3
cos−1

(
1

2
det(T− µI)

) (6)

and I is a 3 × 3 identity matrix. The relevant eigenvector v3 is
the surface normal, and is computed by the cross product of any
two rows of T− λ3I.

3.1 Normal Field Refinement

By using local point neighborhoods, certain points of other sur-
faces near sharp edges or corners would inevitably be intro-
duced as neighbors of a studied point. Having refined their
original noisy form, we turn to improve their estimation. In
contrast to the point-wise normal estimation (Sanchez et al.,
2020; Liu et al., 2020) or the robust addition to iterative bilat-
eral normal smoothing (Zhang et al., 2022), we obtain refined
orientation field, N, by minimizing the cost:

argmin
N,|Ni|=1

||N̂−N||2 + λ||D(N)||0 (7)

where D(N)ik+j = Ni − NM(i,j) and M(i, j) gives the j-th
entry in the set of k nearest neighbors of a point i. Therefore,
D(N) is a pair-wise normal difference vector. The first term in
Eq. (7) is a data fidelity term aimed to ensure that the output

values do not stray too far from the input. The λ value controls
how smoothed the output would be. The L0 norm || · ||0 directly
measures sparsity and allows the sharp transition of normals.
Therefore it avoids over-smoothness as with the L2 norm.

Direct optimization of L0 norm is nontrivial due to its com-
binatorial nature. In order to solve this complex optimization
problem to create piecewise constant normal field, we introduce
a set of auxiliary variables δ and reformulate Eq. (7) as (He and
Schaefer, 2013):

argmin
N,|Ni|=1

||N̂−N||2 + β||D(N)− δ||2 + λ||δ||0 (8)

where λ controls the level of variations in the normal field and
β is an auxiliary variable. We solve this expression with an
alternating optimization. First, we hold N̂ constant and only
minimize for δ:

argmin
δ

β||D(N)− δ||2 + λ||δ||0 (9)

In this minimization problem, each entry δi can either be 0 or
D(N), to either minimize the L0 norm of δi or the L2 difference
with D(N). Therefore, we obtain a simple solution for δi as 0

if
√

λ
β

> D(N)i, otherwise δi = D(N)i. Next, we fix δ and
optimize for N:

argmin
N,|Ni|=1

||N̂−N||2 + β||D(N)− δ||2 (10)

This expression is quadratic in N, and therefore immediate to
minimize. Both of these optimizations alternate until conver-
gence. The L0 minimization is given in Alg. (1). In this pro-

Algorithm 1: Normal smoothing via L0 minimizations

Input: Noisy Normals N̂
Output: Refined Normals N
Initialization: compute λ,N ← N̂, β ← 10−3

1 repeat
2 fix N, solve for δ in (9)
3 fix δ, solve for N in (10)
4 β ← µβ

5 until β ≥ 103

cedure, µ is the speed at which β is increased. This choice
initially set a large threshold by which we determine the value
of δ, and gradually reduces the threshold to zero as the optim-
ization continues.

4. RESULTS

We evaluate our normal estimation algorithm on simulated data
featuring corners and plane intersections (Figs. 1, 3 & 4) and
on architectural elements collected using the GeoSLAM ZEB-
REVO portable laser scanner. The latter were collected at the
Seraya site (palace in Turkish) in the ancient city of Nazareth,
Israel (Figs. 2, & 5). Built around 1730, during the Ottoman
era, the Seraya served as the regional ruler’s residence, hence
its importance.

Throughout our experiments, we set r = 3 cm a choice driven
by the sensor’s point density and noise level. The setting of η
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Figure 3. Comparison of our edge-aware normal estimation directly from raw noisy observation comparing to EAR (Huang et al.,
2013) and IRPCA (Sanchez et al., 2020), our normal field is piece-wise smooth and also edge-aware.

10% noise

5% noise

PCA IRPCA EAR Ours

Figure 4. Impacts of noise on the normal estimation comparing to EAR (Huang et al., 2013) and IRPCA (Sanchez et al., 2020), our
normal estimation is robust to noise

followed that offered by Sanchez et al. (2020), where the ini-
tial value is set to the maximum of squared projected distance.
The value of β that weights the variations of normal for the L0

optimization was set to 0.001 throughout our experiment, and
µ, which defines the speed at which β is increased, was set to
µ = 1.4. In addition, λ was initialized with 0.004. These set-
tings were defined with consideration of the noisy nature of the
initial normal field in mind. Accordingly, we assigned a low
weight to the variation at the beginning and gradually increased
its weight as the L0 optimization progressed.

We firstly perform our experiments on synthetic data featuring

varying transition angles and varying noise levels. To demon-
strate the improved performance of our model we compare it
to the classic edge-aware resampling (EAR) normal estima-
tion (Huang et al., 2013) as well as to the recent iterative re-
weighting PCA (IRPCA, Sanchez et al., 2020). In accordance
with the portable scanning data characteristics, our point cloud
is sparse, making the distinction of the edge-related neighbor-
ing points more complicated to define. Of focus in Fig. (3) is
the intersection of two planes with sharp and obtuse transition
angles. While the PCA, IRPCA, and EAR face some difficulties
in distinguishing normals at the intersection point, our method
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Figure 5. Overview of more models for comparison

I

EAR IRPCA Ours

Figure 6. Comparison of our algorithm to EAR (Huang et al.,
2013) and IRPCA (Sanchez et al., 2020) at more complex

junctions. Points are colored by their normal orientations. Our
approach produces a global smooth normal field, while

maintaining sharp the transitions without the need to perform
denoising.

correctly computes the two groups of normals with a distinct
transition. We also demonstrate the robustness of the proposed
method when the noise level increases (Fig. 4). Note that when
the noise level is low, good results are still obtained when using
the EAR. Nonetheless, as the noise level increases, the quality
of the normals around the transition area decreases. In contrast,
the L0 based computation remains unaffected. In both exper-
iments (Fig. 3 & 4), our proposed method correctly resolved
the ambiguity at the sharp transition and computed high fidel-
ity normals regardless of the noise level and in the presence of
sparse data.

For the real-world experiments, we select a set of representat-
ive elements from the Seraya site. The first set is from two ad-
jacent chambers each covered by a groin vault, and ones from
the facade of the inner courtyard (Fig. 2). Fig. (6) shows the
normal computation results for the groin vault. The direct ap-
plication of the EAR uses the raw PCA computation as its base,
showing that the noise level of the raw data affects the quality
of the normal estimation. Better results are obtained when us-
ing the robust PCA approach, but noise can still be observed.

The application of our approach produces smoother results as
well as sharper edge preservation. For a close-up inspection of
the normal distribution around profiles in this dataset (Fig. 2)
we evaluate the normals around a corner of one of the cham-
bers, where two flanks of the vault intersect, and at the trans-
ition between the two chambers (II & III in Fig. 2, respectively).
Results in Fig. (7) demonstrate how our approach performs well
at these rapid transition areas between two and three surfaces
(again despite the high noise level and low point density), and
yields accurate normals compared to the other strategies. Sim-
ilar performance can be observed for features on the facade of
the inner courtyard at the site (Fig. 5) where variations between
object and background are even more subtle. Around the capital
of a supporting column (IV in Fig. 5), where both capital and
column are non-planar entities, our normals computation yields
more consistent results compared to the counterpart methods
(Fig. 8). Consistency in the normal computation is also ob-
served around projecting and receding wall patterns that form
a set of parallel planar surfaces (V in Fig. 5), where again the
lower resolution affects the computation of other methods com-
pared to ours (Fig. 9). Finally, we demonstrate the application
of our method on a pointed arch (Fig. 10), again demonstrating
that despite the low density and noise, high quality estimated
normals were obtained.

For quantitative analysis we measure the closeness of our es-
timated normal to ground truth information, using the dis-
crepancy of normals on the selected element for evaluation
(V in Fig. 5). We perform the analysis on the brickwork wall
pattern to demonstrate the improvement of attribute estimation
by our model. For such a form (Fig. 9), we expect an agree-
ment of normals in local regions, with only minor variations.
To quantify this, for each point xi, we analyzed the angular
similarity to the normal of each point in its k-neighborhood
(k = 100) and analyzed the distribution of overall normal sim-
ilarity. As demonstrated in Fig. (11), our model has the lowest
variation of normals on the plane model.

5. CONCLUSIONS

Recognizing that surface normals play a pivotal role in most
shape analysis applications, this paper studies robust means
for their estimation. As input data it considered portable laser
scans that can offer an efficient site coverage. Using such input
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Figure 7. Comparison of our edge-aware normal estimation directly from raw noisy observation comparing to EAR (Huang et al.,
2013) and IRPCA (Sanchez et al., 2020), our normal field is piece-wise smooth and also edge-aware.
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Figure 8. Normal estimation outcome of the supporting pillar
(Model IV)

Figure 9. Normal estimation outcome of the parallel planes
(Model V)

data, consideration of sparse point clouds and noisy response
were processing challenge to tackle. The paper has demon-
strated how prevailing strategies have faced difficulty in hand-
ling sparsity and noisy responses, mostly due to the algorithmic
considerations they introduced. To address that the paper pro-
posed the introduction of the L0 norm optimization framework,
which features an inherent ability to preserve sharp transitions
with no need to introduce assumptions about the scene struc-
ture. Through a set of experiments on both simulated and real-

world data it has demonstrated that such an approach yields bet-
ter performance in the computation of normals around complex
transitional regions, and despite the low data quality.
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