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ABSTRACT:

Mural painting is one of the carriers expressing history and culture. Due to the natural and anthropogenic factors, the salt in mural
painting and environment is enriched in the surface layer with temperature change. It will induce irreversible diseases such as crispy
alkali, which is not conducive to the survival of mural painting in the present. An efficient and non-destructive method to detect salt
in murals is of great importance. Therefore, we proposed a method to predict the soluble salt content of mural paintings based on
hyperspectral techniques. First, simulated samples with different salt concentrations were measured by a special spectroradiometer to
acquire their spectra. Next, breakpoint correction and average smoothing preprocessing are performed and the data set is divided.
Then, the spectra were enhanced by continuum removal (CR) and the logarithm of reciprocal (LR). The salt concentration was
correlated with the spectra to extract 10 characteristic bands. Finally, the salt content prediction model was established by simple
linear regression (SLR) and multiple linear regression (MLR). The accuracy of the model was evaluated with the coefficient of
determination R2, root mean square error RMSE, and relative percent deviation RPD. The experimental results show that the best
inversion fit is based on the combination of the CR-MLR model at the strong correlation bands of 420nm, 584nm, and 2379nm
(Calibration Set R’= 0.846, RMSE= 0.138, and RPD= 3.240). This paper provides a new technical means for the non-destructive

detection of salt content in murals.

1. INTRODUCTION

Mural painting is a colourful painting attached to ancient
buildings. As a special form of expression in the art of painting,
frescoes play propaganda, educational, and totemic roles (Yu N,
2016). However, due to natural erosion degradation or improper
human intervention, their preservation status has been worried
in recent years. The soluble salt content in frescoes changes
with external conditions. Salt continuously dissolves,
crystallizes, and expands with temperature. Once the salt
content accumulates to a certain concentration, enrichment and
crystallization will occur through capillary water movement to
the surface of the mural (Ma H, 2020). Salt accumulation can
induce a variety of irreversible diseases. Zhang Y X (2021)
found that water-salt transport and soluble salt dissolution
crystallization directly contributed to the alkali disease of the
frescoes in Cave 196 at Dunhuang, China. Jin Z L (2008)
researched and found that Na;SOs-dominated pufty alkali
lesions are progressive and recurring, with full destructive
power. Mural salt damage to its artistic value will cause
irreversible weakening. Therefore, efficient non-destructive
testing of soluble salt content in murals is of urgent relevance.

In recent years, many scholars have conducted a series of
studies on the composition and content of soluble salts in Mural
paintings. Yu Z R (2017) sampled the diseased area of the Mani
temple to determine the salt-containing compounds and
concentrations at different depths by wusing the ion-
chromatograph dispersion technique. The water-salt migration
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pattern was revealed. Du H Y (2009) analyzed mural ionic
components using capillary electrophoresis and quantitatively
estimated the concentration by the peak height of the
electrophoretic profile. The latter has a high separation
performance as well as low contamination consumption, but
there is a certain baseline noise. The above two methods require
real-site sampling of the location to be tested in the full-frame
mural, which might cause secondary damage to the mural.

The sensor of the spectroradiometer has a finer spectral
resolution at the nanometer level, which can reflect the finer and
continuous spectral characteristics of the target feature. This
makes it possible to quantitatively invert the salinization status
(Yao Y, 2013). Up to now, researchers have studied the
relationship between heavy metal salts and spectral response
bands in arid farmland (Xia J, 2019), mining soil (Tu Y, L2018).
The heavy metal content fitting model was developed using
spectral feature parameters and their deformations. Zhang S
(2019) developed an inverse model for heavy metal Cr, As, Ni,
and Cd contents by performing four spectral transformations on
the preprocessed spectra using partial least squares regression
and radial basis function neural networks. ZE Mashimbye (2012)
modelled South African soil spectra using a single band,
normalized difference salinity index, and partial least squares
regression to obtain an empirical model related to electrical
conductivity. The use of hyperspectral techniques for the
detection of salt content in mural and wall domains is still in the
exploratory stage.
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The study was conducted by collecting the spectra of fresco test
blocks with different concentrations of laboratory-made, and the
pre-processed data were divided into calibration set and
validation set. The spectra were feature-enhanced by
mathematical transformation, and the feature bands with the

spectra strongly correlated with the mural salinity were screened.

A linear regression model was developed to invert the soluble
salt concentration. The results show that the correlation between
the spectra and salinity based on smoothing and continuum
removal is stronger. The prediction coefficient of determination
of the multiple linear regression model established using the
wavebands combination was as high as 0.846, and RMSE=
0.138, with high model stability. This study is important for the
excavation of spectral characteristics of murals containing
soluble salts. It provides a new technical method for the non-
destructive detection of soluble salt content in murals.

2. DATA ACQUISITION AND
PREPROCESSING

2.1 Sample Production and Data Collection

Mural spectral data collection, processing, modelling is based
on laboratory-made mural test blocks. The mural coarse clay
layer and fine clay layer were simulated by mixing sediment (Li
N, 2021). In actual murals, sodium sulfate has strong migration,
penetration, and crystallization capability and is the main type
of salt damage. Ten salinity levels of sodium sulfate solutions
were selected and set up to be added to the sample blocks. After
dissolving and mixing well, we put it into a mould
(16cm*11cm*1.8cm) indoor shade and monitor the culture
using a soil tester before it is completely dry. Make sure the
temperature is at 21-22 degrees and the relative humidity is kept
consistent. Qualified samples are shown in Figure 1.
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Figure 1. Samples of qualified murals with different salt
concentrations

The ASD-FieldSpec4 portable spectroradiometer was selected
to collect the reflectance spectra of samples. The specific
parameters of the instrument are shown in Table 1. After the
reflectance of standard reflector, each sample area was divided
into 3 X 3 blocks, and the centre point of one block in each row
and column was selected for data acquisition. After collecting a
curved spectral curve, the probe is rotated 90° perpendicular to

the sample surface for repeated collection until the probe of the
spectroradiometer is rotated 270° horizontally. Four curves are
averaged as the spectrum of that point. In this way, a total of 3
points will be measured for each sample. They were averaged to
produce the spectrum of the sample.

Parameter Name Specific values
Spectral range 350-2500 nm
Number of channels 2151
Sampling interval 2.5 nm

Spectral resolution ~ 50-1000 nm @ 3 nm; 1001-2500 nm @ 8 nm

Size 12.7 *35.6 ¥ 29.2 cm
Weight 5.44 kg
Table 1. Parameters of ASD FieldSpec4 portable
spectroradiometer

2.2 Data Preprocessing

To eliminate the noise as much as possible randomly caused by
the instrument components, human operation, etc., the original
spectra are preprocessed. To avoid the effect of the noise at the
edges only the 400-2450 band interval was studied. In spectral
acquisition, there is variability in the acquired spectra between
different optical detection elements, and local discontinuities are
eliminated by breakpoint correction. In the point selection
measurement, there are point edges and measurement jittering.
After removing the outliers, the spectra measured at different
points of each sample are double averaged as the measured
reflectance spectra of different concentration level samples. The
Savitzky Golay smoothing is a local polynomial-based least-
squares fitting filtering process in the time domain. It is
suitable for high-frequency curve denoising, which can reduce
spurious points to effectively remove high-frequency noise and
improve the smoothness of the spectral curve. The general plot
of the spectral curve after preprocessing is shown in Figure 2.

The salt content at a certain place of the mural samples was
selected as the salt content inversion index. Total 33
preprocessed spectral curves of the qualified samples were
divided into 27 modelling sets in the ratio of 9:2 to build the
inversion regression model, and 6 validation sets to evaluate the
model fitting effect. The delineation results are shown in Table
2. The predicted data in the concentration gradient range of 0-
1% mural salt content cover the majority of the salt
concentration range.
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Figure 2. The spectral curve after preprocessing
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Number of Salt Content Percentage
Sample Spectral
Set P Maximum Minimum Average
Samples
Total 33 0 1.0 0.488
sample
Calibration 27 0 10 0496
sample
Validation 6 01 09 0450
sample
Table 2. Spectral data and salt content statistics of mural
samples

3. METHODOLOGY

The overall technical process is shown in Figure 3. Firstly, the
coarse and fine mud layers of simulated murals were produced
and mixed with sodium sulfate to obtain laboratory-made mural
test blocks of different concentration levels. Secondly, the
sample spectral data were collected, preprocessed by breakpoint
correction, spectral double averaging, Gaussian Savitzky-Golay
smoothing filtering, and divided into data sets. Then, the
spectral data were subjected to continuum removal (CR) and the
logarithm of reciprocal (LR) for spectral enhancement. In
addition, significance detection and correlation analysis are used
to screen the strongly correlated bands. Finally, a linear
regression model was developed to introduce explanatory
variables to invert the fitted salinity. The validation set data and
accuracy index was used to determine the optimal salt content
prediction, model.
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Figure 3. Overall technical flow chart
3.1 Spectral Feature Enhancement

To solve the high redundancy of the data and the covariance
between bands, the pre-processed spectra are transformed by
mathematical models. This method can enhance the response of
salt content in the spectra and exploit the implied absorption
features of the spectra. Ali Volkan (2011) achieved the
classification of soil salinity by continuous removal of spectral
reflectance. Wang S W (2018) applied five spectral
transformations, including the logarithm of the inverse, for
partial least squares modelling of soil salinity. The greatest

improvement in accuracy was achieved after the LR transform.
The CR can effectively suppress target background information
and highlight absorption and reflection properties. It can
normalize the spectral reflectance to [0, 1] to create more
absorption valleys. LR can reduce the influence of spectra due
to light conditions and terrain differences. The spectral
variability in the visible range is enhanced and highlighted to
reduce random errors.

3.2 Correlation Analysis and Feature Band Selection

Irrelevant information and interfering variables are still present
in the spectral profile after feature enhancement. The direct
selection of the band at the peak and valley features for
modelling is subject to change, which will affect the modelling
stability and inversion accuracy. Significance tests were
performed by calculating correlation coefficients between
sample salt concentrations and full-band spectral feature
covariates in different spectral forms. The Pearson correlation
coefficient was calculated using band-by-band to select the
characteristic bands (Guo K M, 2020). The equation is as
follows.

> (R, —R)(S,-8)
r, = ol M

Where j = band number
r; = correlation coefficient between sample salt
concentration and spectral data

R = spectral reflectance of the i sample in the j
band

R, = average of n samples in the j band
Si = soil salinity of the i sample

S = average of sample soil salinity

n = number of modelled samples, n=27
Li S M (2011) performed a single-band analysis of spectra on
heavy metal content, identified eight heavy metal response
bands such as Cr and Ni. A regression model was established.
The high correlation between spectral reflectance features and
sample salinity reflects the potential of using remote sensing
tools to assess the degree of salinity. The bands selected for the
salinity features in this experiment are shown in Table 3.

Data Modelling feature bands and correlation coefficient
form b(r)D
R 800 (0.853) . 1413 (0.853) . 1711 (0.848) . 605
(0.847)
CR 420 (0.854) . 584 (0.832) . 2379 (0.764)
LR 1415 (0.8583) . 773 (0.854) . 1232 (0.853)

Table3. Participation in modelling characteristic bands and
correlation coefficients

Note: (Db represents the band in nm; () represents the Pearson
correlation coefficient value that passed the significance test at the p <
0.05 level (two-sided), and the explanatory variables are listed in
descending order of contribution.
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3.3 Inversion Modelling

Simple Linear Regression (SLR) is one of the inversion-fitting
prediction models. It contains an independent variable x and a
dependent variable y. A linear equation is simulated based on
multiple sets of data (x,y) to obtain a primary linear equation,

and a new y is input to automatically invert the predicted x value.

Multiple Linear Regression (MLR) is a regression modelling
method using multiple sets of independent variables on a single
dependent variable. The explanatory variables that are strongly
correlated with the dependent variable are introduced into the
regression equation. The correlation coefficients among the
explanatory variables are tested to screen and eliminate the
variables with strong covariance, thus ensuring that the set of
variables is optimal and has low redundancy (Wang F, 2017).
The soluble salt concentration was obtained by fitting the
inverse of the spectral feature parameters at the characteristic
bands by the two models mentioned above.

3.4 Accuracy Analysis

The goodness-of-fit statistic was selected to evaluate the
accuracy and quality analysis of the model. The coefficient of
determination (R?), root mean square error (RMSE), and
relative percent deviation (RPD) of the calibration and
validation sets are compared for evaluation. R? is used to
determine the model fitting effect, RMSE is used to determine
the predictive power of the model, and RPD can reduce the
effect of differences in the range of predicted sample attribute
values in different studies and measure model reliability to
some extent (Xiao Z Y, 2021). The larger the R?, the more
stable the model; the smaller the RMSE, the higher the
prediction accuracy. The RPD value between 1.4 and 1.8
indicates a good model and can be used for prediction. The RPD
value large than 2.0 indicates a good fit with high reliability.

4. RESULT AND ANALYSIS

4.1 Characteristics Analysis on Spectral Curves of samples
containing salt

From the analysis of the spectral curves in Figure 2, it is clear
that the spectral curve trend shows an overall consistency. An
obvious asymmetric absorption valley is formed at around
1440nm and 1950nm. The latter is deeper and wider. The reason
for this analysis is due to the strong absorption of salt in the
water absorption band. The valley depth expands non-linearly
with the increase of salt concentration. The reflectance of the
samples showed an overall positive correlation trend with the
salt content. Among them, the reflectance of 1% and 0.8%
salinity was significantly higher than the rest of the group,
forming a transversal interval of discontinuity. The preliminary
analysis is due to the formation of white frost salt spots on their
surfaces. In the 400 nm-1400 nm band, the spectral reflectance
showed an increasing trend, with the fastest slope growth at
600-800nm.

Comparing the original spectra, CR and LR spectra, the peaks
and valleys of the transformed spectra are more prominent and
appear more frequently. The effect on the surface spectral
reflectance of the mural samples by different salt concentrations
can be quantified more finely. By calculating correlation
coefficients with significance tests, 10 bands from 2051 bands
were selected as candidates for feature band modelling. As seen
in Figure. 4(a-c) of the spectra after different transformations.
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4.2 SLR Inversion Modelling Accuracy Analysis

The single band with the largest correlation coefficient based on
different spectral feature transformations was used as the
independent variable to invert the soluble salt concentration of
the mural samples. Four SLR inversion prediction models were
developed as shown in Table 4. As the soluble salt
concentration increased, the reflectance values tended to
increase and both were positively correlated. Soluble salt
concentration was negatively correlated with the valley depth
after continuum removal. The same is as the logarithm of
reciprocal.

Number ]]30 e;tr?l Fg:rllldre Fitting Model Equation
1 R1 800 A: Rsoonn=0.1339x+0.3734
2 R2 1413 B: Ris3mm=0.1080x10.4310
3 CR 420 C: Razonm=-0.1572x+0.2721
4 LR 1415 D: Ri4i5m=-0.2173x+0.8354

Table 4. Selection and modelling of sensitive bands for
the salt content of mural samples under different spectral
transformations

Note: @ Rsoonm and Risizam represent reflectance values at wavelengths 800
and 1413nm, respectively, and Raonm and Risisom represent spectral
reflectance values at 420nm and 1415nm after CR and LR treatment,
respectively. y is the salt concentration value of the simulated mural samples
in the modelling group.

The four SLR modelling accuracies are shown in Table 5, and
the accuracy of the modelling set data is significantly lower than
that of the validation set, which is tentatively inferred to be
related to the number of sample spectra. Among the six
goodness-of-fit statistic metrics, three of the LR models had the
highest and two of the CR models had the highest, which is
indicating that after spectral enhancement, the spectral hidden
information is amplified, the useless noise is effectively
suppressed, and the inversion fitting accuracy is improved. In
terms of model reliability, the four models are ranked
LR>R2>R1>CR. In terms of model prediction accuracy, the
four models are ranked LR>CR>R1>R2.

Calibration Set Validation Set

Models (n=27) (n=6)
Rc? RMSEc  RPDc Ry? RMSEy  RPDy
R1 0.727 0.051 1.455 0.950 0.163 3.215
R2 0.730 0.033 1.463 0.919 0.258 2.536
CR 0.711 0.070 1.421 0.955 0.154 3.379
LR 0.737 0.135 1.479 0.916 0.121 2.495

Table 5. Comparison of accuracy of SLR regression inversion
models for the salt content of mural samples

The comparative analysis from the scatter plots 5 (a-d) of the
predicted-measured values of salt concentration. The scatter
deviation in the 1:1 trend line of the R1 model is relatively
severe. The intersection of the fitted lines of the modelling
group and the validation group under the CR model exists,
which reflects some modelling superiority. The discrete points
in the R2 and LR models are evenly distributed on both sides of
the fitted line, and the asymptotic effect between the calibration
and validation groups is obvious, indicating a better correlation.

The predicted concentration is more closely matched with the
measured concentration, and the model is stable. The combined
results show that the SLR inversion model of the soluble salt
content of mural samples at the 1415 nm band is better based on
the logarithm of the reciprocal model (Rc’= 0.737, RMSEc=
0.135, RPDc=1.479).

4.3 Multiple Linear Regression Modelling Analysis

The feature bands with large contributions shown in Table 3
were substituted into the fitting equation as independent
variables. They were used as a comparison with the single-band
modelling accuracy. Most of the 10 selected superior
eigenbands are concentrated in the visible-near-infrared band.
These explanatory variables contain more useful spectral
information. From the modelling results presented by the
multivariate linear regression model in Table 6. The accuracy is
improved in all cases compared to the single-band modelling.
Up to three explanatory variables are introduced based on
different spectral transformations. This means that more
variables are included in the model and the coefficient of
determination is improved but the RMSE is also amplified at
the same time.

The determination coefficient of the multivariate model
consisting of spectra at 420 nm, 584 nm, and 2379 nm after
continuum removal reached 0.846 which was the highest among
all models, while the residuals were the lowest among the MLR.
The RPD of up to 3.24 was considered to have high reliability
of fit. The reason for this analysis is that the implicit
information is amplified under CR. The span of the three
explanatory variables has low self-collinearity, but the
correlation coefficient is high for salt concentration. The next
better model is based on the LR. The modelling accuracy of the
two linear regressions combined shows that it is the most stable.
The modelling coefficients of the determination reached 0.737
and 0.761 respectively, which were improved compared to the
accuracy coefficients of the original spectra. As far as the
accuracy of the validation set is concerned, except for the
ternary modelling of LR, the RMSE of all sets is lower than 0.1,
which are considered to be of predictive value. Among them,
the validation bivariate regression coefficient of determination
after continuum removal was as high as 0.926, and the RPD is
larger than 6, which proved the potential value of the model for
general applicability.

The analysis was carried out from the scatter plot Figure 5. The
ternary linear model in the MLR model was plotted, and a
visual overall interpretation of the model fit was made by the
dispersion of the measured scatter values relative to the 1:1
trend line. As seen in Figure 5(f), the CR is modelled closer to
the predicted fit line in the low concentration range. The scatter
distribution is more average. As seen in Figure 5(g), the LR
model is more stable and has better predictions at the position
with low and medium salt concentrations. The existence of the
intersection of the two fitted lines proves the high stability of
the model. On the other hand, at the position with high salt
concentrations, the data points are relatively scattered, and they
are far from the vertical distance of the fitting line. The
prediction effect of the model is general. However, the model
still has some reference significance. Based on the CR model
after continuum removal, the fitted equations established by
multivariate linear regression of the spectral valley depths at the
three characteristic bands of 420nm, 584nm, 2379nm are the
optimal salt concentration prediction models for the mural
samples.
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Data  Variable . . Calibration set (n=27) Validation set(n=6)
Fitting the model equation
form  number 2 2
Rc RMSEc  RPDc Ry RMSEy  RPDy
2 y=3.29342R1413+3.91302R711-3.11797 0.731 0.179 1.859 0.861 0.084 3.607
R
3 y=-9.08116R1413+12.59663R1711+3.29907R605-2.77626  0.736 0.181 1.896  0.905 0.076 5.290
2 y=-2.22919R420-49.80843Rs34+1.31728 0.725 0.181 1.819  0.926 0.090 6.751
CR
3 =-3.64661R42019.08092R534280.47684R2379+1.2936 0.846 0.138 3.240 0919 0.086 6.171
2 y=-1.8255R1415-1.12745R773+2.77825 0.740 0.176 1.922 0919 0.076 6.152
LR
3 y=9.2088R1415+2.17987R773-15.47769R 1232+2.96355 0.761 0.172 2.092  0.761 0.118 2.094
Table6. Multiple Linear Regression model based on a spectral transformation
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5. DISCUSSION

The variability of the original spectral reflectance over the
spectral bands is not prominent enough and the strong spectral
correlation information is hidden, making it difficult to use it
directly for modelling. After the CR spectral transformation, the
spectral absorption valley features are increased and the strong
correlation between the bands and the salt concentration is
reflected. Picking combinations of the characteristic bands and
linearly fitting the salt concentration with the valley depth can
give good predictions. The spectral enhancement approach and
modelling tools in this paper are consistent with the results
obtained in the study by Tan T (2021). She performed
continuum removal on the smoothed spectral data and then
developed a multivariate linear model, which has good
applicability to the inverse prediction of iron oxide in the Da
Wei Mountain Forest. MLR also has shortcomings such as
dependence on modelling data. In this study, multiple linear
modelling approaches were attempted, and the inversion
accuracy was initially explored through wave combinations.
The CR-MLR model may provide a new idea for predicting the
salt content concentration of murals in the future.

The application of hyperspectral salinization detection to murals
is a new and innovative field, which is still in the initial
exploration stage. The basis of future research should focus on
the optimization of modelling approaches and the promotion of
practical applications.

6. CONCLUSION

To address the problems of complex, costly, inefficient, and
damaging mural salt detection, we proposed a method to invert
the salt content of mural paintings based on hyperspectral
information. Firstly, the gradient concentration mural samples
are produced, collected, and pre-processed. Then, the curve
hidden salt-sensitive spectral information is mined by different
feature enhancement means and correlation analysis. Finally,
the multiple linear regression model with high contribution
bands was attempted to predict the inversion of salt
concentration in the murals. According to the accuracy
coefficient and variance analysis, the CR-MLR model fitted
best with Rc*= 0.846, RMSEc= 0.138 and RPDc= 3.240. 1t is
confirmed that there is a strong correlation between salt content
and spectral features in the murals, and the hidden information
is amplified by pre-processing and spectral enhancement.

This method can be used for the non-destructive quantitative
detection of salinized areas of murals. The linear model has
some limitations due to the complex composition in solid
murals. The nonlinear model with the mural salinization index
is still the direction of future research.
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