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ABSTRACT: 

 

During the last decade, the use of semantic models of 3D buildings and structures kept growing, fostered in particular by the spread of 

Building Information Models (BIMs), becoming quite popular in several civil engineering and geomatics applications. Nevertheless, 

semantic model production usually requires quite a lot of human interaction, which may result in quite long and annoying procedures 

for human operators. The production of 3D semantic models of buildings often takes advantage of already available 3D reconstructions 

of the considered objects. Given the ever increasing resolution of 3D reconstructions, obtained thanks to the recently developed laser 

scanners and photogrammetric software, the availability of tools for supporting the automatic or semi-automatic generation of semantic 

models represents a key step for easing and speeding up the process of semantic model production. In particular, the correct semantic 

interpretation of the different parts of a 3D point cloud, can be seen as the basic step for the production of a BIM model. The most 

frequently used methods for point cloud semantic segmentation can be separated in two categories: those directly segmenting the point 

clouds and those based on the ancillary semantic segmentation of images representing the object of interest, then transferring back the 

segmentation results to the point cloud. This work focuses on the latter method, considering more specifically the application of heritage 

building semantic segmentation. To be more specific, this paper investigates the semantic segmentation performance on a set of four 

heritage buildings, obtained first applying deep-learning based image semantic segmentation and then propagating back the semantic 

information to the point cloud by means of a voting strategy. The obtained results are quite encouraging, motivating future 

investigations on improvements of this strategy, in particular when including more buildings in the considered dataset. 

 

 

 

1. INTRODUCTION 

In the last years there is an increasing interest in the automatic 

semantic segmentation of 3D point clouds, due to its fundamental 

role in scene understanding and comprehension in several 

applications of computer vision, robotic, remote sensing and 

many others (Zhang et al., 2019). In the Architecture, 

Engineering and Construction (AEC) sector, Building 

Information Modelling (BIM) has become a standard design 

approach, and the use of 3D point clouds is currently the base for 

as-built BIM model creation (Macher et al., 2015). Modern 

LiDAR (Light Detection and Ranging) sensors and stereo 

cameras allow to collect a huge amount of 3D points in short time 

(Grussenmeyer et al., 2008). On the one hand, this ensures a very 

detailed spatial representation of the acquired scene. On the 

other, this also causes quite long processing times when dealing 

with the raw data, even longer when manual intervention is 

needed. To leverage this problem, several approaches have been 

developed aiming at automatizing most of the processing steps. 

To such aim, machine and deep learning techniques have been 

extensively investigated during the last years, in particular when 

dealing with problems related to scene understanding and to the 

extraction of semantic information, as in this paper (Heipke and 

Rottensteiner, 2020). Semantic segmentation techniques can be 
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divided into two main groups: projection-based and point-based 

methods (Xie et al., 2020). Although point-based techniques 

provide an opportunity for a better understanding of spatial and 

geometrical information, and they probably are the most 

promising in the future, the current usability of these methods is 

quite limited due to the difficulty in acquiring sufficient 3D point 

labels to properly train a reliable classifier, and due to the high 

computational cost and the long training time. Instead, the 

usability of projection-based methods is currently quite good, 

mostly thanks to the dramatic improvements of neural networks-

based image processing. This approach is based on the 

segmentation of a 2D intermediate representation of the cloud, 

and then on the reprojection of the extracted labels on the initial 

cloud. Multiview or image-based approaches leverage on images 

as intermediate representation of the cloud (Su et al., 2015). 

Therefore, they allow to exploit the tried-and-tested results 

obtained by Convolutional Neural Networks (CNNs) on image 

processing, achieving remarkable results on the semantic 

segmentation of the representative images (Minaee et al., 2021). 

A critical step in the image-based semantic segmentation of 3D 

point clouds is the development of a reliable procedure to re-

project the labelling from the 2D representation to the 3D 

reconstruction. The procedure becomes more challenging when 

dealing with complex scenarios like the case of heritage 
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buildings, in which complex shapes, elements uniqueness and 

irregular geometries require careful modelling.  This paper takes 

advantage of a previously developed image-semantic 

segmentation network (Pellis et al., 2022), and it focuses on the 

development of a reliable 2D to 3D label transfer procedure with 

the main aim of decreasing the geometric and spatial information 

loss and improving the overall accuracy of the image-based 

semantic segmentation workflow. In this paper the procedure will 

be tested on the case of heritage buildings scenarios, using an 

ongoing dataset (Pellis et al., 2021) specifically suited for 

heritage building semantic segmentation. 

 

2. RELATED WORKS 

During the last years, several methods have been proposed to face 

the problem of label projection from 2D images to 3D space to 

obtain a consistent 3D point cloud segmentation from labelled 

images. For example, (Wang et al., 2013) design an approach to 

propagate the pixel-wise image labels from ImageNet to point 

clouds. In the first step they used Exemplar SVMs to over 

segment individual images into “superpixels”, and then 

propagate their labels onto the visually similar superpixels in the 

reference images of point cloud. In the second step they used a 

graphical model to aggregate superpixel label candidates to 

jointly infer the point cloud labels. Some works on semantic 

mapping (McCormac et al., 2016), (Hermans et al., 2014) 

typically aggregated pixel-wise semantic features onto 3D 

reconstructed surfaces via Bayesian fusion and used Conditional 

Random Field (CRF) models to regularize the resulting 3D 

segmentation. In this work (Wang et al., 2019), the authors 

present Label Diffusion Lidar Segmentation (LDLS), a method 

for instance segmentation of 3D point clouds which leverages a 

pretrained 2D image segmentation model. They obtain 2D 

segmentation prediction by applying Mask-RCNN, and then link 

the image to a 3D lidar point cloud by building a graph of 

connections among 3D points and 2D pixels. (Zhang et al., 2018) 

addressed the issue of the semantic segmentation of large-scale 

3D scenes by fusing 2D images and 3D point clouds. According 

to this work the preliminary segmentation results with 2D images 

obtained by a DeepLab-Vgg16 based model, are mapped to 3D 

point clouds according to the coordinate relationship between the 

images and the point cloud calculated with DLT algorithm. More 

recently, (Genova et al., 2021) proposed a novel network 

2D3DNet, that uses multi-view fusion to make best-guess 

semantic labels for as many 3D points as possible via back-

projection and voting from labels of the corresponding pixels. 

(Mascaro et al., 2021) presented Diffuser, a novel framework that 

leverages 2D semantic segmentation to produce a consistent 3D 

segmentation. They formulate the 3D segmentation task as 

transductive label diffusion problem on a graph, where multi-

view and 3D geometric proprieties are used to propagate 

semantic labels from the 2D space to the 3D map. They show a 

significant accuracy compared to probabilistic fusion methods. 

The approach developed in (Lertniphonphan et al., 2018), 

propagate object label from 2D image to a sparse point cloud by 

matching a group of points that corresponds to the area within the 

2D bounding box in the image. The method was used for 

producing training data, and it demonstrates that the label 

propagation can be used to train a classifier with a good average 

precision. In the specific context of building segmentation 

(Murtiyoso et al., 2021) proposed an approach for the 

segmentation of 3D building façade based on orthophoto. The 

XY coordinates of each pixel in the orthophoto was used to 

determine the corresponding planimetric coordinates of the point 

in the point cloud and finally a winner-takes-all approach was 

applied to annotate the 3D points with the respective 2D pixel 

class. In a more recent work (Murtiyoso et al., 2022) introduced 

semantic classification at the beginning of the classical 

photogrammetric workflow in order to automatically create a 

classified dense point cloud. In this regard, several image masks 

obtained by a trained neural network are employed during dense 

image matching in order to constraint the process into the 

respective classes. In the same context (Stathopoulou and 

Remondino, 2019) proposed a semantic photogrammetry 

workflow, in which the label back-projection is based on the 

projection matrix P which connects the 3D with the 2D space. 

The segmented images are automatically generated using neural 

networks, and then the labels are used as constraints in the 

photogrammetric process. Giving the correspondence, all the 

images contribute to the labelling projection on the cloud with a 

weighted winner procedure. 

 

3. DEVELOPED METHODOLOGY 

The proposed methodology aims at projecting the labels, 

predicted by a deep learning-based image semantic classifier on 

a set of N 2D images, on a 3D point cloud. The interior and 

exterior parameters of the images imputed in the deep-learning 

classifier are assumed to be known: despite such parameters 

could be computed aside of the point cloud generation, their 

availability comes for free when the point cloud is the outcome 

of a photogrammetric reconstruction procedure, and the images 

inputted in the classifier are taken among those used in the 

reconstruction. Hence, this could be considered as a quite ideal 

working condition for the proposed method.  

In accordance with the above consideration, hereafter the 

considered images are assumed to have already been aligned, and 

the exterior parameters are assumed to be expressed in a 

reference system compatible with the point cloud one.  

The procedure starts with the image segmentation step: despite 

any proper image semantic segmentation procedure could be 

viable in this step, the deep-learning method proposed in (Pellis 

et al., 2022) has been used in this work, providing N semantically 

segmented images {Ij}j=1,…,N as output. 

Then, the labels of the N predicted images are properly 

transferred to the point cloud, as described in the following. 

1. 3D points of the cloud are projected on the N images, 

by means of the known interior and exterior camera 

parameters. 

2. For each image Ij, each point class is assessed, if 

visible. 

3. For each point, the mostly voted class is selected. 

Let (uj,vj) be the pixel coordinates of the projection of point p on 

the image Ij. A straightforward implementation of step 2 is the 

assignation of the label of pixel (uj,vj) in Ij (if inside the image 

extent) as its vote to point p class. 

Despite being very simple, such a strategy does not take into 

account of the obstructions, leading to unreliable outcomes in 

complex scenarios: the implementation of an effective procedure 

to check obstructions is of vital importance for ensuring a good 

performance of the overall algorithm in a wide range of working 

conditions.  

Assume that the point cloud density is sufficiently high to ensure 

that at least one 3D point is projected in all the adjacent pixels, in 

image Ij, describing the same object surface. Down-sampling the 

image size, or, equivalently, enlarging the pixel size, could be 

necessary in order to ensure the validity of such assumption. 

According to the above hypothesis, at least two points should be 

projected on the same pixel (uj,vj) when an obstruction occurs. 

When such event is detected, a simple check on the distance 

between the camera and the points projected on the same pixel is 

used in order to determine if any of such points probably 

obstructs the others. Image Ij votes only for the non-obstructed 

points. The main advantages of such procedure are the 
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implementation simplicity and the quite effectiveness in most of 

the examined conditions. Nevertheless, a more complex strategy 

will be considered in our future investigations in order to improve 

the semantic segmentation results in quite critical conditions. 

4. DATASET 

To test the proposed procedure, the dataset presented in (Pellis et 

al., 2021), currently composed by three heritage buildings, has 

been used. For each building several data types are available: (i) 

the Terrestrial Laser Scanner (TLS) cloud with the corresponding 

ground-truth segmentation, (ii) the photogrammetric cloud with 

the corresponding ground-truth segmentation, and (iii) the RGB 

images of the photogrammetric survey with the corresponding 

pixel-wise ground-truth segmentation. Since the images were 

previously used for the creation of the photogrammetric cloud, 

the internal and the external camera parameters are also available. 

Figure 1 shows some images of the buildings in the dataset. 

 

 

Figure 1. Examples of the images in the dataset with the 

corresponding ground-truth. 

The segmentation classes considered in this dataset are structured 

following the guidelines and the standards of ARCHdataset 

(Matrone et al., 2020) an existing benchmark for point cloud 

semantic segmentation. The classes refer to the IFC file format, 

to CityGML (LOD3/4) and to ATT (Art and Architecture 

Thesaurus). They include 11 categories: 0_arch, 1_column, 

2_moulding, 3_floor, 4_window/door, 5_wall, 6_stair, 7_vault, 

8_roof, 9_other and 10_background. The distribution of the 

points among such classes in i) the LiDAR point clouds, ii) the 

photogrammetric point clouds and iii) in the images of the dataset 

is shown in Figure 2. 

 

 

Figure 2. Class percentage distribution for the TLS clouds (blue), 

for the photogrammetric clouds (orange), and for the images 

(green). 

 

5. RESULTS 

Aiming at checking the performance of the proposed approach in 

several working conditions, some tests for each of the three 

available buildings of the dataset have been run. First, a deep 

neural network has been trained for each building, splitting the 

images of the same building in training set, validation set and test 

set. Secondly, we used the predicted pixel-wise labelling of the 

test set to project the features from the images to the 

corresponding photogrammetric cloud. To assess the 

performance of the reprojection procedure, we compared the 

obtained labelled cloud with the ground-truth point cloud, and we 

evaluated the performance degradation comparing the results 

with the accuracy obtained by the neural network on the 2D 

segmentation.  

To evaluate the performance of our models we used two 

evaluation metrics: the Global Accuracy (GA), and the mean 

Intersection Over Union (mIoU) defined in the equations below: 

 

  𝐺𝐴 =  
∑ 𝑛𝑖𝑖𝑖

∑ 𝑡𝑖𝑖
                             (1) 

  𝑚𝐼𝑜𝑈 =  
1

𝑛𝑐𝑙
∑

𝑛𝑖𝑖

(𝑡𝑖 + ∑ 𝑛𝑗𝑖 − 𝑛𝑗𝑖)𝑗
𝑖            (2) 

 

where ncl = number of classes included in ground truth 

           nij = number of pixels of class i predicted to belong class j 

           ti = total number of pixels of class i in ground truth 

 

For each model, the confusion matrix will be shown as well, in 

order to provide a more in-depth analysis of the semantic 

segmentation performance. 

In the next sections we are going to show at first the results for 

the image segmentation (5.1), and secondly the results for the 

projection procedure (5.2). 

 

5.1 Image Semantic Segmentation 

Image semantic segmentation is a key step in many computer 

vision applications, and hence several approaches to implement 

it have been proposed in literature. Over the past few years, 

however, CNNs have yielded a new generation of models with a 

remarkable performance improvement. In our tests we exploited 

one of the most prominent CNN-based models, DeepLabv3+ 

(Chen et al., 2018). We used a pretrained version of the network 

on the ImageNet database (Deng et al., 2009) with ResNet-18 (He 

et al., 2015) as base classification architecture. The testing dataset 

(Pellis et al., 2021) is still in progress, and it still lacks of a 

sufficient variability in the images and building typologies to 

well-generalize a complete unseen scenario.  

Nevertheless, some tests, varying the complexity of the goal, 

have been performed to check the label prediction ability of the 

network, as shown below.  

For each building we randomly shuffled all the image, and we 

randomly split them in training set (60%), validation set (20%) 

and test set (20%) (Dobbin and Simon, 2011) Then, the labels 

predicted  in the test set were used in the back-projection 

procedure. Table 1 shows the distribution of the images in 

training, validation and test sets for each of the considered sets. 

 

Building N° of Image TrainingSet ValidationSet TestSet 

1_SC 748 448 150 150 

2_OSA 755 453 151 151 

3_SSA 473 283 95 95 

Table 1. Number of images in Training Set, Validation Set and 

Test Set for each building. 
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The various models were trained for 30 epochs, using Stochastic 

Gradient Descend with Momentum (SGDM) as optimizer, and 

with the same hyperparameters for each case study. The image 

segmentation performance obtained on the test sets of each of the 

buildings is reported in Table 2. 

 

Building GlobalAccuracy mIoU mBFScore 

1_SC 0.90 0.76 0.77 

2_OSA 0.89 0.78 0.78 

3_SSA 0.87 0.62 0.72 

Table 2. Image semantic segmentation results on the Test Set of 

the three buildings in the dataset. 

 

The obtained results are quite satisfactory, in particular for the 

first two buildings, yielding a GA around 90% and a mIoU 

around 80%. The reader is referred to (Pellis et al., 2022) for more 

details on the training phase and on the obtained image 

segmentation results. 

Figure 3 reports some comparisons between the ground truth and 

the predicted image segmentation on the test sets. 

 

 

Figure 3. DeepLablv3+ image semantic segmentation results on 

the test sets: a) input RGB images, b) ground truth, c) prediction. 

5.2 Labelling Projection 

In this section we are going to show more in detail the results of 

the labelling procedure for each of the three buildings of the 

dataset. For each building, all the labelled images of the test set 

outputted by the neural network have been used as input in the 

label back-projection procedure.  

A cleaned, denoised and subsampled version of the 

photogrammetric point cloud has been inputted in the back-

projection procedure, along with the predicted image labels. 

Among the cleaning operations, it is worth to notice that the 

“background” points were removed from the cloud.  

Examples of the graphical outcomes of the back-projection 

procedures are shown in Figure 4, 6 and 8, for the different 

buildings. The obtained numerical results, in terms of GA and 

mIoU, are reported in Table 3, 4 and 5, whereas the 

corresponding confusion matrices are shown in Figure 5, 7 and 

9. 

It is worth to notice that, as a consequence of the implemented 

way to deal with occlusions, a portion of the points is not 

classified by the proposed algorithm. Since most of the points are 

classified, the unlabelled points could be reconsidered for 

classification as a further step of the proposed back-projection 

label transferring procedure, as will be investigated in our future 

works.  

In accordance with the above consideration, the results limited to 

only the classified points (second row in Table 3, 4 and 5) are 

those considered more relevant here. 

 

1_SC Spedale del Ceppo 

 

 

Figure 4. Comparison between a) the Ground Truth point cloud, 

b) the Predicted point cloud. 

 

Reference Points GlobalAccuracy mIoU % Labelled Points 

All points 0.76 0.61 100 
Only Classified 0.87 0.70 87 

Table 3. Back-projection results for 1_SC. 

 

Figure 5. Confusion Matrix for 1_SC back-projection. 

 

2_OSA Ospedale di Sant’Antonio 

 

 

Figure 6. Comparison between a) the Ground Truth point cloud, 

b) the Predicted point cloud 
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Reference Points GlobalAccuracy mIoU % Labelled Points 

All points 0.60 0.52 100 

Only Classified 0.91 0.72 67 

Table 4. Back-projection results for 2_OSA. 

 

Figure 7. Confusion Matrix for 2_OSA back-projection. 

 

3_SSA Basilica della Santissima Annunziata 

 

 

Figure 8. Comparison between a) the Ground Truth point cloud, 

b) the Predicted point cloud. 

 

Reference Points GlobalAccuracy mIoU % Labelled Points 

All points 0.72 0.52 100 

Only Classified 0.88 0.61 82 

Table 5. Back-projection results for 3_SSA. 

 

Figure 9. Confusion Matrix for 3_SSA back-projection. 

 

 

6. DISCUSSION 

The proposed label propagation method obtained quite 

remarkable results on the three case studies, in particular when 

considering only the labelled points, when compared with the 

image segmentation outcomes.  

To be more precise, Figure 10 shows a comparison between the 

image and the point cloud semantic segmentation performance. 

The resulting GA and mIoU are quite similar in all the considered 

cases: the obtained results reveal that the quality of the obtained 

point cloud semantic segmentation is mostly related to the that of 

the image segmentation. As a consequence of such observation, 

an increase in the image segmentation accuracy should directly 

correspond to an improvement on the point cloud segmentation 

performance.  

 

 

Figure 10. Comparison between GA e mIoU on image 

segmentation (blue) and on the point cloud segmentation 

(orange). 

 

A close look to the confusion matrices (discarding unlabelled 

points) shows the absence of remarkably bad-segmented classes, 

although the performance may change from case to case. This is 

also confirmed by Figure 11, where the sum of GA (blue bars) 

and unlabelled point percentage (black bars), derived by 

considering all the three buildings, is quite close to 100% for 

almost all the classes  
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GA values are quite balanced in the classes, with lower values for 

“roof” and “stair”, which are also certain of those less represented 

in the dataset (see Figure 2). 

The percentage of unlabelled points is quite widely variable, with 

large values on the more frequently obstructed classes. The 

introduction of an additional step in the label propagation 

procedure, in order to ensure the classification of most the 

currently unlabelled points, will be considered in our future 

works, as previously mentioned.  

 

Figure 11. Global Accuracy (blue) and unlabelled points 

percentage (black) for each class. 

 

Finally, for comparison with the results presented here, Table 6 

shows those obtained with the masking-based methodology 

described in (Murtiyoso et al., 2022) and carried out in (Pellis et 

al., 2022).  

 

Building GlobalAccuracy mIoU 

1_SC 0.67 0.52 

2_OSA 0.72 0.45 

3_SSA 0.75 0.44 

Table 6. Masking-based methodology results. 

 

Despite the masking method works well for background removal 

and for building façade classification, the label propagation 

method considered here outperforms the masking-based one on 

our dataset, highlighting the still challenging use of semantically 

enriched reconstruction methods in complex scenarios. 

 

 

7. CONCLUSION 

In this paper we presented a procedure for the label propagation 

of semantic classifications from 2D images to 3D point clouds, 

tested on a dataset composed by three heritage building. The first 

results have shown a quite remarkable performance of the 

proposed back-projection approach, ensuring a classification 

accuracy similar to the image segmentation performance. 

Overall, the proposed procedure outperformed masking-based 

methods on the label propagation, but not influencing the 3D 

point cloud generation procedure, hence, for instance, not 

ensuring any cleaning effect that could come as a result of the 

masking methods. Future investigations will be dedicated in 

particular to reduce the percentage of unlabelled points. For what 

concerns the point cloud semantic segmentation results, the 

obtained results revealed that the bottleneck of the entire 

workflow is the neural network-based image classification 

performance, which is negatively influenced by the intrinsic 

complexity of buildings in the heritage scenario. Increasing the 

variability inside of the dataset, both in terms of number of 

buildings and of images, is expected to have a positive impact on 

this aspect. Data augmentation and synthetic data generation will 

also be considered in our future works in order to increase the 

generalization capability of the image semantic segmentation 

network. 
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