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ABSTRACT 

Given the importance of key-frame selection in determining the positioning accuracy of Simultaneous Localization And Mapping 

(SLAM) and Odometry algorithms, and the urgent need in this field for a flexible key-frame selection algorithm, this paper proposes a 

novel and geometric method for key-frame selection built on top of ORB-SLAM3. It takes a key-frame in a completely robust and 

flexible way regardless of the environment, data and scene conditions, and according to the physics and geometry of the environment. 

In the proposed method, the camera sensor and IMU take key-frames simultaneously and in parallel. While selecting a key-frame, an 

adaptive threshold first decides whether the geometric condition of the frame is appropriate based on the degree of change in the 

orientation of the point visibility vector from the last key-frame to the current frame. Then the quality of the frame is evaluated by 

examining the distribution of points inside the frame by a balance criterion. A new key-frame will be created if both conditions provide 

a positive answer. In addition, if the IMU sensor detects large changes in acceleration, a key-frame independently chosen. The proposed 

method is evaluated qualitatively and quantitatively on the EuRoC dataset by comparing the algorithm trajectory to a reference 

trajectory and usig the Absolute Trajectory Error (ATE) and the processing time as metrics. The evaluation results indicate a 26% 

improvement in the positioning of the algorithm although it has a 9% increase in the processing time due to its geometric key-frame 

selection process. 

 

 

1. INTRODUCTION 

Because of recent advances in robotics and autonomous vehicle 

research, having an accurate and real-time positioning and 

mapping technology has become increasingly vital. As a result, 

due to their benefits of lightweight, cheap cost, low power 

consumption, and compact size, camera-based systems such as 

Visual Odometry (VO) and Visual Simultaneous Localization 

And Mapping (VSLAM) have been noted by many researchers as 

an excellent supplement to GPS-challenged situations (Fuentes-

Pacheco et al. 2015), (Nistér et al., 2006). Many algorithms have 

been created in this sector, with the ORB-SLAM3 method being 

the first. It exceeds all prior pioneering algorithms in terms of 

accuracy, speed, and resilience, including SVO (Forster et al., 

2014), VINS mono (Qin et al. 2018), DSO (Engel et al. 2017), 

OKVIS (Leutenegger et al. 2015),  etc. However, such algorithms 

face computational complexity and real-time processing issues as 

a result of the vast volume of data. Processing only a few 

important frames rather than all of them is the typical way for 

resolving this problem and removing data redundancy, which 

decreases computing complexity while retaining accuracy and 

consistency. As a consequence, choosing the right key-frames can 

help VO/VSLAM algorithms become more accurate and 

consistent. 

To select key-frames, heuristic and non-geometric thresholds 

with limited flexibility are geerally used. In this work we present 

an efficient key-frame selection approach based on ORB-SLAM3 

that substitutes most of the heuristic thresholds with a geometric-

based IND-inspired (Hosseininaveh et al. 2012) method. In the 

proposed method, two geometric criteria are investigated at the 

same time: 1) an adaptive threshold determines whether or not 

this frame is appropriate for becoming a key-frame after 

categorizing the angles between the camera to point vectors and 

map points surface normal in four 10-degree zones and 

comparing them to the equivalent zones in the previous key-
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frame; 2) a balance criteria checks the suitability of the 

distribution of points inside the frame by calculating the center of 

gravity of the points inside the frame. In addition, if the IMU 

sensor detects a significant acceleration change, it generates a 

new key-frame on its own. The performance of the proposed 

method are validated by experiments on two image sequences 

from the EuRoC dataset (Burri et al. 2016).  The suggested 

method presents an efficient and resilient geometric solution for 

VO / VSLAM key-frame selection, which may be used instead of 

current heuristic methods. 

 

2. RELATED WORK 

In different domains, such as computer vision algorithm, video 

summarization, photogrammetry and structure from motion 

(SFM), there has been a substantial amount of study on key-frame 

selection. 

One of the less investigated disciplines is key-frame selection 

using a deep neural network. Lu Sheng et al. (2019), for example, 

created a deep network that simultaneously learns key-frame 

selection and visual odometry tasks. Their studies clearly 

illustrate the method's usefulness, but they were very dependent 

on how key-frames in training data were picked. 

Video synopsis is one of the video summarization applications for 

surveillance cameras in order to achieve efficient video browsing 

and retrieval (Baskurt and Samet 2019, Yan et al. 2020).order to 

achieve efficient video browsing and retrieval Video processing 

applications, which are generally not real-time and aim to extract 

frames containing relevant information from all frames, 

constitute the next area of key-frame selection study. Zhuang et 

al. (1998) split the frames into numerous categories based on 

texture and form, then score each frame using a weighted 

combination of these features, capturing the key-frame with the 

highest score in each category. This method has had good results 

in cases with severe light changes. Besiris et al. (2007) choose 
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key-frames based on the notion of greatest frame separation, after 

categorizing frames using a graph. Wolf (1996) proposed a key-

frame selection method based on motion analysis for identifying 

key-frames in shots from video programs. They use optical flow 

computations to identify local minima of motion in a shot. This 

technique allows to identify both gestures which are emphasized 

by momentary pauses and camera motion which links together 

several distinct images in a single shot. Their results show that 

this method can well extract key-frames from a complex shot. 

Photogrammetric and 3D reconstruction applications are one of 

the most significant study areas in the field of key-frame 

selection. Hosseininaveh et al., (2021) and Ahmadabadian et al. 

(2013) proposed the image network designer (IND) approach for 

extracting ideal subsets of images from a sequence of images 

acquired from an object. In this method, the angle between the 

normal to the surface in each point and the viewing vector of each 

point, in each image, classified in four different areas. The camera 

that covers the most areas of the all points is then selected as the 

best camera. The findings demonstrate that this technique 

produces a full and accurate point cloud, as well as a final 

reconstructed model, with excellent outcomes. The only problem 

with this method is the inability to run in real-time applications 

(Hosseininaveh et al. 2014;  Hosseininaveh and Remondino 

2021). Dong et al. (2014) developed an offline key-frame 

selection technique that consisted of two parts: an off-line module 

for selecting features from a set of reference pictures and an 

online module for matching them to the input live video for 

estimating the camera posture rapidly (Dong et al., 2014). 

Computer vision applications and VO/VSLAM algorithms is one 

of the most common uses of key-frame selection methods. The 

biggest difference between these methods and the methods of the 

previous categories is the ability to run in real-time. These 

approaches involve visual information such as scene light flow, 

pixel grays, and so on, as well as positional information such as 

the distance between frames and the positioning of map points in 

the key-frame selection process. Engel et al. (2017) first select 

many key-frames and quickly sparsify them by marginalizing 

redundant key-frames. To select a key-frame, they introduce a 

combination of three criteria, focusing on drastic changes in light 

and scene brightness and the gray-scale value of the pixels. 

Experiments on numerous datasets have shown that this approach 

of picking key-frames provides improved outcomes in poor 

illumination circumstances. Position-based methods in computer 

vision applications and VO / VSLAM algorithms can be divided 

into the sub-categories including based on 1) specified time or 

place intervals, 2) image overlap, 3) parallax, and 4) others (Lin 

et al. 2019). Key-frame selection in parallel tracking and mapping 

(PTAM) (Klein and Murray, 2007), Semi-direct monocular visual 

odometry (SVO) (Forster et al. 2014), and Large-scale direct 

monocular SLAM (LSD-SLAM) (Engel et al. 2014) are based on 

the first category and without considering any specific criteria and 

only with the passage of a particular time or distance intervals 

key-frames are selected. OKVIS (Leutenegger et al. 2015) and 

SLAM in dynamic environments (RD-SLAM) (Tan et al. 2013) 

exploit the image overlap methods, the second category, and have 

more flexibility and more power than the methods using the 

previous category criterion. VINS-mono (Qin et al. 2018), as an 

instance in the third category, has two criteria for selecting key-

frames including average parallax and tracking quality. An 

example for the last category is Kerl et al. (2013) who presented 

a key-frame selection method based on differential entropy of 

multivariate normal distribution that had excellent results in 

texture-less environments but it is computationally complex.  

Xiaohu lin et al., (Lin et al., 2019) select key-frames based on the 

relative variations of the Roll, Pitch, Yaw angles. If camera 

attitude changes sharply, the key-frame selection rate increases, 

and if camera attitude shifts slightly, Key-frames are taken at a 

lower rate. The results show that this method increases the 

algorithm's speed by reducing 40% - 60% of the redundant frames 

and, at the same time, does not reduce the positioning accuracy. 

Finally, the ORB-SLAM algorithm (Mur-Artal et al., 2015), by 

adopting the best key-frame selection strategy, first takes a lot of 

key-frames and then marginalizes their redundancies to maintain 

the algorithm's performance. ORB-SLAM3 select a key-frame if 

four requirements are met: 1) It must have been more than 20 

frames since the last global re-localization. 2) Local mapping is 

inactive, or there has been more than 20 frames since the previous 

key-frame insertion. 3) At least 50 points are tracked in the 

current frame. 4) The current frame hasn't tracked more than 90% 

of the points from the previous key-frame. Experiments have 

shown that the ORB-SLAM3 method is strong and reliable, and 

that it has delivered good results in difficult circumstances. 

 

 

3. THE PROPOSED METHOD 

3.1 Method overview 

The proposed method is based on ORB-SLAM3 (Campos et al. 

2020) and is aimed to improve the accuracy and robustness of the 

visual SLAM algorithm. The suggested method uses a key-frames 

selection methodology based on geometric and photogrammetric 

concepts, as well as adaptive (rather than static) thresholds to the 

greatest extent possible. Furthermore, employing the 

synchronized IMU sensor and camera, this technique utilizes a 

key-frame. The camera sensor uses geometric and 

photogrammetric principles inspired by the IND approach to 

determine whether or not to pick a key-frame (Ahmadabadian et 

al. 2013; Hosseininaveh et al. 2012). Simultaneously, the IMU 

sensor picks the current frame as the key-frame if it detects 

considerable acceleration changes. Figure 1 shows the method's 

schematic diagram.  

 

3.2 Camera key-frame selection 

Two geometric criteria participate in the selection of the key-

frame by the camera: 1) adaptive threshold and 2) balance criteria. 

The adaptive threshold is explained first. For each new input 

frame, there are a number of points that are also present in the last 

key-frame. After categorizing the angle of visibility vector of 

each of these points relative to the normal vector on the surface, 

in four 10-degree zones, the points whose visibility vector zone 

has changed from the last key-frame so far are counted. 

 
Figure 1. The flowchart of the proposed key-frame selection 

method. 

The role of the adaptive threshold is to control the number of these 
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changes, and if these changes exceed the adaptive threshold, a 

key-frame will be allowed by the adaptive threshold. The 10 

degree angle of the conical zones has been selected following the 

investigations of Hosseininaveh et al. (2012). 

To define this adaptive threshold, we need the most similar frame 

to the last key-frame, called the reference frame. The frame that 

enters immediately after the key-frame is considered the 

reference frame. 

Firstly, an initial threshold is estimated to calculate the adaptive 

threshold. This initial value, assuming that the current frame and 

the reference frame are similar, is selected in such a way that the 

ratio of the points whose area has changed to the total 

corresponding points is equal in the reference frame and the 

current frame. 

This initial threshold is simplistic and has to be modified because 

this frame is not identical to the reference frame and has been 

moved and changed. By the ratio of decreasing the number of 

matched points from the reference frame to the current frame, a 

coefficient is employed to make the initial threshold tougher. By 

adding this coefficient, the adaptive threshold is strict and does 

not allow key-frames; Because it considers the change in the area 

of the points visibility vector only due to the decrease in the 

number of corresponding points, which is the result of the 

displacement of the frame; While these changes may be due to 

poor lighting conditions and so on. Therefore, another coefficient 

is considered which simplifies the initial threshold by decreasing 

the ratio of points whose area has changed to all corresponding 

matched points. 

After applying the mentioned coefficients, the initial threshold is 

fully adapted and can be adapted to any situation; But the 

remarkable thing about this threshold is that it does not pay 

attention to the quality of the current frame to become a key-

frame. As a result, to check the quality of the frame, the balance 

criterion of the points inside the frame is activated and the 

distribution of points inside the frame is examined. 

To calculate the balance criterion, a 3-by-3 grid is first created 

inside each frame, and inside each cell of this grid, the number of 

points whose area has changed are counted. This process creates 

a 3-by-3 matrix for each image. By calculating the center of 

gravity of this matrix (Johnson, 2013) for all frames that satisfy 

the condition of the adaptive threshold, the frame whose center of 

gravity is closer to the center of the matrix is selected as the key-

frame. Satisfaction of these two criteria gives us the assurance 

that the selected key-frame, in addition to having a good 

geometric condition, its quality is also suitable for matching and 

pairing with the previous key-frame. 

 

3.3 IMU key-frame Selection 
It is possible to track the quick and abrupt motions in which the 

camera fails in visual-inertial systems, owing to the IMU sensor, 

and increase the algorithm's stability in this condition. The IMU 

is utilized to pick the key-frame in abrupt movements in the 

method presented in this work, so that the moment of rapid 

movement can be detected and a key-frame can be acquired to 

avoid the algorithm from failing. 

The key-frame may be selected by IMU using a simple threshold 

since the acceleration values are absolute and independent of data 

and frame state. The experimentally determined threshold is 1 

(meter/second^2). A key-frame is adopted if the acceleration 

surpasses this threshold, and this procedure is independent of the 

camera sensor's key-frame selection mechanism. 

 

 

4. EXPERIMENTS AND RESULTS 

The EuRoC Micro Aerial Vehicles (MAV) dataset (Burri et al., 

2016) was used to test the performance of the key-frame selection 

method proposed in this work. Stereo images, synchronized IMU 

measurements, and precise motion and structural ground-truth are 

all included in the datasets. The proposed method and ORB-

SLAM3 were then evaluated quantitatively and qualitatively by 

comparing the algorithm's trajectory to the ground truth 

trajectory, as well as the Absolute Trajectory Error (ATE) (Sturm 

et al., 2012) for two image sequences from EuRoC dataset. The 

processing time of the algorithms was also compared. All 

experiments were performed with an Intel (R) Core i7- 4510U (4 

cores @ 2 GHz) and 8 GB of RAM. Each dataset was run 10 times 

and the average was utilized to eliminate some unpredictability in 

the findings. 

4.1 Data and material 

The EuRoC dataset is one of the most widely used datasets for 

evaluating computer vision algorithms in automated navigation 

scenarios (Burri et al., 2016). There are 11 image sequences 

including simple, medium and difficult level flights in this 

dataset, which includes accurate ground truth position 

information measured by laser scanners and IMU information 

synced with frames. The ORB-SLAM3 and the algorithm 

presented in this paper were evaluated in mono-inertial and 

stereo-inertial modes for two image sequences from this dataset 

(MH01, MH02) and their trajectories are compared with the 

reference trajectories, also the value of Absolute Trajectory Error 

(ATE) and the processing time of the algorithms is obtained for 

them. The calculated trajectory and the ground truth are aligned 

using a similarity transformation (Zhang and Scaramuzza, 2018) 

to determine the ATE. 

 

4.2 Comparison of the trajectories 

Experiments were carried out on two sequences of the EuRoC 

dataset (MH01, MH02) in stereo-inertial and mono-inertial 

modes to qualitatively validate the key-frame selection method 

proposed in this study. Figures 2 and 3 illustrate the trajectories 

compared to the reference trajectories in stereo-inertial and 

mono-inertial modes, respectively. 

 

Figure 2. Frame trajectories in the stereo-inertial mode. 

 

 

Figure 3. Frame trajectories in the mono-inertial mode. 

Figures 2 and 3 indicate that the proposed method overtook ORB-

SLAM3 in terms of performance and trajectory deviation. The 
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divergence between the ORB-SLAM3 and the reference 

trajectory has grown as the route turns. The method given in this 

study, on the other hand, has retained its closeness to the reference 

trajectory. 

4.3 Comparison of the Absolute Trajectory Error - ATE  

The ATE is used to determine positioning accuracy in order to 

quantitatively assess the suggested approach. This criteria was 

computed ten times in two image sequences for stereo-inertial and 

mono-inertial modes of both algorithms, and the average of the 

results can be seen in Table 1. Figures 4 and 5 illustrate the 

cumulative ATE values of ten time runs for stereo-inertial and 

mono-inertial modes, respectively. 

 Stereo-Inertial Mono-Inertial 

Sequence 
ORB-

SLAM3 

Proposed 

Method 

ORB-

SLAM3 

Proposed 

Method 

MH01 0.0366 0.0310 0.0350 0.0185 

MH02 0.0318 0.0280 0.0625 0.0410 

Total 0.0342 0.0295 0.0488 0.0298 

Table 1. Average ATE results of two algorithms applied to the 

two sequences. Unit: [m]. 

Each number in the table represents the average of ten times the 

execution of each algorithm in each image sequence, with the 

Total row representing the average of both data. The 

improvement of the accuracy of the algorithm proposed in this 

paper compared to the ORB-SLAM3 is evident from the table 

above. 

 

Figure 4. Cumulative ATE results in stereo-inertial mode. 

 

Figure 5. Cumulative ATE results in mono-inertial mode. 

The significantly decrease in the amount of ATE with increasing 

number of runs is evident from the image above. 

Figure 6 also displays the average value of each algorithm's ATE 

outputs in these two sequences. 

The results of Table 1 and Figures 6 and 7 show an improvement 

of 13.7% in stereo-inertial mode and 38.9% in mono-inertial 

mode of the algorithm presented in this paper. Figure 7, which is 

the average ATE of both data for each algorithm, also shows the 

reduction of the ATE difference between mono-inertial and 

stereo-inertial modes for the proposed algorithm. Reducing the 

difference between ATE in mono-inertial and stereo-inertial 

mode in the algorithm proposed in this paper, indicates more 

stability and less effectiveness of this algorithm from the type of 

system used. 

 

 
Figure 6. Average of ATE values in the two dataset. 

 
Figure 7. Total average of ATE values in stereo-inertial and 

mono-inertial modes. 

4.4 Comparison of processing time 

The processing time of the method proposed in this paper is 

expected to rise compared to ORB-SLAM3 due to its geometric 

key-frame selection process. As a result, the processing time of 

each method is measured in this section. To determine the 

processing time, each algorithm is run for both image sequences 

and the processing time is recorded. The time measurement 

accuracy in this evaluation is 0.1 seconds. The results are given 

in the table 2. 

Sequence 
ORB-SLAM3 

(sec) 

Proposed Method 

(sec) 

MH01 350.0 379.1 

MH02 280.5 306.2 

Table 2. Processing time of each algorithm for both sequence. 

The execution time of the algorithm presented in this paper is 

higher than ORB-SLAM3, as expected, due to the computational 
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complexity of obtaining the key-frame in this algorithm. Because 

the ORB-SLAM3 algorithm obtains key-frames using innovative 

and fixed thresholds, whereas the proposed algorithm obtains 

key-frames using geometric constraints, an almost constant value 

is added to the algorithm processing time per frame; as a result, 

the proposed algorithm imposes more complex calculations on 

the algorithm while improving positioning accuracy. However, 

these additional calculations do not have a tangible effect on the 

real-time execution of the algorithm and the algorithm is still 

executed in real-time. 

 

5. DISCUSSIONS 

As the selection of key-frames is the foundation of positioning in 

SLAM and Odometry algorithms, the precision and manner of 

chosing these frames will have a substantial influence on the 

algorithm's accuracy – and successive 3D reconstruction tasks. 

Due to the use of predefined thresholds specifically fine-tuned for 

standard data, existing key-frame selection algorithms do not 

work effectively in diverse settings and in non-standard data, 

despite their high accuracy in standard data (such as the EuRoC 

dataset). As a result, an attempt has been made in this article to 

introduce a flexible geometric method for picking key-frames that 

is efficient in all scenarios. There are a few key considerations to 

consider regarding this method: as mentioned in Section 3.2, the 

angle of the cone zones according to (Hosseininaveh et al. 2012; 

Ahmadabadian et al., 2013) is considered to be 10-degrees. Small 

camera motions cause point zones to alter and key-frames to be 

picked faster when this angle is reduced. This increases 

computing time while also weakening the intersecting triangle's 

geometry. Increased this angle, on the other hand, decreases the 

key-frame selection rate and hence the key-frame network's 

stability. Optimal selection of this parameter will help to improve 

the positioning accuracy of the algorithm. Another issue worth 

mentioning is the acceleration change threshold used by the IMU 

to choose a key-frame. This threshold is set based on the camera's 

mounting platform. It will be larger on faster-moving flying 

platforms and smaller on slower-moving ground platforms. In this 

study, the value of this threshold is set at 1 (meter/second^2) by 

experimentation. 

 

6. CONCLUSIONS 

This paper proposed a novel geometric key-frame selection 

method for visual-inertial SLAM and Odometry systems built on 

ORB-SLAM3 framework. Extensive tests with two sequences 

from the EuRoC dataset in mono-inertial and stereo-inertial 

modes were conducted to assess the proposed method. The results 

demonstrated that we were able to create a completely geometric 

key-frame selection procedure that worked reliably and 

consistently in a variety of settings without the need of heuristic 

thresholds. By comparing the algorithm trajectory to the reference 

trajectory and the ATE, our approach was assessed quantitatively 

and qualitatively. The proposed algorithm shows a 25-30% 

improvement in accuracy, although the processing time is slightly 

longer, requiring some further optmizations for real-time 

processing operations.  

In future research, the proposed algorithm might be modified to 

choose key-frames in such a manner that a dense and coherent 

point cloud is produced, in addition to further enhance positioning 

accuracy. Our method may be used as a basic algorithm in the 

generation of training data for deep learning networks, and its 

speed can be enhanced with the help of deep learning networks. 
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