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ABSTRACT: 

 

Automatic extraction of surface activity from near-continuous 3D time series is essential for geographic monitoring of natural scenes. 

Recent change analysis methods leverage the temporal domain to improve the detection in time and the spatial delineation of surface 

changes, which occur with highly variable spatial and temporal properties. 4D objects-by-change (4D-OBCs) are specifically designed 

to extract individual surface activities which may occur in the same area, both consecutively or simultaneously. In this paper, we 

investigate how the extraction of 4D-OBCs can improve by considering uncertainties associated to change magnitudes using Kalman 

filtering of surface change time series. Based on the change rate contained in the Kalman state vector, the method automatically detects 

timespans of accumulation and erosion processes. This renders change detection independent from a globally fixed minimum 

detectable change value. Considering uncertainties associated to change allows detecting and classifying more occurrences of relevant 

surface activity, depending on the change rate and magnitude. We compare the Kalman-based seed detection to a regression-based 

method using a three-month tri-hourly terrestrial laser scanning time series (763 epochs) acquired of mass movements at a high-

mountain slope in Austria. The Kalman-based method successfully identifies all relevant changes at the example location for the 

extraction of 4D-OBCs, without requiring the definition of a global minimum change magnitude. In the future, we will further 

investigate which kind of change detection method is best suited for which types of surface activity. 

 

 

1. INTRODUCTION 

Change processes in natural scenes occur at a large range of 

spatial and temporal scales, leading to dynamic shaping of the 

surface. Local landscape dynamics can be captured at high spatial 

and temporal resolution using near-continuous terrestrial laser 

scanning (TLS). With permanent setups of such near-continuous 

TLS, point clouds are acquired at cm-scale measurement 

accuracy and spatial resolution, and at sub-daily temporal 

resolution over periods of months to years (Eitel et al., 2016). 

Current geoscientific applications of near-continuous TLS 

include monitoring of landslides, sandy beaches, and rockfall-

affected areas (e.g., Kromer et al., 2017; Williams et al., 2018; 

Vos et al., 2017). Deriving change information from these data 

with thousands of epochs requires automatic methods, which are 

able (i) to detect changes confidently at small magnitudes, i.e. 

with low associated uncertainties, and (ii) to extract surface 

activity as individual objects during the timespan and within the 

local area of their occurrence.  

 

Change between repeat point cloud acquisitions can be detected 

and quantified via bitemporal point cloud distance computation 

by comparing pairs of epochs, respectively. Point cloud distances 

are commonly derived using the established multiscale model-to-

model cloud comparison (M3C2) algorithm (Lague et al., 2013), 

which reduces associated uncertainties of changes via spatial 

averaging. By additionally leveraging the full temporal 

information of near-continuous time series data, the uncertainty 

associated with change can be further reduced. Kromer et al. 
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(2015) achieve this with a method considering spatial as well as 

temporal neighbours for averaging of point cloud distances. 

Smoothing of time series using a median average in a user-

defined temporal window was further used by Eltner et al. (2017) 

and Anders et al. (2019) to filter out noise from near-continuous 

time series of surface changes. To fully consider spatially and 

temporally variable uncertainties through error propagation, we 

recently proposed to use uncertainty values as Bayesian priors in 

Kalman filtering of surface change time series (Winiwarter et al., 

2022). After bitemporal change quantification, relevant, i.e. 

significant, change can be detected as the point in time when the 

change value exceeds the associated uncertainty. A statistical test 

is commonly used at a confidence level of 95 % to determine the 

significance of changes regarding the so-called level of detection 

(cf. Lague et al., 2013). 

 

Once detected in the time series, the extraction of individual 

surface activities from 3D time series is challenging if multiple 

changes occur at the same location (i.e. with spatial overlap), 

both simultaneously or consecutively. Methods of change 

extraction are then required to separately delineate surface 

activity in space and time. Time series clustering (Kuschnerus et 

al., 2021a; Winiwarter et al, 2022) is an approach which yields 

novel layers of change information based on temporal properties 

of surface behaviour. Clustering is based on the full time series 

data, though, and therefore does not separate individual 

occurrences of surface activity in their respective timespans and 

spatial extents. For the spatial and/or temporal extraction and 

separation of overlapping changes, we have developed the 
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concept of 4D objects-by-change (4D-OBCs). 4D-OBCs are 

defined by similar change histories within their area and 

timespan, representing single occurrences of surface activity. Via 

spatiotemporal segmentation, changes detected in the temporal 

domain are spatially delineated by considering the entire history 

during the timespan of a change based on a metric of time series 

similarity in seeded region growing (Anders et al., 2021).  

 

Seed detection in the time series for spatiotemporal segmentation 

of surface changes is so far based on a globally defined minimum 

detectable change and has so far not considered spatially and 

temporally variable uncertainties. In this paper, we therefore 

integrate change detection using Kalman filtering of surface 

change time series, following Winiwarter et al. (2022). We 

investigate how this influences the result of change analysis. 

Therein, we aim for an increase in the detection of significant 

changes. In the current 4D-OBC method, some occurrences of 

surface activity may be excluded from the analysis because a 

global minimum detectable change value is used for all epochs 

and locations in the scene. The other way around, 4D-OBCs may 

be falsely extracted, i.e. not representing actual surface activity. 

This occurs if change values exceed the global minimum 

detectable change but the changes are a result of unquantified 

noise. This may occur, for example, during poor atmospheric 

conditions, such as high moisture or precipitation, for laser 

scanning acquisitions (e.g., Kuschnerus et al., 2021b). To account 

for this, we examine the full consideration of uncertainties using 

Kalman filtering of surface change time series compared to the 

regression-based change detection. 

 

In this study, we investigate an alternative method of seed 

detection for the extraction of 4D-OBCs by analysing a tri-hourly 

TLS time series. The dataset was acquired over a period of three 

months at a high-mountain slope in Tyrol, Austria (763 epochs). 

Observed changes include removal and deposition of rockfall 

debris due to anthropogenic works, erosion induced by 

gravitational mass movement at the surface of debris, as well as 

snow cover changes due to snow fall in the final weeks of 

acquisition. We evaluate the results of Kalman-based 4D-OBCs 

compared to results obtained when applying the regression-based 

seed detection on either smoothed or unsmoothed input data. 

After seed detection, by either of the two change detection 

methods, region growing is performed in the time series of 

surface changes to determine the spatial extent of 4D-OBCs. The 

evaluation hence regards (i) the change detection and 

determination of timespans by considering uncertainties in the 

Kalman-filtered time series of surface changes, and (ii) the 

correctness of subsequently extracted 4D-OBCs. 4D-OBC 

extraction has the overall benefit that it can be identified if local 

areas in the scene experience multiple surface activities. Thereby, 

the method may more confidently detect surface activity with a-

priori unknown properties as individual occurrences even when 

there is spatial and/or temporal overlap throughout an 

observation period. 

 

2. METHODS 

We investigate the extraction of 4D-OBCs for three approaches 

of seed detection. The first uses linear regression to detect surface 

activity of accumulation and erosion based on a globally defined 

minimum detectable change value in completely unsmoothed 

input data of surface changes. The second uses the same 

regression-based seed detection, but data is smoothed in the 

temporal domain using median averaging to reduce uncertainty 

in surface changes. The third approach detects seeds using 

Kalman filtering by fully considering measurement and 

alignment uncertainties to identify relevant change occurrences. 

The detected seeds are timespans of surface activity which are 

used for subsequent spatiotemporal segmentation of 4D-OBCs. 

This region growing segmentation is performed on the un-

smoothed and smoothed data for the regression-based seed 

detection, respectively. For the Kalman-based seed detection, 

region growing is performed on the unfiltered time series of 

surface changes, i.e. on unsmoothed input data. An overview of 

4D-OBC extraction is illustrated in Figure 1, with the new 

Kalman-based method visualized for the detection of seeds 

(Fig. 1b).  

 

In the following, we introduce the study site and dataset 

(Section 2.1). Subsequently, we explain the main steps of change 

analysis with bitemporal change quantification (Section 2.2) and 

4D-OBC extraction using the different methods of seed detection 

(Section 2.3). The evaluation of results is outlined in Section 2.4. 

 

2.1 Study Site and Data 

We use a tri-hourly time series of TLS point clouds acquired from 

28 July 2021 to 15 November 2021 (763 epochs) in Vals in the 

Austrian Alps (47°02’48" N 11°32’08" E). The target scene is a 

valley slope featuring a large debris cone caused by a rockfall 

event in December 2017 (cf. Hartl, 2019). Surface activity at 

present mainly regards anthropogenic works continuing to move 

material at the lower parts of the debris cone and small 

gravitational mass movements on the slope surface. Additionally, 

snow fall occurred during the acquisition period analysed in this 

paper. 

 

The permanent TLS setup is an extension of the initial 

measurement series presented by Schröder and Nowacki (2021). 

A RIEGL VZ-2000i TLS was used for point cloud acquisition 

with an angular resolution of 0.015° at around 800 m 

measurement range, resulting in a point spacing of 10 to 20 cm 

in the target area of change observation. No georeferencing is 

performed in our study. Since we are interested in surface activity 

Figure 1: Approach for the extraction of 4D objects-by-change 

(4D-OBCs) by integrating Kalman filtering for seed change 

detection. Spatial delineation is performed via region growing 

of similar change histories in the unfiltered time series of 

surface changes. 
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within the scene, the data is analysed in the local Cartesian 

coordinate system with the sensor as origin. Due to the fixed 

position of the laser scanner, acquired point clouds are already 

coarsely aligned. To improve the co-registration accuracy 

between point cloud epochs for surface change analysis, we align 

each epoch in the time series to the first point cloud (2021-07-28 

12:00) as global null epoch. Alignment is performed by deriving 

a rigid transformation matrix using an iterative closest point 

(ICP; Besl and McKay, 1992) method on stable surfaces within 

the scene. The stable surfaces are manually selected as centroids 

with specified radii (between 0.75 and 2.5 m). They are located 

mainly on roofs and facades of buildings adjacent to the target 

area on the slope. We use the ICP method implemented in the 

software OPALS (Glira et al., 2015; OPALS Development Team, 

2018). 

 

After fine alignment, we derive terrain points from the point 

clouds for surface change analysis by removing outliers and 

vegetation using a statistical outlier filter (Rusu et al., 2008; 

settings: number of nearest neighbours = 8, standard deviation 

multiplier = 10.0), the SMRF filter (Pingel et al., 2013; settings: 

cell size = 0.5 m, slope parameter = 2) and a filter on the 

waveform deviation (≤ 50). We apply the filters using the 

implementation in PDAL (PDAL Contributors, 2018). These 

preprocessing steps provide the final, aligned point clouds used 

for all change analyses methods applied subsequently. 

 

2.2 Bitemporal Change Quantification 

Bitemporal change quantification is the common step for all 

change analysis methods in this paper. We derive bitemporal 

changes for each epoch to the global null epoch using a variant 

of the M3C2 algorithm (Lague et al., 2013) with error 

propagation (M3C2-EP; Winiwarter et al., 2021). The M3C2 

derives the distance of the surfaces from a reference to a 

compared epoch by averaging the 3D position in the reference 

point cloud at so-called core point locations. Change is then 

measured in normal direction of a plane fit to the neighbourhood 

points in a defined radius around the core point. This establishes 

an oriented cylinder with a separately defined radius, and the 

distance to the compared point cloud is determined at the average 

position of points that are intersected by this cylinder. We 

determine change at a subset of locations, so-called core points. 

These core points are obtained by subsampling the reference 

point cloud (i.e. first epoch in the time series) with a minimum 

point spacing of 0.25 m (around 200,000 points in total, average 

density of 0.45 points/m²). The normals are calculated on the core 

points with a radius of 5.0 m and they are used for point cloud 

comparison of all epochs in the time series. The full point clouds 

of each epoch are used for M3C2-EP distance computation at the 

core point locations. For M3C2-EP, we use a cylinder radius of 

0.5 m and a maximum cylinder length of 3.0 m (cf. Winiwarter 

et al., 2022). 

 

The uncertainty of quantified changes for each core point and 

epoch is derived with the M3C2-EP by including knowledge on 

the measurement accuracy of the sensor (according to the 

manufacturer specification) and the alignment accuracy provided 

by the ICP method (cf. Section 2.1). Uncertainties of each 

individual point measurement are thereby fully propagated into 

the change derived at each core point per compared epoch. We 

obtain spatially and temporally variable uncertainty values 

associated to quantified changes, as each core point holds one 

uncertainty value for each epoch. These uncertainties are 

considered for change detection in the time series using the 

Kalman-based seed detection, which is presented in 

Section 2.3.2.  

For comparison of the regression-based method (Section 2.3.1) 

using smoothed input data, we reduce the uncertainty of change 

values following the approach by Kromer et al. (2015). Therein, 

we smooth surface changes to filter out noise in the time series 

by setting each epoch to the median change value in a temporal 

window of 24 h (corresponding to a temporal window of eight 

epochs for our data). The filtering is only applied in the temporal 

domain, as spatial averaging is already performed within the 

M3C2 point cloud distance computation (cf. Anders et al., 2019). 

 

2.3 Extraction of 4D Objects-By-Change (4D-OBCs) 

Spatiotemporal segmentation of 4D-OBCs is performed as 

seeded region growing of surface changes based on their time 

series similarity during the timespan of occurrence (Anders et al., 

2021). The extraction of 4D-OBCs uses the bitemporal change 

quantification of the full 3D time series as input. To enable 

straightforward access to the change values in the spatial domain 

and along the time dimension, a space-time array is created. This 

regular grid of 2D locations stacks the change values of each 

epoch scene along the third dimension, representing 1D time. The 

change value at the 2D grid locations is set to the M3C2 distance 

of the nearest core point in a maximum search radius of 0.5 m. 

The grid resolution is 0.25 m, corresponding to the point spacing 

of core points (cf. Section 2.2). Seeds for region growing are 

derived via change detection in the time series of change values 

at each location in the scene. The seed detection using linear 

regression and the new Kalman-based seed detection are 

explained in the following sections (Section 2.3.1 and Section 

2.3.2, respectively). 

 

2.3.1 Seed Detection using Linear Regression 

The regression-based seed detection follows the change detection 

method presented in Anders et al. (2022). Therein, timespans of 

erosion and accumulation are identified using piecewise linear 

regression on the time series of change values. A least-squares 

line fit is applied to groups of change values with similar 

gradients. To determine if relevant change occurred, i.e. if a 

detected change should be used as seed candidate, the method 

requires to specify a threshold value representing the minimum 

detectable change. This is a globally fixed value, which is solely 

based on the average alignment uncertainty of the 3D time series. 

Accordingly, we set this value to 0.05 m for the dataset in this 

paper. A lower value would cause a large number of 4D-OBCs 

to be segmented which do not represent relevant changes, but 

stem from alignment uncertainty and to an assumingly lower 

degree from measurement uncertainty. At the same time, as 

spatially and temporally variable uncertainty is not considered, 

actual surface changes with magnitudes below 0.05 m cannot be 

detected and are lost to the analysis. 

 

2.3.2 Seed Detection with Kalman-based Change Detection 

Following the method by Winiwarter et al. (2022), the Kalman 

filter represents the dynamical time series system for each 

location in our space-time array by a state vector for the single 

points in time. The state vector contains the change value, the 

change rate, and the acceleration of change. From this state, a 

future state can be predicted, and updated and corrected as new 

observations, i.e. epochs, become available. A simple functional 

model represents the relations between observations and 

parameters. To account for uncertainty introduced over time, a 

stochastic model is considered in the predictions (here we use 

discrete white noise, σ = 0.05 m/day²). Uncertainty associated to 

change observations, i.e. bitemporal M3C2-EP distances, is 

considered via a covariance matrix in the state vector. Combined 

with a Rauch-Tung-Striebel smoother, the time series of change 

values is smoothed considering both previous and future points 
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in time for each epoch. By this, gaps in the data are automatically 

interpolated. All details on the method for full 4D change 

detection are provided in Winiwarter et al. (2022).  

 

As seeds for the extraction of 4D-OBCs, we require that the 

timespans of surface activity are detected with a start and end 

time. The start of a surface activity is detected at the point in time 

when the estimated change rate exceeds its level of detection, and 

the end when the change rate falls below its associated level of 

detection (cf. Fig. 1b). If the corresponding change value does 

not surpass the level of detection in the extracted timespan, the 

surface activity is disregarded. After full change detection in the 

time series at all core point locations, the seed candidates are 

sorted by decreasing change magnitude, which is derived as the 

difference between highest absolute change value and change 

value at the start time of a detected activity. This final list of seed 

candidates is then used as input to the spatiotemporal 

segmentation to perform region growing of 4D-OBCs, which is 

described in the following section. 

 

2.3.3 Spatial delineation of 4D-OBCs 

After seed detection, the spatial extent of 4D-OBCs is determined 

via region growing in the time series of surface changes. The 

regression-based method uses the median-averaged change 

values in one variant (cf. Section 2.2), and completely unfiltered 

change values in the second variant. The Kalman-based method 

uses only the completely unfiltered change values as input for 

4D-OBC extraction.  

 

The timespan of 4D-OBCs is represented by the temporally 

detected change with given start and end time. Seeds are used if 

they have not been segmented into a previous 4D-OBC, i.e. they 

are used if there is neither spatial nor temporal overlap. The 

homogeneity criterion for region growing is time series similarity 

which is derived as inverse of Dynamic Time Warping (DTW) 

distance (Berndt and Clifford, 1994). The DTW distance 

threshold is automatically determined for each 4D-OBC based on 

the results of multiple segment versions computed for a range of 

thresholds in parallel (here: 0.5 to 0.9). The rationale is to 

maximize the object extent whereas avoiding strong 

overestimation which occurs as soon as thresholds become so 

loose that a large area outside the stricter segment version would 

be added. For all details on the method of automatic 

spatiotemporal segmentation, the reader is referred to Anders et 

al. (2021).  

 

2.4 Evaluation 

We evaluate the results of change analysis by comparing the 

change detection and 4D-OBC extraction with integrated Kalman 

smoothing to the result of regression-based seed detection using 

either smoothed or unsmoothed input data. The comparison 

mainly regards the detection of surface activity in the time series 

of surface changes, which may improve for certain cases through 

the consideration of locally variable uncertainties. We further 

assess the 4D-OBCs that are extracted for each change detection 

method providing different seed candidates. No independent 

reference data about the occurrence of surface processes is 

available for quantitative validation of our analysis. We therefore 

evaluate our results by showcasing an example location which 

exhibits different occurrences of surface activity for our use case. 

Based on this, we can further examine how the extraction of 4D-

OBCs improves change information by identifying consecutive 

occurrences of surface activity within the same local area.  

 

3. RESULTS AND DISCUSSION 

Surface change analysis of the 3D time series yields different 

types of surface activity occurring at this study site: the formation 

of erosion rills on the slope, transport of debris through excavator 

works, and snow cover towards the end of the observation period 

(Fig. 2). Bitemporal changes for different timespans demonstrate 

how individual surface activities are aggregated or superimposed 

in the change information of specific epoch pairs (compare a-c in 

Fig. 2). In scenes where different processes act on the surface 

with spatial and/or temporal overlap, the detection of individual 

surface activities in their respective timing and duration can be 

Figure 2: Bitemporal surface change in the scene derived as 

point cloud distances between pairs of epochs (a) over the full 

observation period, (b) for the period before snow fall sets in, 

and (c) for the period just before snow fall until the end. 
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performed using the time series information. Surface activity 

detected as timespans of changes in the time series are used for 

the extraction of 4D-OBCs via spatiotemporal segmentation. As 

input to this, we subsequently assess the Kalman-based seed 

detection, which considers associated uncertainties, compared to 

the regression-based method for 4D-OBC extraction, which uses 

a globally defined minimum detectable change. 

 

3.1 Assessment of Change Detection in Time 

We examine the timespans of detected surface activities for the 

time series at a single example location, where multiple changes 

of different properties occur throughout the full observation 

period (Fig. 3). The uncertainty-based method with Kalman 

filtering detects six surface activities at the location. The 

regression-based change detection detects seven surface 

activities with temporal averaging and eight surface activities 

without any smoothing of input data. The detected surface 

activities and timespans differ, as the regression-based method 

detects an overall higher number of changes at the end of the 

observation period (starting Nov). Here, occurrences of snow fall 

and successive decrease of snow cover lead to the detection of 

multiple events of accumulation (snow fall) and erosion (snow 

cover decrease; Fig. 3b and 3c). The detected timespans mostly 

cover exactly three epochs from the start until the end of the 

change. In contrast, the Kalman-based method determines snow 

cover decrease as one surface process with a timespan of 65 h 

(Fig. 3a; Nov-05 to Nov-07, marked with II). This oversegmenta-

tion in time of the regression-based method affects the 

performance of 4D-OBC extraction, because timespans which 

Figure 3: Time series with changes detected in the temporal domain by different methods. a) Change detection using the Kalman-

smoothed time series to determine start and end times of changes as epochs when the change rate exceeds the associated level of 

detection. b) Changes detected by the regression-based method for accumulation and erosion events based on linear regression. 

Surface changes are smoothed in the time series using median averaging in a window of 24 h. c) Changes detected by the regression-

based method (as in b) without smoothing of time series values. d) Timespans of changes detected by methods in a-c. 
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cover only part of the full surface activity may yield a change 

magnitude that does not exceed the globally defined minimum 

detectable change value (0.05 m for our dataset), even if their 

total change volume is much higher. Although changes are 

detected in time, the surface activity is disregarded as seed and 

will then be missing from the final result. In total, those changes 

can amount to a large share of change volume not considered in 

the analysis. 

  

One seed is detected incorrectly by the regression-based method 

with temporal averaging, starting Aug-21 (Fig. 3b, marked with 

IV) until Nov-14. This is an effect of the grouping of epochs by 

gradient for linear regression (cf. Section 2.3.1), which 

disregards epochs in between. The seed candidate is later 

automatically discarded due to temporal overlap with other seed 

candidates of higher priority (based on a neighbourhood 

homogeneity criterion; cf. Anders et al., 2021). One timespan of 

erosion is only detected by the regression-based seed detection 

using unsmoothed change values as input data (Aug-08 to Aug-

17; marked with V in Fig. 3c). The method with median-averaged 

change values (Fig. 3b) does not detect it as the smoothing 

presumably leads to a less pronounced linear representation of 

the erosion. After smoothing, the change does not exceed the 

globally fixed minimum detectable change value of 0.05 m 

anymore. It needs to be noted that the surface activity appears 

perfectly linear only due to direct interpolation of the data gap in 

this period. The Kalman-based method does not detect this 

erosion activity, as the uncertainties of change and change rate 

strongly increase during the time span of missing data (Fig. 3a). 

 

The formation of the erosion rill in the beginning of the 

observation period (Jul-31) is only correctly detected by the 

Kalman-based method (Fig. 3a, marked with I). Here, significant 

change occurs with respect to the associated level of detection 

and leads to a relevant change on the slope surface. We assume 

that the regression-based method is more sensitive to the change 

time series not being perfectly linear. Therefore, the Kalman-

based method using the change rate can better detect surface 

activity with variable velocity during the full timespan of their 

occurrence, as opposed to abrupt events. 

 

Surface activity can be adequately identified visually in our 

selected cases, and the behaviour of each method can thereby be 

explained and evaluated. An accuracy assessment of the seed 

detection methods will require further investigation with 

experimental data acquisition, so that the exact timing and 

properties of surface activity are known for validation.  

 

3.2 Assessment of Spatiotemporal Extraction 

Using uncertainty-based seed detection, four 4D-OBCs are 

extracted as final result at the example location depicted in 

Figure 3 by the Kalman-based method. Two seed candidates are 

discarded due to data gaps (no data values) at the start or end 

epoch of their timespan. The 4D-OBCs representing snow fall 

and snow cover decrease all exceed the defined maximum 

segment size during region growing. In these cases, a large part 

of the slope area is segmented even for the strictest threshold of 

time series similarity. Segments reach a large spatial extent for 

large-scale surface changes, i.e. overall surface increase or 

decrease in the scene. Such processes are usually appropriately 

quantified using standard methods of bitemporal change analysis. 

It is therefore suitable to limit the size of segments during region 

growing, as the computational cost increases with each grid 

location that needs to be additionally checked for its time series 

similarity.  

Spatiotemporal segmentation with the regression-based seed 

detection with median-averaging of input data yields five 4D-

OBCs as final result. All of these 4D-OBCs represent timespans 

of snow fall or snow cover decrease (cf. Section 3.1). They all 

reach the maximum segment size as large-scale surface change 

on the slope. The same result is yielded by the regression-based 

seed detection without any smoothing of changes in the input 

data. Here, an additional 4D-OBC is extracted which represents 

erosion as part of a rill forming on the slope (timespan marked 

with V in Fig. 3c). 

 

The full formation of the erosion rill at the example location is 

only detected and subsequently extracted as correct 4D-OBC by 

the Kalman-based method (Fig. 4). This surface process is a 

distinct and relevant surface activity in the observed scene and is 

therefore important to identify in the time series of changes. 

Depending on the analysed timespan, the erosion process would 

also be missed in bitemporal change analysis (cf. Fig. 2). The 

erosion rill extracted as one of multiple surface activities at this 

single location throughout the full observation period 

demonstrates the key strength of 4D-OBC extraction. Methods 

considering the full time series information, for example for 

clustering (cf. Kuschnerus et al., 2021a; Winiwarter et al., 2022), 

also cannot resolve individual change occurrences temporally. It 

then depends on the magnitude of change in relation to the length 

of the full observation period if a single surface process is 

represented in the clustering results as distinct change pattern. In 

contrast, our method specifically targets the extraction of changes 

within their timespan as a temporal subset of the full observation.  

 

Figure 4: 4D object-by-change (4D-OBC) extracted at the 

example location of detected changes given in Fig. 3. a) Time 

series of changes with 4D-OBC timespan marked by red 

vertical lines. The location of the time series in the scene is 

marked in (b). Close-up maps show bitemporal changes at (c) 

the detected start and (d) the detected end epoch with the spatial 

extent of the 4D-OBC (red polygon).  
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The detected changes and their timespans directly influence the 

performance of overall change extraction. The impact on change 

volumes quantified via 4D-OBCs in case the timespans are 

detected too conservatively was shown in Anders et al. (2022). 

Our comparison in this work demonstrates that the appropriate 

seed detection method may depend on the (different) types of 

surface activity which need to be identified in a scene. Besides 

the difference in design of the methods for seed detection, an 

important strength of the Kalman-based method is that changes 

can be confidently detected without global definitions of a 

minimum detectable change value. Considering spatially and 

temporally variable uncertainties holds potential to enable 4D-

OBC extraction for very different types of surface activity that 

potentially occur in natural scenes without a-priori knowledge on 

their properties. The consideration of varying measurement 

uncertainties will further enable to incorporate data from 

different sources, i.e. platforms and sensors, in change analysis 

for comprehensive 4D monitoring (Pfeiffer et al., 2019; 

Winiwarter et al., 2021). 

 

Results of our investigation in this paper further show that the 

extraction of 4D-OBCs can be rendered more flexible to the types 

of identified surface activity. The segmentation of 4D-OBCs 

does not rely on a specific model, but is free regarding the seed 

candidates, i.e. timespans of changes, which are provided for 

region growing. The presented change detection methods are 

bound to models of expected surface change behaviour (e.g., 

continuous vs. abrupt changes). Therein, the linear regression-

based method for seed detection is more sensitive to change rates 

which are not constant (i.e., if the change behaviour is not highly 

linear). Specific knowledge on target processes or external data 

may be used to extend the search for the occurrence of related 

surface activity in 3D time series data, for example in monitoring 

settings where meteorological variables are being recorded (e.g., 

Kromer et al., 2017; Kuschnerus et al., 2021b). 

 

4. CONCLUSION 

In this paper, we present a new approach of detecting surface 

activity in time series of surface changes for seed detection in the 

extraction of 4D objects-by-change (4D-OBCs). The method 

integrates Kalman filtering of change time series for 

consideration of spatially and temporally variable uncertainties 

to detect timespans of significant change. The method is 

showcased for different types of surface activity at a location 

which is affected by erosion of sediment and snow, where it 

detects relevant changes in their timing and duration. We 

compare the Kalman-based method to seed detection using linear 

regression of change time series. The regression-based method is 

more sensitive if change rates are not constant. This can lead to 

surface activity being detected with too short timespans or not at 

all. Depending on the types of observed surface activities, the 

derived change information is strongly affected, as surface 

activity is being missed or not fully quantified from its start to 

end. Where changes do not occur abruptly, the Kalman-based 

method using the change rate can hence better detect surface 

activity in its full timespan of occurrence. 

 

For a location experiencing different surface processes through-

out the full period of observation, we demonstrate that different 

occurrences of surface activity are individually extracted by the 

Kalman-based without a pre-defined minimum detectable change 

as magnitude threshold. Change is not detected by the method 

when long gaps occur in the data, even though the surface 

changes significantly before and after the gap, because the 

uncertainty of the Kalman filter strongly increases in such cases. 

Here, a combination of different change detection methods could 

provide a suitable approach to ensure complete detection of 

relevant surface activities in the future, using the strengths of 

each approach.  
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