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ABSTRACT:

Single tree detection has been a major research topic concerning automatic forest inventory using remote sensing data. Recently,
deep learning-based approaches in remote sensing forestry have gained attention because of the prospect of improved accuracy. In
this study, we present a novel tree detection method based on the detection transformer (DETR), which applies a transformer in
combination with a pre-trained convolutional neural network to detect individual trees using high-resolution multispectral imagery.
The test site (Kranzberg Forest Roof Experiment - KROOF) is located in Bavaria, north of Munich, and is characterised by a mixed
forest which consists of large groups of European beeches (Fagus sylvatica) surrounded by Norway spruces (Picea abies). The
image data were acquired with a MicaSense RedEdge-MX Dual camera mounted to UAV. Two flight mission were conducted at an
altitude of around 85 m with a flight speed of 5 m/sec, resulting in a ground resolution of about 5 cm. 125 trees were surveyed by
tacheometric means in the field for testing, and 1390 trees were labelled by visual interpretation of the multispectral imagery for
training and validation. The novel tree detection method based on DETR shows promising results and outperforms the standard,
well-known object detection method YOLOv4 in mixed and deciduous test plots. More detailed, F1-scores were evaluated for
coniferous plot at 83%, for mixed plot at 86% and for deciduous plot at 71%. The corresponding figures for YOLOv4 are 87%
coniferous, 65% mixed and 67% deciduous. In terms of accuracy, DETR is inferior by 6% in coniferous plot, however superior by
28% and 5% in mixed and deciduous plot, respectively. Compared to YOLOv4, we found that DETR sometimes failed to detect
small coniferous trees. Moreover, both deep learning-based methods tend to over-detect single trees in deciduous test areas. In sum,
transformer-based tree detection shows great potential to improve single tree detection.

1. INTRODUCTION

Forests are an essential part of our environment, providing crit-
ical ecosystem services, such as carbon storage, nutrient cyc-
ling, drinking water supply and air purification. Moreover, they
offer recreational opportunities and host a large proportion of
Earth´s biodiversity. Forest loss, global change and an unsus-
tainable management are threatening forest ecosystems in an
unpreceded manner. A better knowledge of the condition of
the forests is a prerequisite for sound management, for which
forest inventories form an important basis. Here, remote sens-
ing methods come into play as they can acquire this information
over large areas at a much lower cost in comparison to conven-
tional methods (Krzystek et al., 2020).
Forest inventories, as part of sustainable forest management,
are usually conducted on small sample plots (less than 1% of
the area) with intensive terrestrial measurements, which sur-
vey individual tree attributes and derive statistical indicators for
the surveyed areas. An areal wide collection of forest structure
parameters down to single tree information can only be done
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by using remote sensing methods and offers an added value for
the areal monitoring of forest structures (Latifi et al., 2015).
Using high-resolution remote sensing data and innovative AI
methods, this information can be collected over large areas at a
much lower cost (Latifi and Heurich, 2019).

2. RELATED WORK

In recent years, the use of deep neural networks (DNN), such as
segmentation and classification algorithms, has attracted a great
deal of interest as they outperform standard machine learning
approaches in various tasks (Voulodimos et al., 2018). The
main advantage of many DNNs is representation learning, which
characterises automatic feature extraction as part of the training
process (LeCun et al., 2004). However, single tree detection
and segmentation via deep learning are more challenging and
only a few approaches apply instance segmentation that im-
bed two-stage object detectors to delineate single trees using
lidar data (Windrim and Bryson, 2020) or multispectral imagery
(G. Braga et al., 2020). In another study, a tree detection method
based on the single-stage detector RetinaNet (Lin et al., 2017)
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using RGB imagery is presented (Weinstein et al., 2019). The
model is initially trained by tree segments provided by a lidar-
based segmentation and is fine-tuned using manually labeled
segments. When applied in an open forest area, the approach
outperforms two baseline methods (Silva et al., 2016), (Li et
al., 2012).
The novel use of transformers is promising (Parmar et al., 2018),
which are deep learning building blocks using the mechanism
of self-attention (Vaswani et al., 2017). In this work, we aim
to detect single trees in high-resolution RGB true orthophotos
(TDOPs) using a novel transformer approach detection trans-
former (DETR) (Carion et al., 2020). In an interesting study,
a similar procedure was applied in the field of bioinformat-
ics (Prangemeier et al., 2020). It was successfully shown that
cells in microstructures can be detected and classified using
microscope imagery with the help of transformers. In remote
sensing, change detection in residential areas was conducted,
reporting accuracy improvements compared to baseline archi-
tectures such as U-Net (Chen et al., 2021). Recently, a study
presented a new deep learning model called density transformer
(DENT) for automatic tree counting from aerial images (Chen
and Shang, 2022). The architecture is similar to DETR in (1)
using a convolutional neural network for extraction of visual
features and (2) providing contextual image information with
the help of conventional transformer encoder in a multi-head
attention mechanism. The encoder gives input for two separate
feed-forward networks: one that generates a tree density map
and another that counts trees. DENT outperforms most of the
other deep learning-based methods such as Faster R-CNN (Ren
et al., 2015) and YOLOv3 (Redmon and Farhadi, 2018).
To the authors’ best knowledge, so far no experiments have
been carried out using this new far-reaching deep learning-based
object detection method to detect single trees in a high-resolution
TDOP in the context of forest inventory. In order to demonstrate
the potential of the transformer-based method, the results were
compared with a well-known one-stage object detection method
called You Only Look Once v4 (YOLOv4) (Bochkovskiy et al.,
2020).

3. MATERIAL

3.1 Study area

Our experiments were conducted close to the Kranzberg Forest
Roof Experiment (KROOF) research site, located at 11°39‘42”
E, 48°25‘12” N, approximately 35 km northeast of Munich.
The forest around the KROOF research site is under admin-
istration of the Bayerische Staatsforsten. Most of the mixed
forest is characterised by large groups of beeches surrounded
by spruces. Tree heights vary between 19 m and 36 m with a
stem density of around 200–300 trees/ha.
For the evaluation, field measurements were conducted to gen-
erate reference data. For trees with a breast height diameter
(BHD) greater than 15 cm, the tree positions were measured by
tacheometric means with an accuracy of less than 2 cm. The
BHD was conventionally determined using a caliper. The first
plot (Figure 1, Plot #1) is characterised by dominant coniferous
trees and some understory trees as well. The second plot (Fig-
ure 1, Plot #2) is more diverse, composed of 60% coniferous
and 40% deciduous trees. The third plot (Figure 1, plot #3) is
dominated by deciduous trees which make up 76% of the area.
The variety also refers to the size and the age of the occurring
trees. Table 1 shows the plot characteristics. Since a 2D data

based method is used, only dominant trees and trees recognis-
able in the TDOP were used for the accuracy assessment. Fig-
ure 1 shows test plots #1 and #2 superimposed on the TDOP of
the August 2020 flight. Test plot #3 is shown on the data set
flown in July 2021.

3.2 Data acquisition and preparation

3.2.1 Aerial multispectral data In August 2020 and July
2021, multispectral images were collected using a RedEdge
MX Dual camera (MicaSense, 2022) attached to a remotely pi-
loted hexacopter (DJI M 600 Pro). The camera system captures
ten channels (spectral range 475 – 842 nm) with a horizontal
field of view of (HFOV) of 47.2°, which corresponds to a focal
length of 5.5 mm. A downwelling light sensor provided accur-
ate ambient light calibration. Images of a calibration panel were
taken for radiometric calibration. The flight speed was 5 m/sec
above ground. The end lap and side lap of the image block
were 90% and 60%, respectively. For the two missions, the
flight heights were 90 m and 80 m, resulting in ground sample
distances (GSDs) of 5.93 cm and 5.3 cm. For postprocessing of
the imagery, structure-from-motion (SFM) software was used
to generate TDOPs (MetaShape, 2022). The processing steps
consisted of (1) radiometric calibration of imagery (2), bundle
adjustment, (3) point cloud generation and (4) generation of an
orthomosaic. The exported TDOPs had a cell size of 5 cm con-
taining ten channels captured by the camera. Table 2 provides
an overview of the photogrammetric campaign.

Parameter plot #1 plot #2 plot #3
Size (m2) 2434 1883 1840
Trees 55 36 34
Trees/ha 226 191 185
Forest type coniferous mixed deciduous
Tree heights (m) 19-34 20-34 19-34
Images 19 22 15

Table 1. Parameters of reference plots.

Multispectral camera RedEdge MX
SFM - Software MetaShape
Field of View (degree) 47.2
End lap (%) 90
Side lap (%) 60
Acquisition time August 2020 / July 2021
Images 3770 / 3560
Flight height (m) 90 / 80
GSD (cm) 5.9 / 5.3

Table 2. Flight parameters of aerial image acquisition and
software packages used.

Parameter Training Validation
Size (m2) 48175 8500
Trees 1167 223
Trees/ha 243 262
Forest type mixed mixed
Tree heights (m) 19-34 20-34
Images 433 72

Table 3. Parameters of training and validation areas captured by
visual inspection.
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Figure 1. Research site KROOF as RGB TDOP showing three test plots #1, #2, and #3. The remaining area was used for training and
validation.

3.2.2 Field survey The goal of the field campaign was to
measure tree positions as precisely as possible in order to gen-
erate accurate test data (see 3.2.3). Due to the expected shad-
ing effects in dense forest areas using global navigation satel-
lite system (GNSS) systems, a survey campaign was conducted
in April 2021. First, a traverse was measured in the area of
plots #1, #2 and #3. The traverse included seven polygon sta-
tions and was georeferenced using three geodetic points. The
Trimble R12i GNSS system and the Leica TCRP1203+ total
station were used as instruments. Afterwards, tree positions
were surveyed from the polygon points by tacheometric means.
The BHD of each tree greater than 15 cm was also measured
using a caliper, and the tree group was also documented. In
summary, 55 trees, 36 trees and 34 trees were surveyed in plots
#1, #2 and #3, respectively (see also Table 1). The estimated
accuracy of the tree positions was less than 10 cm.

3.2.3 Labeling of tree crowns The training and test refer-
ence data are provided in the form of enclosing bounding boxes.
For this purpose, the TDOP is used for visualisation. For the la-
beling of the training data, tree segments were defined in the
TDOP. The tree segments of the test data are also determined
using the TDOP and additionally linked with tree positions de-
rived from the field measurements. Figure 2 shows an example
of labeled trees with corresponding bounding boxes and tree
positions.

4. METHODS

4.1 DETR

The deep learning-based method DETR considers object de-
tection as a direct set prediction problem. This approach pro-

Figure 2. Example of a TDOP with labeled bounding boxes
colored in red and the corresponding tree positions as points

colored in orange.

cesses global image information by the transformer mechanism
(Vaswani et al., 2017) and eliminates the need for several sub-
tasks that require prior knowledge about the problem, such as
anchor generation. Predictions are determined directly and in
parallel using a small set of learned object queries. The rela-
tionship between objects and the global image context is a key
factor in this process.
The overall DETR architecture with the key elements is illus-
trated in Figure 3. First, the features are extracted using ResNet-
50 (He et al., 2015). Afterwards, the positional encodings are
added up element by element to the CNN features. Finally,
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Figure 3. Illustration of design and functionality of the object detection method DETR. Image source of (Carion et al., 2020).

Figure 4. Illustration of design and functionality of the object detection method YOLOv4. Image source of (Bochkovskiy et al., 2020).

the result is transferred to a transformer encoder followed by
a transformer decoder, which generates N object queries. The
last step classifies bounding boxes and classes using an feed-
forward network (Carion et al., 2020). Beside the architecture,
finding and evaluating ground truth and predicted boxes plays
a crucial role. The definition of a set prediction loss, which
includes a unique matching procedure between ground truth
boxes and a larger set of predicted boxes, has been determined
efficiently by bipartite matching using the Hungarian algorithm
(Kuhn, 1955). The total loss is a combination of the matching
loss and the Hungarian loss, which includes a linear combina-
tion of the generalised intersection over union (IoU) loss (Rez-
atofighi et al., 2019) and the L1 loss.
This architecture offers several advantages. No previous in-
formation about anchors is needed and global information can
be processed due to the transformer mechanism. However, on
the other hand this workflow has issues detecting small ob-
jects compared to the faster R-CNN (Ren et al., 2015) and con-
verges slower than comparable object detection methods. The
new design based on transformers and bipartite matching in the
area of object detection and the good extensibility of the work-
flow offers the possibility for adaptations in different fields. For
example, the authors of Deformable DETR (Zhu et al., 2020)
extended the existing workflow so that Deformable DETR de-
tects smaller objects better and requires a factor of 10 less train-
ing epochs. The authors of Dynamic DETR (Dai et al., 2021)
have significantly reduced the number of training epochs and
achieved improved performance by introducing a dynamic en-
coder that reduces the quadratic computational complexity of
the self-attention module in transformer encoders.

4.2 YOLOv4

YOLOv4 is the fourth evolutionary step of the original You
Only Look Once (YOLO) (Redmon et al., 2015) released in
a flexible research framework called darknet. The original ver-

sion included the first neural net approach that could generate
all bounding boxes and class labels parallel in one inference
step using an end-to-end network. Historically, YOLO has un-
dergone several improvement iterations with YOLOv2 (Red-
mon and Farhadi, 2016), YOLOv3 (Redmon and Farhadi, 2018)
and YOLOv4 (Bochkovskiy et al., 2020). YOLOv4 achieves
state-of-the-art detection accuracy in roughly realtime. The ar-
chitecture illustrated in Figure 4 shows the essential compon-
ents of the workflow.
First, features are extracted from images using the feature ex-
tractor CSPdarknet53. Here, cross-stage partial connections are
attached to darknet53 from YOLOv3. As feature aggregator,
spatial pyramid pooling is utilised as it increases the receptive
field and differs the most important features. Then, instead of
the feature pyramid network in YOLOv3, the path aggregation
network is utilized. The original YOLOv3 network was used as
head to generate bounding boxes and class labels.
Beside the architecture, two strategies have been introduced.
One of these strategies is called bag of freebies, which does
not require any additional computing power and uses data aug-
mentation, such as mosaic or cutmix. The other strategy, bag
of specials, contains improvement modules for inference (e.g.
mish activation) (Misra, 2019).

5. EXPERIMENTS

5.1 Experimental setup

Due to the architecture of DETR and YOLOv4, we prepro-
cessed the training, validation and test image data in 50% over-
lapping tiles of 512 x 512 pixels. For the training process, the
training data was split into 80% training and 20% validation.
Table 1 and 3 show the number of images used for training,
validation and testing. Three models each were trained for
DETR and YOLOv4 with varying random number generator
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seeds to check the reproducibility of the results. In the case of
DETR, no remarkable variation of the results were found. In-
stead, YOLOv4 exhibited a wider deviation of the results. We
therefore computed mean values of statistical parameters ac-
curacy, precision, recall and F1-score (See Section 5.4) in the
respective plots #1, #2, and #3. As a result of the 50% over-
lap in the images, overlapping bounding boxes were predicted
during testing. At the image edges, small tree fragments some-
times occurred. Therefore, post-processing was necessary to
filter the small bounding box fragments using a threshold value
(e.g. 20 m2). Subsequently, a non-maximum suppression was
applied using an IoU threshold of 0.3. A workstation equipped
with 256 GB RAM, a Nvidia RTX 8000 GPU, and an AMD
Ryzen Threadripper 3970X processor was used.

5.2 Configuration of DETR

The DETR Python implementation of Hugging Face (Wolf et
al., 2020) was used and the default configuration of DETR was
applied with an adjusted learning rate of 1e-7, a backbone learn-
ing rate of 1e-6, a weight decay of 1e-8 and a batch size of 12.
A pre-trained model based on the common objects in context
(COCO) detection dataset (Lin et al., 2014) was used because
of the limited amount of training data. This required a constant
parameter value object queries (optimized for the COCO data-
set) to be fixed to 100. Within a period of 500 epochs, we ap-
plied early stopping to train and validate the model, thereby mit-
igating overfitting effects. To achieve this, the model with the
highest validation mean average precision @IoU=0.50 (mAP)
was selected first. It was checked whether the validation loss
was within the range of a minimum. Due to the 50% overlap-
ping test images and the object queries parameter, the bounding
box fragments with high confidence scores at the edges of the
test images were eliminated in an intermediate step.

5.3 Configuration of YOLOv4

In this work, the YOLOv4 implementation for Windows com-
puters was used (Bochkovskiy et al., 2020). The configuration
was adapted for this data set by setting the number of training
steps to 7200 and using a batch size of 64. Data augmentation
(crop, rotation, flip, hue, saturation, exposure, aspect, cutmix,
mixup, mosaic and blur) was also applied. A pre-trained model
based on the COCO detection data set (Lin et al., 2014) was
selected for transfer learning. The model with the maximum
mean average precision (Everingham et al., 2010) value was
selected within 7200 training steps.

5.4 Accuracy assessment

In order to determine the quality of the tree detection, the fol-
lowing metrics were used. First, accuracy, precision, recall and
F1-score were taken to identify the performance of the results.
Detected trees that could be assigned to a reference bounding
box with at least an IoU of 50 % were taken as successful detec-
ted trees (true positives). If no assignment to a reference bound-
ing box was found for detected trees, they were categorised as
false positives. Furthermore, reference trees, which could not
be matched to any detected tree, were marked as false negat-
ives. The IoU describes the quality of the overlap and is defined
as the ratio of the common area and the combined area of the
bounding boxes A and B. Equations 1, 2, 3, 4 and 5 show how
the described parameters are calculated, whereby TP, FP, FN
and F1 are denoted as true positives, false positives, false neg-
atives and F1-score.

accuracy =
TP

TP + FP + FN
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F1 = 2 · precision · recall
precision+ recall

(4)

IoU(A,B) =
|A ∩B|
|A ∪B| (5)

6. RESULTS AND DISCUSSION

Tree detection results using DETR and YOLOv4 methods are
summarised in Table 4. DETR clearly outperforms YOLOv4 in
mixed plot #2 and deciduous plot #3. Interestingly, mixed plot
#3 shows a significant difference of more than 20% in terms
of F1-score. The F1-score in deciduous plot #3 is lower with
4%. In contrast to plot #2 and #3, DETR deteriorates by 4%
F1-score in coniferous plot #1. Note that the accuracy values in
Table 4 fully confirm the trend of the F1-score.
Across all three test plots, both methods have problems with
over-segmentation. The effect is clearly distinctive in mixed
plot #2. This is reflected in a 23% lower recall for YOLOv4.
Figure 6 shows a deciduous crown with a diameter of 15 m
completely detected by DETR and split-up into two boxes by
YOLOv4. Our explanation for this is that the training data con-
tain mainly medium-sized trees. Therefore, to reduce the over-
segmentation effect, more larger tree crowns should be included
in the training.
Furthermore, we notice that DETR obviously detects smaller
trees worse than YOLOv4. This is especially noticeable in plot
#1, where a total of seven small trees with a crown diameter of
less than 5 m are located. More detailed, DETR detects only
one tree, however YOLOv4 is able to successfully find four
trees in this plot. To clarify this, Figure 7 shows a sample sub-
area of plot #1. In Figure 7a, we notice that DETR detects two
small trees. However, these are false positives because of a too
low IoU value. Instead, YOLOv4 successfully detects two trees
in this subarea (See Figure 7b).
In conclusion, DETR has apparently problems to detect smaller
trees, which is also reflected in poorer results in plot #1. This
can be explained mainly by the fact that DETR generally detects
smaller objects worse than object detectors such as YOLOv4
or Faster-RCNN, which normally use higher resolution feature
maps. This disadvantage of DETR was recently compensated
by an extension called Deformable DETR, which achieves sig-
nificantly better detection results for small objects (Zhu et al.,
2020).
Finally, we compare our results with the study (Weinstein et al.,
2019) that utilizes the NEON woody vegetation dataset (Na-
tional Ecological Observatory Network (NEON), 2022) with
images (GSD = 0.1 m) acquired at the San Joaquin Experi-
mental Range in California. The forest area is characterised
as open forest comprising the predominant tree species live oak
(Quercus agrifolia), blue oak (Quercus douglasii) and foothill
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coniferous plot #1 mixed plot #2 deciduous plot #3
Acc. F1-score Prec. Rec. Acc. F1-score Prec. Rec. Acc. F1-score Prec. Rec.

DETR 71 83 81 85 76 86 84 89 55 71 71 71
YOLOv4 77 87 84 89 48 65 57 75 50 67 63 71

Table 4. Results of tree detection with DETR and YOLOv4 in test plots #1, #2 and #3. Numbers in percent.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Results for object detection with DETR and YOLOv4. Reference data plot area surroundings are in red. Predicted bounding
boxes are in blue (DETR) and orange (YOLOv4) respectively. a) Result of DETR for coniferous plot #1. b) Result of YOLOv4 for

coniferous plot #1. c) Result of DETR for mixed plot #2. d) Result of YOLOv4 for mixed plot #2. e) Result of DETR for deciduous
plot #3. f) Result of YOLOv4 for deciduous plot #3.
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pine (Pinus sabiniana). The study reports a detection accuracy
of 69% recall and 61% precision. Comparison with our study
is difficult due to differences in the characteristics of the forest
area.

(a) (b)

Figure 6. Sample area from mixed plot #2 showing
over-segmentation. Reference bounding boxes are in red. a)
Detected bounding boxes for DETR are in blue. b) Detected

bounding boxes for YOLOv4 are in orange.

(a) (b)

Figure 7. Sample area from coniferous plot #1 showing
detection issues for small closeby trees. Reference bounding

boxes are in red. a) Detected bounding boxes for DETR are in
blue. b) Detected bounding boxes for YOLOv4 are in orange.

7. CONCLUSIONS AND OUTLOOK

In this study, the successful detection of individual trees using a
novel transformer-based object detection method called DETR
was demonstrated. When comparing DETR with the baseline
method YOLOv4, we observed a significant improvement in
detection accuracy. In a mixed plot, DETR achieved an im-
provement of more than 20% in terms of F1-score compared
to YOLOv4. In a deciduous plot, a moderate increase of 4%
F1-score was significant. Moreover, our experiments suggest
that small trees are detected worse because of the drawbacks of
DETR localising objects of reduced size.
Future experiments will focus on (i) usage of multispectral chan-
nels (e.g. NIR, NDVI, NDRE), (ii) usage of lidar-based metrics
generated from a lidar flight mission conducted in the same area
(e.g. DSM, lidar intensity, penetration rate), and (iii) exten-
sion of the detection method with a segmentation enabling tree
crown delineation.
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