
EVALUATION OF AZURE KINECT DERIVED POINT CLOUDS TO DETERMINE THE
PRESENCE OF MICROHABITATS ON SINGLE TREES BASED ON THE SWISS

STANDARD PARAMETERS

C. R. Fol∗, A. Murtiyoso, V. C. Griess

Forest Resources Management, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science,
ETH Zurich, Switzerland - (cyprien.fol, arnadidhestaratri.murtiyoso, verena.griess)@usys.ethz.ch

Commission II, WG II/10

KEY WORDS: Point Cloud, Azure Kinect, Close-range Photogrammetry, Microhabitat Detection, DBH, Bark Texture

ABSTRACT:

In the last few years, a number of low-cost 3D scanning sensors have been developed to reconstruct the real-world environment.
These sensors were primarily designed for indoor use, making them highly unpredictable in terms of their performance and accuracy
when used outdoors. The Azure Kinect belongs to this category of low-cost 3D scanners and has been successfully employed in
outdoor applications. In addition, this sensor possesses features such as portability and live visualization during data acquisition
that makes it extremely interesting in the field of forestry. In the context of forest inventory, these advantages would allow to
facilitate the task of tree parameters acquisition in an efficient manner. In this paper, a protocol was established for the acquisition
of 3D data in forests using the Azure Kinect. A comparison of the resulting point cloud was performed against photogrammetry.
Results demonstrated that the Azure Kinect point cloud was of suitable quality for extracting tree parameters such as diameter
at breast height (DBH, with a standard deviation of 2.2cm). Furthermore, the quality of the visual and geometric information of
the point cloud was evaluated in terms of its feasibility to identify microhabitats. Microhabitats represent valuable information on
forest biodiversity and are included in Swiss forest inventory measurements. In total, five different microhabitats were identified
in the Azure Kinect Point cloud. The measurements were therefore comparable to sensors such as terrestrial laser scanning and
photogrammetry. Therefore, we argue that the Azure Kinect point cloud can efficiently identify certain types of microhabitats and
this study presents a first approach of its application in forest inventories.

1. INTRODUCTION

In the field of forestry, terrestrial laser scanning (TLS) is
the gold standard for 3D reconstruction of trees (Rehush
et al., 2018). TLS devices can create very high-resolution
point clouds but are expensive, time-consuming and com-
plex. Therefore, interest in novel terrestrial-based alternatives is
increasing (https://e-services.cost.eu/files/domain_
files/CA/Action_CA20118/mou/CA20118-e.pdf, accessed
2022-22-03). The Azure Kinect, a Time-of-Flight (ToF) cam-
era system, presents a promising alternative based on its cost,
availability, and ease of use (Neupane et al., 2021). This device
has been proven to be feasible for tree measurements, such as
measuring the diameter at breast height (DBH) of urban trees
(McGlade et al., 2020) or automating fruit localization and siz-
ing (Neupane et al., 2021). However, to our knowledge, few
to no studies have yet attempted to use Azure Kinect to col-
lect forest inventory data. The objective of this study was to
evaluate the use of the Azure Kinect in a forest environment
and how its computer vision algorithms can handle the extreme
and rapid change of brightness and the homogeneity of the tex-
ture patterns in the background. For this purpose, we tested
whether the device can accurately detect Tree-related Micro-
habitats (TreMs), which are morphological tree features import-
ant for specific species, such as bats, birds, or mammals (Bütler
et al., 2020). TreMs are usually manually assessed by an invent-
ory crew of two people, which is extremely time-consuming
and depends heavily on the training and knowledge of the in-
volved team. In this paper, we present a procedure to automate
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the detection of TreMs using the Azure Kinect, with a particular
focus on the accuracy of the results.

2. STATE OF THE ART

2.1 The use of terrestrial remote sensing in forest invent-
ories

For forest inventories, the most popular terrestrial remote sens-
ing instrument is TLS. Indeed, the long range and precision
of TLS coupled with the high resolution and detailed point
cloud, make it the standard in forestry applications. However,
its use comes with a very high cost and intensive processing
requirements. To overcome these drawbacks, researchers star-
ted to look at cheaper solutions such close-range photogram-
metry (CRP) (Mokro et al., 2018). The resulting point cloud is
of similar quality with a more affordable hardware cost, how-
ever the post-processing time is still high and requires sub-
stantial computational power. Therefore, the development of
further lower cost technologies remains of interest. Thanks
to the progress made in the development of novel terrestrial
based technologies, this category of low-cost sensor began to
be considered as an alternative measurement device in forest
inventory (https://e-services.cost.eu/files/domain_
files/CA/Action_CA20118/mou/CA20118-e.pdf, accessed
2022-03-22). For example, (Hyyppä et al., 2017) demonstrated
that Kinect and Google Tango provided accurate individual tree
stem measurements of DBH and stem curvature approxima-
tions. In addition, (Gollob et al., 2021) evaluated the cap-
ability of the iPad Pro 2020 to collect forest measurements.
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The Azure Kinect is the evolution of the Kinect used in the
above-mentioned study (Hyyppä et al., 2017) and has recently
been successfully used in a variety of agricultural measure-
ments such as leaf area estimation on tomato plants (Masuda,
2021), automatic branch detection of jujube trees (Ma et al.,
2021) and fruit localization and sizing (Neupane et al., 2021).
Moreover, (Neupane et al., 2021) ranked it first out of eight
other depth cameras tested for having the highest potential to
perform measurements under challenging light conditions. To
date, the sensor’s suitability for forest inventory measurements
remains to be explored and is the purpose of this study.

2.2 TreMs inventory

Measuring forest biodiversity is often done via the use of biod-
iversity indicators, such as volume of dead wood (Christensen
et al., 2005) or more recently, via the measurement of TreMs
(Bütler et al., 2020). TreMs inventories can provide an estim-
ate of species richness in forests as they represent the presence
of certain ecosystems on the tree trunk (Courbaud et al., 2022).
In order to provide a standardized definition of TreMs, (Larrieu
et al., 2018) proposed a classification of 47 TreMs forms into
7 groups and 15 sub-categories. (Brändli et al., 2021) further
simplified the classification of TreMs to the 19 most significant
species in terms of their occurrence and importance in Switzer-
land. This classification has also been adopted for the Swiss na-
tional forest inventory (Düggelin et al., 2020). In this inventory,
19 categories were associated with specific characteristics that
allow for a simple and efficient classification. In our study, we
employed the classification of (Brändli et al., 2021) to identify
the presence of microhabitats in our forest 3D scans.

3. METHOD

Two measurement campaigns were carried out during this
study. A preliminary campaign of measurements was neces-
sary due to the novelty of the sensor and the limited literature
available on the subject. In fact, in novel terrestrial based tech-
nologies, the choice of the algorithm to reconstruct the point
cloud is as important as the choice of the sensor. Therefore, it
was necessary to determine which algorithm would be most ap-
propriate in a forest environment. In addition, strong changes in
luminosity could have a dramatic impact on the performance of
the reconstruction algorithm. To limit this impact, it was neces-
sary to establish a plan that would encompass different paramet-
ers such as the velocity of movement, the path of travel and the
appropriate field of view. The first campaign hence allowed the
development of a measurement protocol and additionally, gave
tangible evidence that the Azure Kinect was able to recreate a
functional 3D model of a single tree.

3.1 Measurement Protocol

For the measurement, one loop was made around the tree hold-
ing the device at chest height. The radius of measurement was
kept in the range of 1.5 to 5 meters. The BAD-SLAM algorithm
was implemented at the beginning of the measurement, which
allowed the reconstruction of the point cloud to be visualized in
real time and was immediately saved on the device. Additional
images were taken using a camera to build reference data from
terrestrial photogrammetry. The acquisition of images for the
photogrammetric dataset was undertaken using a Nikon D3200
DSLR camera with an 18-20 mm lens. With a capturing dis-
tance of around 2 m, this translated into a theoretical Ground
Sampling Distance (GSD) of around 0.4 to 0.5 mm. For each

tree sample, images were taken in a convergent manner in loops.
Two loops were performed serving as backup data, yielding an
average of 80 images for each tree sample. Furthermore, in or-
der to facilitate scaling in the resulting 3D model, two coded tar-
gets and a measuring tape were placed on the ground and were
visible in some of the images. The distance between the coded
targets were measured using a measuring tape. This ensured
that at least two scale bars can be used for absolute orientation
purposes during the photogrammetric processing.

3.2 Datasets

Hönggerberg forest For the preliminary research, three trees
in the Hönggerberg forest of Zürich, Switzerland were scanned:
one maple, one beech, and one pine (Acer platanoides,
Fagus sylvatica and Picea abies, respectively). The selec-
ted species are among the most common tree species in
Swiss forests (https://www.lfi.ch/publikationen/publ/
posterserie_LFI3_A4-en.pdf, accessed 2022-07-03) and
possess an easily recognisable bark texture.

Rameren Forest For the second measurement campaign,
three trees in the Rameren forest were scanned: one cherry,
one hornbeam, and one Douglas fir (Prunus subg. Cerasus,
Carpinus betulus and Pseudotsuga menziesii respectively). The
tree species were chosen because each had at least one micro-
habitat and the surrounding area was sufficiently open for meas-
urement purposes.

3.3 Preprocessing

A reference point cloud was first created for data assessment,
using the images taken by the camera and processed using
Agisoft Metashape software. For each tree, image orientation
was performed followed by dense matching to produce a dense
point cloud. The result was then scaled using the two automat-
ically detected coded targets and measuring tape placed at the
foot of each tree. Furthermore, each point cloud was georefer-
enced to a pre-existing reference TLS point cloud. The geore-
ferencing only involved 3D conformal translation and rotation,
with the scale factor assumed as fixed in both the photogram-
metric and Azure Kinect point clouds.

3.4 Post-processing

In post-processing, two analyses were carried out using
the software CloudCompare (https://www.cloudcompare.
org/, accessed 2022-22-03). The first analysis aimed to assess
the quality of the Azure Kinect point cloud quantitatively based
on the two other reference point clouds. We first employed the
photogrammetric point cloud in the M3C2 (Multiscale Model to
Model Cloud Comparison) plugin in CloudCompare to assess
the geometric precision and accuracy of the Azure Kinect point
cloud. The M3C2 is a method to calculate the signed distance
between two point clouds (Lague et al., 2013). To initiate the al-
gorithm, the main parameters were identified. For example, we
used the normal of the point cloud number 1 in the scale box
and estimated the projection diameter and the maximum depth
using the guess function. A further analysis involved comparing
the DBH value of all trees point clouds to a manual reference
measurement obtained with a calliper. To calculate the DBH of
a point cloud, the method described by (Čerňava et al., 2017)
was used by extracting a 6-cm section from a 1.27 to 1.33 m
height for each of the trunks scanned. Then, RANSAC was
employed to fit a cylinder to each of the extracted sections.
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The second analysis involved TreMs detection in each indi-
vidual point clouds. First, we examined the colour component
of the point cloud and attempted to visually recognise TreMs
on the bark of each individual tree. Afterwards, we employed
CloudCompare tools to compute the roughness as well as the
Gaussian curvature values of the point cloud. The neighbour-
hood radius considered for every calculation was set to 10
cm. Finally, the roughness computation was used to investig-
ate whether a tree species could be identified.

4. RESULTS AND DISCUSSION

4.1 The Azure Kinect Point Cloud

M3C2 (Multiscale Model to Model Cloud Comparison)
The mean value and the standard deviation summarised in Table
1 are below centimeter level. This reflects a consistent align-
ment between the two clouds and confirmed that the Azure
Kinect point cloud is of a reliable quality to perform measure-
ments that require a level of precision at the centimeter range.
Since our reference point cloud (photogrammetry) is capable
of achieving sub-millimeter accuracy, a standard deviation of at
most 0.5 cm would ensure a good quality of our point cloud and
in particular for forestry applications. Furthermore, by looking
at the mean value in Table 1 we noticed a higher value for the
Cherry tree. This means that for the cherry tree there might be
a systematic error in our point cloud alignment. One explana-
tion could be the steeper topography where the tree was located,
which could have led to inaccuracies in measurement using the
Azure Kinect sensor. Nonetheless, the magnitude in systematic
error was sufficiently small (less than 1 cm), demonstrating the
feasibility of the Azure Kinect point cloud for extracting forest
inventory parameters. In the following section, we present res-
ults of the DBH calculation for each tree.

Cherry Hornbeam Douglas Fir
Mean value [cm] -0.6 -0.1 -0.1
Standard deviation [cm] 0.3 0.5 0.4

Table 1. Statical values of the deviation of Azure Kinect Point
Cloud from Reference Point Cloud (Photogrammetry).

DBH [cm]
Cherry Hornbeam Douglas fir

Calliper 34 29 27
TLS 32 27 27
Photogrammetry 35 31 28
Azure Kinect 36 28 30

Table 2. DBH value for each individual trunk scanned.

TLS Photogrammetry Azure Kinect
Mean Absolute
Error [cm]

1.3 1.3 2

Root Mean
Squared Error [cm]

1.6 1.4 2.2

Table 3. Statistical values of the DBH residuals.

DBH (Diameter at Breast Height) DBH, a tree parameter
widely used in forestry, allows forest professionals to derive
valuable tree information. This includes the volume of a tree
and the number and diversity of TreMs that a tree harbours
(Bütler et al., 2021). The computed DBH values of this study
are summarized in Table 2. As expected, the results of Azure
Kinect had the lowest precision and accuracy for DBH estim-
ation 2 ± 2.2 cm (c.f Table 3). The results obtained by clas-
sical photogrammetry were the closest to those of the reference

value (Calliper), with an average error of 1.3±1.4 cm (c.f Table
3). The second most accurate results were obtained from TLS,
with values close to the reference of 1.3 ± 1.6 cm (c.f Table
3). Nevertheless, the Azure Kinect DBH measurements were
more accurate when compared to the best results obtained with
the iPad Pro 2020 (σ = ±2.78cm) in this study (Wang et al.,
2021). Our results confirmed that the Azure Kinect has a very
good potential in the field of low-cost precision sensors.

4.2 Microhabitats Detection

Figure 1. Photogrammetry point clouds: (left) Douglas Fir,
(middle) Spruce and Hornbeam and (right) Cherry

Figure 2. Photogrammetry point clouds: (left) Douglas Fir,
(middle) Spruce and Hornbeam and (right) Cherry

Figure 3. TLS point clouds: (left) Douglas Fir, (middle) Spruce
and Hornbeam and (right) Cherry

To evaluate the Azure Kinect point cloud qualitatively, we em-
ployed microhabitat detection as the baseline for our analysis.
Microhabitat trees in forests have increased in importance, as
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they are very good indicators of biodiversity, which is of major
importance in forest management.

Point Clouds Microhabitats Types
Photogrammetry Type and depth of tree cavity, root buttress

cavity, mosses, lichens and ivy
Azure Kinect Type and depth of tree cavity, root buttress

cavity, mosses and ivy
TLS Type and depth of tree cavity, root buttress

cavity, mosses

Table 4. Summary of microhabitats in the Rameren datasets

In table 4, we present results of the different microhabitats de-
tect on the three sampled trees. Interestingly, we found that
the Azure Kinect point cloud allowed us to detect one more
microhabitat than the TLS point cloud and one less than the
photogrammetric point cloud. We explain this difference in the
following paragraphs.

Visual Inspection The Azure Kinect point cloud (Figure 1)
did not appear to be affected by noise unlike the TLS point
cloud (Figure 3). This comparison was further verified when
visualising the point cloud in three dimensions. By rotating
around the point cloud, we could clearly distinguish the creeper
on the trunk of the Douglas fir tree with Azure Kinect and pho-
togrammetry, whereas this structure was not visible with TLS.
Despite the density of the point cloud of Azure Kinect being
lower than the other two methods, we did not observe a crit-
ical loss of information. However, the low colour contrast of
the Azure Kinect point cloud impacted the sharpness of details
on the tree trunk and made the differentiation between micro-
habitats structures less detectable. For example, in Figure 4,
the colour information contained in the photogrammetric point
cloud (left image) can be used to identify the presence of lichens
without ambiguity. In comparison, the color information was
not interpretable in the Azure Kinect point cloud (right image).
Despite the fact that the presence of lichen was recognizable
in the Azure Kinect point cloud with the white-gray pattern on
the trunk. It is not possible to categorize it within a growth
form such as foliose, fructicose or crustoce, which is a crucial
information for microhabitat classification. The same observa-
tion also applied to mosses differentiation. Such a limitation
in observation was to be expected due to the lower resolution
of the Azure Kinect camera. On a medium scale, the Azure
Kinect point cloud allowed to visually recognize the presence
of three-dimensional structures on the trunk including ivy, li-
ana, and cavities. However, for an effective identification of
these type of microhabitats additional information are required.
Therefore, a point cloud curvature analysis of the trunk struc-
tures was performed in the next section to refine our approach
in accurate microhabitat identification.

Point Cloud Curvature Thanks to the cloudcompare soft-
ware the curvature of each point cloud can be calculated. This
translated in a change in the direction of the surface normal
vector, i.e. elliptic, parabolic or hyperbolic curvature. The
curvature value allowed us to detect microhabitats in the Azure
Kinect point cloud that were less identifiable using visual ana-
lysis. Figure 5 gave an example for each TreMs type we could
isolate with the curvature analysis. The root buttress cavity (left
image) was the most challenging microhabitat to detect due to
its vicinity to the ground. In general, this part is most impacted
by the noise due to multipath effect. The change in curvature is
hence not as clear as for the other types but is still valid. Liana
and ivy (middle image) were the most efficiently detectable due

to the structure of the curvature. The result was remarkable and
completely cleared up any doubts on either presence or absence
of this type of microhabitats. The cavities (right image) repres-
ented a microhabitat type that was least identifiable using visual
analysis. The curvature analysis partly resolved the issue by al-
lowing us to easily reject the inclusion into this category, but not
to refine the classification between cavities. Instead, the depth
of the cavity was required to carry out a deeper classification.

Species Identification The point cloud roughness values of
each of the scanned tree trunks were also evaluated to determ-
ine whether this information would permit to distinguish indi-
vidual trees species. Figure 6 depicts the point cloud of a horn-
beam tree bonded to a spruce tree as a good illustration of our
results. Accordingly, the trunk roughness of the two trees ex-
hibited different bark patterns. This distinction was most clear
using Photogrammetry, followed by Azure Kinect where a dif-
ference was noticeable. TLS was the least accurate in distin-
guishing between the two species. Nonetheless, the compar-
ison is somewhat bias due to noise in the TLS point cloud that
interfered with the correct execution of the algorithm. Remov-
ing the noise from the scans would have improved the results
but was contrary to the purpose of this paper of evaluating the
raw data.

In this paper, our results confirmed that the Azure Kinect has
a very good potential in the field of low-cost precision sensors.
However, increasing the sample size in future work, will further
allow to validate our presented method. In addition, the detec-
tion of TreMs was performed manually on the software Cloud-
Compare. However, this last part could be greatly improved
with the help of AI (Artificial Intelligence). In fact, a machine
learning algorithm has already been implemented to identify
TreMs in TLS point clouds (Rehush et al., 2018). Applying the
same approach to the Azure Kinect point cloud seems therefore
a logical follow-up since based on this paper’s observations, the
quality of the Azure Kinect point cloud is similar to that of a
TLS.

5. CONCLUSION

In conclusion, this study demonstrated that the Microsoft Azure
Kinect sensor has promising abilities to measure the physical
parameters of trees in our dataset collected in Swiss forests. The
DBH of the three scanned trees were successfully inferred with
acceptable precision. The quality of the point cloud was also
shown to be of sufficient accuracy to detect asperities on the
tree trunk at a centimeter resolution. These results show that the
Microsoft Azure Kinect could potentially be a great alternative
to TLS for detection of TreMs, although the measurement range
is significantly shorter than that of TLS. The scanning process
is straightforward and data can be generated in real-time, allow-
ing the user to double-check the completion of the point cloud
while scanning.
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