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ABSTRACT: 

The inherent speckle noise in synthetic aperture radar (SAR) images and the significant differences between SAR and optical 
images in nonlinear radiation give rise to the great difficulty in computing similarity between image features, improving detection 
accuracy of corresponding points and the efficiency of image matching, thus making the registration of SAR and optical images a 
long-standing challenging task. To address these issues, a new SAR-optical image registration method was proposed in this paper, 
namely, Multi-orientation Tensor Index Feature (MoTIF), which is characterized by a lightweight feature descriptor. Specifically, we 
firstly established a diffusion tensor model based on the information of image gradient orientation. Then, the model was 
parameterized using polar coordinates to help identify the MoTIF and get the array of indices of maximum value, with which we 
could draw a multi-orientation index map and thereupon construct the feature vector descriptors. To evaluate the proposed method, 
seven representative SAR-optical image pairs were tested along with a comparison with other four state-of-the-art methods. Results 
show that our MoTIF method outperforms the other methods in that it substantially de-speckles SAR images, overcomes nonlinear 
radiation distortions caused by the differences between SAR and optical images, and achieves high precision and efficiency in image 
registration. The average number of correct matches (NCM) of 151.0 and the root of mean-squared error (RMSE) of 1.66 pixels 
obtained by utilizing MoTIF with lower time consumption adds more evidence to its superior performance. The time consumption of 
the MoTIF method is better than that of the other four methods, and the calculation speed is 4 times faster than that of the LGHD 
method. Executable code and test data are published in the link https://skyearth.org/publication/project/MoTIF/  

* Corresponding author

1. INTRODUCTION

The rapid development of computer science, remote sensing, 
artificial intelligence as well as other technologies brings about 
a great variety of multi-source images obtained by different 
kinds of sensors. Among those images, optical and SAR images 
and their joint use have been the heated topics receiving 
substantial scholarly attention, for their matching and 
registration can provide technical support for fields like 3D 
reconstruction, rescue and relief work, urban planning (Ye et al., 
2017). Drawing on the time lag and spatial differences of two 
image sensors in obtaining information, we can enhance the 
temporal and spatial resolution of data sources and improve the 
reliability of data application and processing, thus giving full 
play to their respective advantages. However, SAR is usually 
pointed to the side for imaging, so it is not hard to figure out 
why it is strongly affected by the ground range and terrain relief. 
SAR-optical registration remains still difficultly formidable in 
view of the multiplicative noise caused by speckles distributed 
in the SAR image and the geometric and non-linear radiation 
distortions in its imagery. 

In recent years, a lot of research have been carried out on SAR-
optical image registration, and the methods used can be 
generally classified into three categories: area-based matching, 
deep learning-based matching, and feature-based matching. The 
area-based matching method features metrics like correlation 
coefficient, mutual information, etc. (Öfverstedt et al., 2019. 

Viola et al., 1997). Commonly used for its accuracy and 
efficiency in identifying grayscale changes, the correlation 
coefficient cannot be used, however, to locate the nonlinear 
grayscale differences between SAR and optical images due to 
its high sensitivity to between-image discrepancies. In contrast, 
metrics of mutual information to non-linear gray-scale 
differences produce consistently sharper peaks in the surface of 
the similarity measurement, but it is not favored all the time 
because it often gets stuck at a locally optimal solution without 
giving a more global one. Deep learning-based method has been 
widely used in multi-model image matching and other materials, 
witnessed by the proposal of several robust deep learning 
algorithms, such as convolutional neural network matching (K. 
Yi et al., 2016), multi-source image feature extraction and 
description D2-Net network (Dusmanu et al., 2019), deep 
matching network based on co-attention (Wiles et al., 2021), 
VGG network feature extraction matching (Efe et al., 2021) and 
weak texture matching method LoFTR based on transformer 
network (J. Sun et al., 2021). At the same time, some deep 
learning matching methods based on SAR-optical have also 
achieved good results, such as conditional generative 
adversarial networks (Merkle et al., 2018), pseudo-siamese 
convolutional neural network (Hughes et al., 2018), 
convolutional neural network suitable for SAR-Optical match 
(Bürgmann et al., 2019), CorrASL network (Hughes et al., 
2020). Nonetheless, deep learning-based method also has the 
problem of poor stability in matching brought by the complexity 
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and unpredictability of scenarios where SAR-optical images are 
acquired. 
 
Feature-based method such as SAR-scale-invariant feature 
transform (SIFT) (Dellinger et al., 2015), optical-to-SAR-SIFT 
(OS-SIFT) (Xiang et al., 2018), A new matching framework 
(Bas et al., 2021), Rotation-invariant self-Similarity descriptor 
(Mohammadi et al., 2022),  have limitations in themselves as 
well due to their strong dependence on image gradients and 
high sensitivity to SAR-optical imaging matching. To address 
this, methods based on phase features have been put forward, 
including LGHD (Aguilera et al., 2015), channel features of 
orientated gradients (Ye et al., 2019), radiation-variation 
insensitive feature transform (RIFT) (Li et al., 2020), and 
histogram of absolute phase consistency gradients (HAPCG) 
(Yao et al., 2021). These methods make good use of the 
frequency-domain features of the image to make multi-source 
matching feasible. They did yield a great number of positive 
results, yet their deficiency of sensitivity to the multiplicative 
noise by registration of SAR and optical images, especially the 
registration taking place in non-urban, cannot be ignored. As is 
summarized above, area-based method enjoys good resistance 
to nonlinear radiation distortions, with obviously poor 
performance in the matching efficiency and the elimination of 
the coherent speckle of SAR images. Deep learning-based 
method has shown its great potential in image matching, but it 
is subject to the sample size and the complex scenarios where 
SAR-optical images get matched. Feature-based method is not 
quite useful in tacking problems such as multiplicative noise 
and nonlinear radiation distortions, though it makes feature 
matching faster. Clearly, if we want to further the research on 
SAR-optical image registration, we should firstly deal with how 
to achieve the accurate positioning of corresponding points and 
greater efficiency of matching both at once. 
 
This paper presents a lightweight SAR-optical registration 
method based on a multi-orientation diffusion tensor index 
feature (MoTIF) description. It uses the diffusion coupled with 
the parametric expression of polar coordinates to construct rich 
multi-orientation tensor features, by which the maximum index 
value can be calculated and a corresponding descriptor would 
be generated as well. During this process, the registration of 
SAR-optical images could be advanced in a more accurate and 
efficient manner. 
 

2. IMAGE REGISTRATION BASED ON MOTIF  

The proposed MoTIF method is composed of four steps: (i). 
feature points extraction, (ii). MoTIF descriptor construction, 
(iii). bilateral matching and outliers removement, (iv). image 
fusion. The second step is the major focus of this paper which 
will be elaborated in the following section.  
 

2.1 Feature point extraction 

Feature point extraction is an important part in image matching. 
It is also a demanding task because of the significant nonlinear 
radiation differences between SAR and optical remote sensing 
images, and the multiplicative noise caused by the coherent 
speckles in the SAR images. Therefore, the anisotropic 
weighted moment image space is used to extract image features 
(Yao et al., 2021), and it is defined as (1): 

max min max min

1
( ( ))

2
    W M M M M    (1) 

where W represents the final anisotropic weighted moment 
result; maxM represents the maximum moment of phase 

consistency of the image; minM represents the minimum 

moment of phase consistency of the image;  represents the 
image weight coefficient (with the range of [-1…5]). 
After the image's anisotropic weighted moments are established, 
the FAST (Rosten et al., 2006) operator is used to extract key 
points. 
 
2.2 MoTIF descriptor construction 

Although the previously established feature descriptors have 
achieved better results than traditional feature descriptors, they 
are still limited by different conditions, resulting in matching of 
SAR-optical images that does not satisfy actual production 
requirements. Hence the construction of a robust descriptor has 
been the major problem in SAR-optical image registration and 
yet to be solved. This part focuses on the construction of 
MoTIF descriptors to mainly address geometric deformations, 
non-linear radiation differences and speckle noise inherent in 
SAR images. The construction was conducted through the 
following three steps as shown in Figure 1: (ⅰ). multi-orientation 
tensor features construction, (ⅱ). multi-orientation tensor index 
mapping, (ⅲ). descriptor vector calculation. 
 
2.2.1 Multi-orientation tensor features construction.    
Step 1: Tensor feature calculation. The image gradients cannot 
be directly relied on in image registration owing to their high 
sensitivity to image distortions, especially to speckle noise in 
SAR image. To this end, some scholars have employed Sobel 
and Laplacian operators (Ma et al., 2016) for gradient 
optimization and filtering, making its use more promising in 
cross-modal image matching. In this section, the second-order 
gradient was firstly calculated, followed by the computing of 
the second-order gradient amplitude in the horizontal and 
vertical directions via using the Sobel template [-1,0,1; -2,0,2; -
1,0,1] (see equation (2)). 

1 2 2( , ) ( ( , ) ) ( ( , ) )σ x yx y x y σ S x y σ S     G L L    (2) 

 
Figure 1.  Construction flowchart of the MoTIF descriptor. 
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where 1( , )σx yG
 
denotes the first-order gradient, ( , )x yL

 
represents the grayscale of the image and σ  is the standard 

deviation of Gaussian distribution. xS  and yS
 
denote the 

Sobel template in the horizontal and vertical directions 
respectively. The more detailed calculation is presented in the 
equation (3): 

21

21
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  (3) 

where ( , )xxx yL and ( , ) yyx yL represent the sum of squares of 

second order gradients in the x and y directions respectively. 
( , )xyx yL denotes trace of the second-order gradient and   

denotes the convolution operator. 
The tensor provides the edge information in terms of its shape 
and direction. Despite its shape changes with the contrast and 
illumination, edge direction always remains unaltered. 
Consequently, the tensor model is frequently used in extracting 
the structural features of the image (Köthe et al., 2003). The 
definitive structure tensor expression is given as equation (4): 

( , ) ( , )
( , )

( , ) ( , )
σ xx σ xy

σ yx σ yy

G x y G x y
x y

G x y G x y

  
    

L L
T

L L
       (4) 

Where, σG is the Gaussian kernel function with standard 

deviation σ ; The results of ( , ) yxx yL  gets the identical result 

with ( , )xyx yL  . We also calculated the image tensor, the 

parallel and orthogonal eigenvectors of the tensor ( , )x yT  and 

denoted the latter two as ( , )p x yV  and ( , )o x yV . 

Step 2: The coherent speckle noise of the SAR image still 
existed even when we finished the calculation of the image 
tensor features. It will undermine the robustness of the 
registration of the SAR-optical image we introduced the 
coherence-enhancing diffusion function (Weickert et al., 1999) 
to retain image edges features by reducing the multiplicative 
speckle noise in SAR images, particularly in their uniform area. 
This function defined as equation (5) and (6). 
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        (6) 

Where, D is the tensor matrix after coherence enhancement 
diffusion. α  permits a small diffusivity (usually α =0.05) even 
when no preferential direction exists and k acts as a threshold to 

2
1 2( )λ λ value (k=125). The m is 2. The Cm is 2.33666. 

( , )p x yV  represents the parallel feature vector of the image 

tensor. ( , )o x yV is the orthogonal feature vector of the image 

tensor. T is the transpose operator of the matrix. Moreover, the 
positive constant is introduced to correct the bias in the original 
Perona-Malik diffusivity function (Weickert et al., 1999). 
Step 3: The enhanced diffusion tensor features of SAR-optical 
images can be obtained computationally by Step 2. This 
operation weakens the effect of multiplicative noise, leaving 
problems such as nonlinear radiometric distortion and 
geometric distortion between SAR-optical unsolved. On that 
account, Ye et al. (2019) have attempted at enriching the image 
structure features by generating multi-directional gradient 
features. Based on their findings, this paper adopts a parametric 
representation of polar coordinates to generate create the map 
sets centered on the MoTIF. 
Firstly, the D-matrices obtained from Step 2 are decomposed 
along the x-directions and y-directions, which are denoted as 

xCoT  and yCoT . Then, the feature images are rotated in the 

orientation range [0~π] with the rotation interval angle (π/o). 
After the rotation is completed, the fast fourier transform is 
executed to further filter the fine noise, and the final equation is 
shown in (7). 

( , ) (cos( ) ) (sin( ) )o x y

π π
x y FFT

o o
      

F CoT CoT  (7) 

Where, ( , )o x yF is the eigenvalue of the diffusion tensor of the 

o-th layer. o is the number of layers of the multi-orientation 
tensor feature (The value of o is taken as 6 in this paper). cos(.) 
and sin(.) are signs of trigonometric functions. FFT is a Fast 

Fourier Transform function.  is the sign for absolute value. 

The construction of multi-orientation tensor feature sets has 
been completed, as shown in Figure 2. 
 
2.2.2 Multi-orientation tensor index map. Although values 
of coherence-enhancing diffusion tensor feature under different 
layers were obtained, it is still difficult to directly describe the 
between-layer feature similarity of SAR-optical images, which 
are easily affected by multiplicative noise and nonlinear 
radiation distortions. To enhance the robustness of the 
descriptor, using index features between different coherence-
enhancing diffusion tensor feature maps is necessary and 
effective. The values of corresponding coherence-enhancing 
diffusion tensor features of each pixel p, and the maximum 
value of each pixel to construct a feature map were all 
calculated. This paper is divided into 6-layers into multi-
orientation tensor feature layers. 
Firstly, a multi-channel feature map was formed with reference 
to the features of the ( , )o x yF  after the calculation of 

coherence-enhancing diffusion tensor features in Step 2. The 
mathematical formula is defined as equation (8): 

 ( , ) ( , ) , [1, ]ix y x y i o   MoTF F         (8) 

Then, the maximum value of each pixel of different images is 
counted and its location is marked. Finally, the values of each 
pixel location in the image, the corresponding pixel value is 
obtained, and an o-dimensional ordered array were obtained. 
The channel index value ( , )x yMoTF  which incorporated the 

maximum value of the o-dimensional array was calculated. The 
mathematical expression is defined as equation (9): 

 max max( , ) argmax ( , )ox y x yMoTIF MoTF       (9) 

 
Figure 2.  Construction process of multi-orientation tensor 

feature sets. 
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Where, max max( , )x yMoTIF  denotes the multi-orientation 

tensor index map result. The 

superscript  1, 2,3, , 6o     indicates different channels. A 

multi-orientation tensor index map was finally made after the 
completion of the above operations on all pixels. 
 
2.2.3 Feature vector statistics. The proposed MoTIF 
descriptor (a 216-unit vector) is generated through calculating 
the histogram of oriented gradient (Dalal et al., 2005) on the 
multi-orientation tensor index map. For each feature point, their 
location serves as the central point for determining the 
neighborhood window range. The Gaussian function is used to 
assign weight to each pixel to make the feature description 
vectors consistent when they are confronted with the changes of 
the window position. Since the value range of the multi-
orientation tensor index map is set from 1 to o, the partial image 
block is divided into o×o sub-regions. Then a histogram vector 
of n=6 is fixed in each subregion, and all histogram vectors are 
sequentially connected to form o×o×n-unit feature vector and 
normalize the feature vector. Finally, a 216-dimensional 
descriptor vector was generated as shown in Figure 1. 
 
2.3 Bilateral Matching 

After the MoTIF descriptor calculation is completed, feature 
matching ensues. In this paper, we used the similarity measure 
of Euclidean distance and the matching strategy of the bilateral 
matching method making sure the one-to-one correspondence of 
obtained matching points. Besides, outliers are unavoidable 
after the bilateral matching. For their removal we used the fast 
sample consensus (FSC) algorithm (Wu et al., 2014) to cast out 
wrong matchings. The FSC algorithm can steadily extract the 
correct matching point pairs from mismatches with fewer 
iterations. 
 
2.4 Image fusion 

When the correct correspondence points are obtained, the 
transformation matrix between images needs to be calculated to 
achieve the image fusion. Here Affine model the chessboard 
grid fusion (Li et al., 2017) method were employed for the 
former was used to calculate the homography matrix between 
images, while the latter for the registration of SAR-optical 
images. 
 

3. EXPERIMENTAL RESULT  

Four state-of-the-art methods, i.e., OS-SIFT (Xiang et al., 2018), 
LGHD (Aguilera et al., 2015), RIFT (Li et al., 2020) and 
HAPCG (Yao et al., 2021) methods, were used for comparison. 
During the tests, the feature point extraction threshold was set 
to 0.4 the image scale difference was set to 1.6 with six image 
multi-orientation tensor feature maps and 72 pixels concerning 
the neighborhood window. The parameters of the compared 
methods were adjusted to the optimal stage accordingly. The 
proposed MoTIF method, OS-SIFT,LGHD, RIFT and HAPCG 
were implemented in Matlab-R2018a. When those methods, the 
number of matched key-points were kept under 3500. The 
experiments were performed on a Dell-G3 laptop with an 
Intel(R) Core(TM) i7-9750H CPU, 16GB-RAM, and Windows 
10 x64 operating system. 
Image-space affine transformation was used to model the 
geometric relationships of image pairs. For each pair, over 15 

well-distributed corresponding points were manually collected 
to calculate the affine transformation as the ground truth, which 
is used to measure the location accuracy of the automatically 
matched points. Three indices, i.e. the number of correct 
matches (NCM), the root of mean-squared error (RMSE) of the 
correct matches, and matching time (MT) are used to 
quantitatively evaluate the performance of several methods. 
 
3.1 Image Datasets 

The test data consists of seven SAR-optical image pairs 
acquired respectively by SAR and optical sensors. The SAR 
images are made up of the data from German Terra SAR-X 
satellite and Chinese Gaofen-3 satellite, while the optical data 
are from Google Earth data and Chinese Gaofen-2. These 
images, with three types of low-resolution, medium-resolution, 
and high-resolution, have different spectral characteristics 
covering different scenes such as urban areas, suburban areas 
and mountainous areas. Notably, differences in the imaging 
mechanisms between SAR and optical images bring about the 
significant nonlinear radiation variances amid each pair. We 
hence categorized the data into two groups in line with their 
geometric differences. The first group contains four pairs, 
namely, no. 1, no. 2, no. 6, and no. 7, whose sizes from 520 to 
1000 pixels. These images, though substantially similar in 
rotation and scale, cannot be registered immediately for SAR 
images are strongly affected by coherent speckles. The 
registration of no. 6 and 7 image pairs with unclear structural 
features seems more challenging for the information they offer 
is all about mountains with no buildings captured. The second 
group has three pairs, i.e. no. 3, 4 and 5, whose sizes varying 
from 450 to 923 pixels. As shown in Figure 3, images of no. 3 
pair have a temporal difference of more than one year, images 
of no. 4 pair have a scale difference, and images of pair 5 has a 
rotational difference. 

 
Figure 3. SAR-optical datasets. 

3.2 Quantitative Results 

Figure 4 illustrates the matching results of three indices used to 
compare the proposed MoTIF method with other four state-of-
the-art methods. The unit of NCM (see Figure 4 (a)), RMSE 
(see Figure 4 (b)) and MT (see Figure 4 (c)) is the number of 
points, pixel and seconds. 
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(a) NCM results of several methods    (b) RMSE results of several methods     (c) MT results of several methods 

Figure 4. Quantitative results of several methods. 
As shown in Figure 4 that OS-SIFT is superior to LGHD, RIFT 
and HAPCG on MT while the latter three work better on NCM 
and RMSE. However, MoTIF outperforms these four methods 
on all three indices and it is remarkably less time-consuming. At 
the same time, the average scores of the seven groups of image 
pairs in the three indices were further calculated with the aim of 
comparing several methods more comprehensively. 

Methods OS-SIFT LGHD RIFT HAPCG MoTIF 
Pair 1 √ √ √ √ √ 
Pair 2   √ √ √ 
Pair 3  √ √ √ √ 
Pair 4 √ √ √ √ √ 
Pair 5 √ √ √ √ √ 
Pair 6 √ √ √ √ √ 
Pair 7     √ 

Success rate 4/7 5/7 6/7 6/7 7/7 

NCM 45.14 77.00 57.71 64.71 151.00 

RMSE 3.18 2.83 2.20 2.41 1.66 

MT 10.83 26.14 12.20 8.66 5.28 

Table 1. Average quantitation matching scores of seven groups 
SAR-optical images of our MoTIF and four competitors. 

Note that, "" failed pair matching. The value of NCM is 
positively associated with the performance, the higher the 

number, the better the performance. As of RMSE, the RMSE 
results higher than 5 are set to 5 pixels. 

From Table 1, seven pairs are perfectly matched through the use 
of MoTIF method, evidenced by the average NCM, average 
RMSE and average MT of 151.00, 1.66 pixels and 5.28 seconds. 
Evidently, MoTIF yielded better results than other four methods 

as its NCM is increased by approximately 1 to 2.3 times, RMSE 
accuracy increased by 0.25 to 0.9 times, and the average MT 
increased by 0.64 to 4 times. It can thus be concluded that 
MoTIF, a lightweight feature registration method, makes 
possible the robust registration of SAR-optical images in a 
faster fashion. 
Drawing on, the correct correspondence points obtained, we 
then calculated the homography matrix between images which 
was used to promote image fusion (see Figure 5). Figure 5 (a) is 
the distribution of ground truth points, and Figure 5 (b) is the 
matching result of the SAR-optical image. 
Figure 5 demonstrates that MoTIF works well on robust 
matching and fusion of images with scale and rotation 
differences. It boosts the accurate fusion of SAR-optical images 
with no mismatch or artifacts, as is proofed by maps (c) and (d). 
 

4. PARAMETRIC ANALYSIS 

To fully evaluate the performance of the proposed method, we 
analyzed its two core parameters, the size of the neighborhood 
windows and the number of calculations required by MoTIF, 
which would be estimated by two indicators, RMSE and NCM. 
Settings of the parameters are shown in Table 2. 
 

Parameter 
Name 

Symbol Variable Value 
Fixed 

Parameters 

Neighborhood 
window 

Nw 

[32,40,48, 
56,64,72, 

80,88,96,104, 
120,130,140] 

NL = 6 

Layers number 
of MoTIF 

NL [3,4,5,6,7,8,9,10,11,12] Nw = 72 

Table 2. Matching parameters configuration. 

The performance of MoTIF under different parametric settings 
would be analyzed. Image pair (no. 2) with severe coherent 

 
(a) Ground truth points    (b) Matching results of MoTIF method    (c) Images fusion     (d) Local subplots of the fusion results 

Figure 5.  Matching and registration results of SAR-optical image. 
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speckle noise is used as an example. Figure 6 shows that as 
window Nw increases from 32 to 64, NCM results also increase 
with a steady upward trend. When the window Nw reaches 64 
and beyond, NCM goes higher than 70. When the window Nw 
equals 88, NCM arrives at its maximum. But when Nw exceeds 
130, NCM begins to decrease. As for RMSE, Nw =72 is the 
most favorable in that RMSE on that point gets to its optimal 
value, 1.41 pixels. Therefore 72 is recommended when setting 
Nw. 

 
Figure 6. Results of different neighborhood windows. 

 

Figure 7. Results of the MoTIF layers number. 

Figure 7 demonstrates that RMSE won’t go lower than 2 pixels 
when the value of NL is set minimal or maximal. When NL 
ranges from 6 to 8, it fluctuates between 1.3 and 1.6 but NCM 
goes higher than 75 which is surely unsatisfactory. Only when 
NL equals 6, can we get good values of RMSE and NCM both at 
once. As the NL increases, more corresponding points will be 
brought while the matching growth rate is declining and the 
increase in the number of matching points can no longer 
compensate for the deterioration of the matching accuracy itself. 
Therefore, NL=6 is recommended. 
 

5. CONCLUSION 

This paper proposed a novel lightweight SAR-optical image 
registration method mainly to resolve the problems of 
significant nonlinear radiation distortions and multiplicative 
noise caused by speckles inherent in SAR images. Firstly, the 
tensor features of the image to collect information on its salient 
structure were extracted. Then we used the coherence 
enhancement diffusion model to cope with the strong effect 
from the coherent speckle. Finally, enriched features of the 
images were obtained by performing MoTIF extraction through 

using polar coordinates. The maximum index value was also 
calculated so the descriptor vectors can be established. 
Experimental results show that MoTIF boasts better accuracy 
and efficiency in SAR-optical image registration than OS-SIFT, 
LGHD, RIFT, and HAPCG, etc. With this method, NCM has 
increased approximately by 1 to 2.3 times, the accuracy of 
RMSE improved by 0.25 to 0.9 times and the average MT 
increased significantly by 0.64 to 4 times. 
 
However, the MoTIF method also has its limitations. It is not so 
useful when applied in the registration of images whose scale- 
and rotation- distortions cannot be corrected or eliminated 
merely based on their locations or attitudes. Future research 
could address this issue of the scale and rotation invariance to 
help further MoTIF and its application in SAR-optical and other 
multi-modal images registration. 
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