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ABSTRACT:

The accurate split of large areas of land into discrete fields is a crucial step for several agriculture-related remote sensing pipelines.
This work aims to fully automate this tedious and resource-demanding process using a state-of-the-art deep learning algorithm with
only a single Sentinel-2 image as input. The Mask R-CNN, which has forged its success upon instance segmentation for objects
from everyday life, is adapted for the field boundary detection problem. Such model automatically generates closed geometries
without any heavy post-processing. When tested with satellite imagery from Denmark, this tailored model correctly predicts field
boundaries with an overall accuracy of 0.79. Besides, it demonstrates a robust knowledge generalisation with positive results over
different geographies, as it gets an overall accuracy of 0.71 when used over areas in France.

1. INTRODUCTION

An accurate knowledge of field boundaries is a requirement for
many actors in agriculture. Amongst many applications, it is a
prerequisite input for farmers to on-board fields on farm man-
agement software services, it improves the accuracy of crop
type classification (Peña-Barragán et al., 2011, De Wit, Clevers,
2004), and it is used from government agencies to monitor sub-
sidies and farming practices.

Typically, the collection of these geographical data is obtained
by manual labelling of aerial or satellite imagery. This slow,
repetitive, and error-prone acquisition hinders scalability. It
prevents the batch-mode boundary delineation in large areas.
Consequently, the scientific community has been exploring so-
lutions to accurately and reliably generate field boundaries in a
large-scale manner, without intensive user involvement.

The first challenge in the attempt to automate field boundary
detection is the inherent subjectivity of their definition. For ex-
ample, the Land Parcel Identification System (LPIS)1 lists four
different parcel types, with corresponding types of field bound-
aries. An automated approach is by default exposed to the more
or less arbitrary selection of the field boundary definition that it
follows.

Despite the definition limitations, field boundary detection has
been investigated for several decades. Early automated field
boundary detection techniques relying on some form of edge
detection through the use of traditional computer vision (Ry-
dberg, Borgefors, 2001, Yan, Roy, 2014). Lately this domain
has benefited from the proliferation of deep learning (Persello
et al., 2019, Waldner, Diakogiannis, 2019). In spite of the in-
creased accuracy, these techniques still suffer from challenges
on generating a single closed polygon for each field (instead of
incomplete and noisy curves), large computational cost and lack
of generalisation. As a matter of fact, the sparse collections of
∗ Corresponding author
1 The Land Parcel Identification System, Special report No 25,

2016 https://op.europa.eu/en/publication-detail/-/
publication/11049e0e-9a82-11e6-9bca-01aa75ed71a1

automatically-generated field boundary sets are often limited to
a single geography, and involve post-processing to remove false
omission and commission errors.

This work introduces the first step towards the systematic pro-
cessing of satellite imagery for batch-mode field boundary de-
tection. This is mainly achieved by transferring the state-of-
the-art instance segmentation algorithm Mask R-CNN to this
domain of knowledge (He et al., 2017). This task requires the
careful tuning of the architecture hyper-parameters as well as
adjustments and modifications that increase its accuracy. Addi-
tionally, a novel tailored measure for field boundary detection
evaluation is suggested. The experimental setup for such an
approach includes large volumes of data from multiple geogra-
phies. Please note that the Rydberg and Borgerfors’s (Rydberg,
Borgefors, 2001) field boundary definition is followed in this
work. The latter defines field boundaries as changes of crop
types or discontinuity of natural features.

The rest of the article is structured as follows. Section 2 gives an
overview of the existing approaches to delineate accurately field
boundaries. Subsequently, section 3 discusses in detail the sug-
gested architecture used, before experimental results confirm
the validity of this approach (section 4). Section 5 concludes
this work.

2. RELATED WORK

The rich literature of field boundary detection algorithms can be
mainly categorised between traditional computer vision tech-
niques and machine learning approaches.

The first algorithms investigating field boundary detection were
typically build upon some form of edge detection. The main
hypothesis is that the transition between fields would be char-
acterised by sharp changes in pixel values (Ji, 1996, Rydberg,
Borgefors, 2001), hence, field boundaries would be a subset of
image edges. Edge detection commonly involves the compu-
tation of multi-directional gradient though kernel convolutions
(North et al., 2019, Graesser, Ramankutty, 2017). Identifying
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image edges that actually represent field boundaries requires
the use of region-based knowledge (Yan, Roy, 2014). For in-
stance, North et al. compute the standard deviation for each
pixel within a window moving across the image channel (North
et al., 2019). Similarly, Graesser and Ramankutty consider
small tiles from a satellite image to normalise the gradients lo-
cally. For each tile, an adaptive threshold is set to extract the
boundaries (Graesser, Ramankutty, 2017).

Both convolution operations and region-based information, which
have been widely used as part of edge detection techniques, are
a common feature of deep learning architectures. Deep learn-
ing application to various remote sensing topics has already
proved to be successful (Zhang et al., 2016, Zhu et al., 2017).
Lately, deep learning techniques (or hybrid techniques combin-
ing deep learning with edge detection) for field boundary de-
tection have been published. Crommelinck et al. introduced a
hybrid method (Crommelinck et al., 2019) in which candidate
pixels were identified before a convolution neural network clas-
sifies tiles, centered on these candidates, that actually contain
boundaries.

Semantic segmentation approaches, in which each pixel is as-
signed a label depending on whether it belongs or not to to
a boundary, offer better granularity and may be directly used
without an edge detection stage. (Masoud et al., 2020, Persello
et al., 2019). Recently, U-Net (Ronneberger et al., 2015) ar-
chitectures have become popular in field boundary detection.
Gracia-Pedrero et al. employ a U-Net architecture to segment
images into three classes: field, buffered boundary, and back-
ground. The boundaries are then computed from the contour of
the first class (García-Pedrero et al., 2019). Likewise, in (Wald-
ner, Diakogiannis, 2019), Waldner and Diakogiannis adapt a
U-Net model to generate not only segmented images, but also
predict distances to the field boundaries. In a post-processing
step, they use a watershed algorithm to increase the algorithm
accuracy (Beucher, Meyer, 1990).

Post-processing semantic segmentation results using computer
vision (commonly, some geometric rules or watershed algo-
rithms) is not uncommon in the relevant literature, because most
of the introduced architectures generate intermediate results that
require merging sub-fields in one field, splitting larger areas
into fields, or both. This process hinders the scalability of such
a solution, since it often requires tuning ad-hoc parameters in
a case-by-case basis. Besides, accurate post-processing is far
from being trivial, especially if the intermediate output presents
a disconnected set of predicted boundary pixels (i.e. not adja-
cent pixels).

Moreover, many techniques make use of time-series images
(North et al., 2019, Graesser, Ramankutty, 2017). However,
working with time-series of satellite imagery introduces the sig-
nificant challenge of cloud coverage. A fully automated time-
series-based pipeline should include a module for identifying
and removing clouds, as well as replacing their values com-
monly through interpolation. This additional complexity has
been found to not lead to a substantially increased accuracy
(Waldner, Diakogiannis, 2019), while also impeding the solu-
tion scalability.

Finally, some works recently make use of very high resolution
data acquired from unmanned aerial vehicles (Persello, Bruz-
zone, 2009, Crommelinck et al., 2019). It is straightforward that
a resolution in the order of hundreds finer than the one achieved
from satellites would increase the potential of field boundary

detection techniques. However, this comes with a cost in avail-
ability and operations, which makes such approaches suitable
only for small-scale applications.

In this work we present a technique which is envisaged as the
first step towards a systematic field boundary detection pipeline.
This technique, designed to remove challenges related to scal-
ability as well as to reduce the ad-hoc parameters that require
manual tuning, is described in detail in the next section.

3. DEEP LEARNING ARCHITECTURE FOR FIELD
BOUNDARY DETECTION

Fig. 1 presents the workflow of the introduced technique, which
is based on Mask R-CNN (He et al., 2017). Mask R-CNN is
a deep learning architecture, which, has recently achieved ex-
ceptional performance in several instance segmentation setups.
However, Mask R-CNN has been introduced in a totally differ-
ent context, using images from images that are not relevant to
Earth Observation (e.g. COCO dataset (He et al., 2017), which
aggregates a large amount of common objects from everyday
scenes (Lin et al., 2014)). Our hypothesis is that transferring
this technique on field boundary detection requires a number
of adjustments in several parts of the pipeline. In the rest of
the section, we describe the model architecture that needs to be
implemented with bespoke adjustments for the field boundary
detection problem.

3.1 Data curation and pre-processing

The large-scale labelled dataset required for the training of our
model can be sourced from several agricultural existing par-
cel registers, which are commonly maintained by governmental
agencies in the form of annual records. However, these data
have limited accuracy and would have an adverse effect in the
algorithm prediction quality if used without denoising. Exist-
ing problems include (1) erroneous entries caused by inaccu-
rate semi-automatic approaches used for their creation (2) dif-
ference between the field boundary definition used from us and
the dataset (3) corrections made along the year to the initial field
geometry which cause overlapping field boundaries or duplicate
instances.

As a result, the first step of the training is cleaning the dataset.
Apart from trimming off parcels, irrelevant geometries are re-
moved using the Schwartzberg compactness score (Schwartzberg,
1965). More specifically, after enforcing non-overlapping fields,
we discard any entry that is smaller than 1.5 ha and whose
Schwartzberg compactness score is lower than 0.15. Schwartzberg
compactness score expresses the ratio between the perimeter P
of the field and the circumference of a circle that would have
same area A (Eq. 1).

S = 2

√
Aπ
P

(1)

Subsequently, the labelled dataset is created by matching the
ground truth with available satellite imagery. In this work Sentinel-
2 is used, but, it should be noted that the proposed method is
satellite-agnostic, with the only limitation being that the satel-
lite includes a Near-Infrared (NIR) band. NIR is used to gen-
erate a 4-band input. The first three bands are the red, green,
and blue of the true color image. The fourth band corresponds
to the NDVI computed from the red and near-infrared bands
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Figure 1. Training of the Mask R-CNN to predict field boundaries. From Sentinel-2 imagery and parcel register 1a, a dataset is
generated 1b. The model 1c is then trained to predict field boundaries in new area 1d.

(Eq. 2). NDVI is used because of its high information value
in agriculture applications, as well as its non-linearity. Being
a non-linear combination of two spectral bands, it brings addi-
tional information that a deep learning network could struggle
to learn from the bands separately.

NDV I =
NIR−Red
NIR+Red

(2)

In a second step, each band is standardised by subtracting the
mean value and dividing by the standard deviation, before the
satellite imagery is split in 256 x 256 pixels tiles. Each tile
is matched to the ground truth while the pre-processing ends
with the generation of corresponding binary masks. Figure 1b
illustrates the outcome of these pre-processing steps.

3.2 Mask R-CNN

This section summarises the architecture of Mask R-CNN. For
more information, the reader is referred to the original publica-
tion (He et al., 2017).

In general, Mask R-CNN is a model that is designed to identify
and classify areas of interest that belong to one or more object
classes (Fig. 1c).

In Mask R-CNN, the backbone, which is based on traditional
convolutional neural networks like ResNet (He et al., 2016),
generates features from the image. These features, computed
through convolutional operations, may be understood as prim-
itive representations of visual concepts, like shapes or edges.
At the end of the backbone lie two parallel branches. The first

branch, called region proposal network (RPN), draws areas of
interest that may contain a relevant object, in our case, a field.
These areas of interest take rectangular shapes whose dimen-
sions are set as parameters of the model. The second branch,
extract the previous features within these candidate areas. The
selected features are then passed to the heads stage.

The heads stage, which consist of fully convolutional networks
smaller than the backbone, refine and classify each area of inter-
est. This stage generates binary masks for each possible object
class. In the case of field boundary detection only one object
class is examined (fields), therefore this single segmentation
mask defines the estimated field boundaries.

All parts of the network are trained together through backprop-
agation (He et al., 2017). The loss of the model is a linear com-
bination of 3 losses. These quantify (a) classification accuracy,
i.e. assigning the correct class to an object. In the class set the
null class (corresponding to the background) is also included.
(b) segmentation accuracy, i.e. identifying the correct contour
of an object and (c) instantiation accuracy, i.e. estimating the
correct boundary box framing each object in an image.

In this work, we use the Matterport Mask R-CNN implementa-
tion (Abdulla, 2017), with a ResNet 101 as backbone.

3.3 Model Adjustment for Field Boundary

The default implementation of Mask R-CNN has been devel-
oped for use cases that significantly differs from field boundary
detection using satellite imagery. In order to adjust Mask R-
CNN for field boundary detection we have carefully re-examined
the tuning of its hyperparameters. Two main issues have been
found with the default Mask R-CNN.
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Firstly, the number of areas of interest generated from the RPN
network is too low for field boundary detection. The default
value of 100 areas is smaller than many images in field bound-
ary detection datasets. Therefore, we have increased this value
to 200 areas of interest.

Secondly, and perhaps most importantly, fields exhibit a large
variation of sizes and shapes. For example, pedestrians in a
surveillance setup (a typical use of Mask R-CNN) are expected
to have medium variation in their size and even smaller in their
shape. On the other hand, (a) satellite images may include fields
that vary from 1.5 ha to hundreds of ha (b) the range of field
shapes is even larger since they include very elongated rect-
angles, square fields, circular fields, multi-line polygons, etc.
Therefore, (a) we have modified the possible side size of can-
didate regions to 8, 16, 32, 64, or 128 pixels (default set is
{32, 64, 128, 256, 512}) and (b) we have augmented the ratio
between width and height of the bounding boxes to {0.1, 0.5, 1,
2, 4} (default set is {0.5, 1, 2}).

The training is achieved with batches of 4 images using an
NVIDIA TITAN RTX GPU with 24GB of dedicated memory.

3.4 Post-processing

As already mentioned, one the benefits of this architecture is
that it does only require a trivial post-processing. By default the
architecture produces closed polygon masks within the bound-
ary box of the predictions, which can be straightforwardly used
to extract each field boundary by estimating the contour of the
output mask. The bottom-right panel of Fig. 1d shows an exam-
ple of the final output. Vectorised polygons can also be obtained
by reprojection of the predicted geometries.

4. EVALUATION

In this section the validity of our main assumptions is tested.
Apart from evaluating the adjusted pipeline accuracy, compar-
ing it with the default one, a second goal is to examine its gen-
eralisation capability. A technique that aims to systematise field
boundary detection should be transferable across different ge-
ographies. For that reason, we have included in our dataset two
agricultural areas, from Denmark and France, respectively.

After describing the study areas and the associated datasets, we
present the different measures to assess the prediction accuracy.
This includes adapting the precision and recall measures on this
problem. Subsequently we conduct the core evaluation sep-
arately for each area. Finally, we examine the generalisation
capability of the model, by evaluating over an area the perfor-
mance of the model trained over a different one.

4.1 Study Area and Materials

Within the LPIS framework, most member states of the Eu-
ropean Union makes publicly available datasets of agricultural
parcels, which inform on their crop types and geometries. This
dataset has been used before in the relevant literature (García-
Pedrero et al., 2019). This work also used this source, more
specifically, the French and Danish datasets for the year 20182

and 20193 respectively. In the case of Denmark most of the

2 https://geoservices.ign.fr/documentation/diffusion/
telechargement-donnees-libres.html#rpg

3 https://kortdata.fvm.dk/download/Markblokke_Marker?
page=MarkblokkeGaeldende

dataset was used, while for France the data were reduced to ar-
eas with high agricultural production. The total ground truth
set consisted of 250,126 fields in Denmark and 395,969 fields
in France.

As explained in the previous section, labelling is conducted
through Sentinel-2 imagery, which was downloaded from the
Copernicus Access Hub4. Apart from downloading imagery of
the relevant year, a global cloud coverage lower than 1% was
imposed to reduce cloud artefacts. Additionally, while we se-
lect only one satellite scene to cover one area for the dataset,
these span a large period (Fig. 2) in order to provide to the
dataset a richer variety of field aspects.

These criteria result in a selection of 4 Sentinel-2 images over
Denmark and 3 over France. Each image is 10980 x 10980
pixels of 10 meters resolution. Figure 2 gives the zone and dates
of the selected satellite imagery.

(a) Denmark (b) France

Figure 2. Selected satellite scenes over country borders

Following the pre-processing described in section 3.1, we gen-
erate for each country a dataset of images of shape 256 x 256
x 4 and their corresponding ground truth. The data were fi-
nally split in training, test, and validation sets accounting for
respectively 80%, 10% and 10% of the images. For such con-
figuration, using an NVIDIA TITAN RTX GPU with 24GB of
dedicated memory, the training over 10 epochs takes about 3.5
hours, while inference takes less than a few seconds per image.

4.2 Evaluation Measures

The accuracy of the predictions is assessed via several metrics
introduced in (Persello, Bruzzone, 2009). The overall accu-
racy gives an estimation of how well the pixels are classified. It
is computed following equation 3, where TPpx, TNpx, FPpx,
and FNpx are respectively the true positive, true negative, false
positive, and false negative rates for the pixel-wise classifica-
tion (boundary or background).

OA =
TPpx + TNpx

TPpx + FPpx + TNpx + FNpx
(3)

It is important to highlight that this measurement does not con-
vey how well the boundary is outlined, since (a) it punishes
equally a false positive close to the boundary with a false posi-
tive in the center of the field (b) it punishes equally a false neg-
ative in a small field, which may reduce how distinct the field
is, with a false negative in a larger field with small effect to the
result quality.

For this reason, we are suggesting a new measure, which re-
defines the concept of true or false positives and negatives. In
4 https://scihub.copernicus.eu/dhus/#/home
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this measure, for each field of the ground truth Fgt, the pre-
dicted field Fp that has the biggest overlap is estimated. The
pixels issued from this intersection are considered as true posi-
tive. The remaining pixels of Fgt are counted as false negative,
because they have not been detected as belonging to Fp (even if
they overlap with another field F ′p in the predicted mask). The
remaining pixels of Fp are counted as false positives, because
they do not fall within Fgt. If the list of ground truth fields is
exhausted, all remaining pixels in the predicted fields are also
counted as false positives. Conversely, if the list of predicted
fields is exhausted first, all remaining pixels in the ground truth
are then considered as false negative.

This algorithm estimates the TPf , FPf and FNf rates, from
which recall, precision and f1-score can be defined. The f1-
score is defined by the equation 4.

f1 =
2 TPf

2 TPf + FPf + FNf
(4)

In general, this definition is more strict than the commonly used
accuracy measures, since it requires an one-to-one correspon-
dence. To have insight of the distinct type of field-specific
errors (over-segmentation and under-segmentation errors), we
are also computing the fragmentation error (efg) and the under-
segmentation error (eus) defined respectively by equations 5 and
6. GT and P represent the sets of ground truth and predicted
masks respectively . | · | denotes the cardinality of a set, whileA
the area in pixel of a given mask. Fp∗ corresponds to the predic-
tion mask that has the largest overlap with a given ground truth.
The fragmentation error is preferred over the over-segmentation
error defined in (Persello, Bruzzone, 2009) as it accounts for all
overlapping fields.

efg =
1

|GT |
∑

Fgt∈GT

|{Fp ∈ P, Fp ∩ Fgt 6= ∅}| − 1

AFgt − 1
(5)

eus = 1− 1

|GT |
∑

Fgt∈GT

AFgt∩Fp∗

AFp∗
(6)

4.3 Validation of the Tailored Configuration of the Mask
R-CNN

In order to verify that the tailored adjustments made to the de-
fault implementation (section 3.3) actually improve the predic-
tions of field boundaries, we compare the predictions of the two
different configurations on the Danish and French datasets, re-
spectively. Figure 3 shows the evolution of the loss for the train-
ing and test datasets for both geographies. The test loss seems
to converge with no evidence of over-fitting. The lower values
of the loss indicate that the adjustments suggested in this work
improve the accuracy of Mask R-CNN in a field boundary de-
tection context.

Moreover, table 1 confirms the superiority of the suggested con-
figuration in the prediction of field boundaries. For the Danish
dataset all accuracy measurements are improved with the be-
spoke configuration. f1-score is raised by 7.3 percent. For the
French dataset, there is a decrease in the precision value with a
corresponding improvement of the recall which results in a 5.2
percent increase of the f1-score.
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(a) Denmark

2 4 6 8 10

2.5

3

3.5

Epochs

L
o
ss

baseline train
baseline test
tailored train
tailored test

(b) France

Figure 3. Convergence of the loss for the train and test datasets
of each country during the training of the Mask R-CNN with the

default and tailored configurations.

It is worth to note that for both Mask R-CNN variations the
fragmentation error remains almost zero. This may be a result
of the Mask R-CNN architecture, which typically merges adja-
cent areas of interest that belong to the same class. Moreover,
over-segmentation only occurs for ground truth fields of signif-
icantly large area. For such fields, the model might predict few
instances whose number is however negligible compared to the
size of the reference field, hence a steadily low fragmentation
error.

4.4 Cross Area Prediction

The bespoke Mask R-CNN has showed evidence of improved
predictions in the same geography where it has been trained.
Table 2 shows additionally that the bespoke model can perform
well on areas it has never seen before. The model trained with
Denmark dataset performs better at predicting French fields than
the default model trained directly with the French dataset. This
supports the concept of training the model over a geography
with a reliable dataset to predict field boundaries over other ge-
ographies with similar farming practices. On the other hand,
the model trained with the French dataset does not perform as
well on Danish dataset. This may indicate a difference in the
numbers of errors in the two ground truth datatets.

Further evidence for the last point is given from the surpris-
ing result of increased overall accuracy of the model transferred
from Denmark to France in comparison to the model which was
trained with the same dataset. Also, this counter-intuitive result
may be partially explained from the fact that French dataset was
noisier than the Danish one. Fig. 4j shows few parcels from the
France dataset that clearly appear to be fields (correctly pre-
dicted by the model), while they are not labelled in the ground
truth. This is promising for the additional use of such a tech-
nique for identifying errors in commonly available large-scale
datasets. Besides, the French dataset contain much more fields
than the Danish one. This greater number of fields may present
a diversity that makes it more difficult for the model to learn.
A longer number of epochs might be necessary for the model
to train on the French dataset in order to achieve similar perfor-
mances with the Danish dataset, for which generalisation seems
easier.

Finally, figure 4 provides prediction examples made with the
bespoke Mask R-CNN trained with the Danish dataset. It shows
that most of the fields are being detected and fairly outlined. Im-
portantly, urban areas, water bodies, and to a less extent, forests
are correctly ignored by the model. Hence, one can imagine
predicting a whole satellite image with the model without any
processing required to remove non-agricultural areas.
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(a) Ground truth for Danish
validation area 1

(b) Predictions for Danish
validation area 1

(c) Ground truth for Danish
validation area 2

(d) Predictions for Danish
validation area 2

(e) Ground truth for Danish
validation area 3

(f) Predictions for Danish validation
area 3

(g) Ground truth for French
validation area 1

(h) Predictions for French validation
area 1

(i) Ground truth for French
validation area 2

(j) Predictions for French validation
area 2

Figure 4. Example of predictions of the tailored configuration of the Mask R-CNN trained with Denmark dataset over few validation
areas from France and Denmark. Field boundaries are highlighted in yellow.
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Dataset Configuration Precision Recall f1-score OA efg eus

Denmark baseline 0.676 0.544 0.595 0.759 0.002 0.331
bespoke 0.704 0.594 0.639 0.793 0.002 0.314

France baseline 0.726 0.430 0.534 0.681 0.002 0.279
bespoke 0.687 0.485 0.562 0.707 0.002 0.329

Table 1. Prediction accuracy assessment of the Mask R-CNN trained with different configurations on the two datasets.

Training area Validation area Precision Recall f1-score OA efg eus
Denmark France 0.633 0.490 0.544 0.714 0.002 0.363
France Denmark 0.688 0.472 0.551 0.715 0.001 0.352

Table 2. Prediction accuracy assessment of Mask R-CNN for one geography when the model is trained with data from another area.

5. CONCLUSION AND FUTURE WORK

The major contribution of the present article is the introduction
of a new pipeline based on Mask R-CNN for the delineation
of field boundaries over large areas. A tailored version of this
instance segmentation model has shown good accuracy over
Danish and French regions. Trained with a larger and richer
dataset, it could help the full automation of agricultural parcel
delineation for further application such as crop type classifica-
tion. More modifications to the core architecture as well as the
pre-processing stage could further improve the pipeline perfor-
mance.
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