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ABSTRACT: 
 
Poor crop yields remain one of the main causes of chronic food insecurity in Africa. This is largely caused by insect pests, weeds, 
unfavourable climatic conditions and degraded soils. Weed and pest control, based on the climate-adapted ‘push-pull’ system, 
has become an important target for sustainable intensification of food production adopted by many small-holder farmers. 
However, essential baseline information using remotely sensed data is missing, specifically for the ‘push-pull’ companion crops. 
In this study, we investigated the spectral uniqueness of two of the most commonly used ‘companion’ crops (i.e. greenleaf 
Desmodium (Desmodium intortum) and Brachiaria (Brachiaria cv Mulato) with co-occurring soil, green maize, and maize stover. 

We used FieldSpec® Handheld 2™ analytical spectral device to collect in situ hyperspectral data in the visible and near-infrared 
region of the electromagnetic spectrum.  Random forest was then used to discriminate among the different companion crops, 
green maize, maize stover and the background soil. Experimental ‘push-pull’ plots at the International Centre of Insect 
Physiology and Ecology (icipe) in Kenya were used as test sites. The in-situ hyperspectral reflectance data were resampled to the 
spectral waveband configurations of four multispectral sensors (i.e. Landsat-8, Quickbird, Sentinel-2, and WorldView-2) using 
spectral response functions. The performance of the four sensors to detect the ‘push-pull’ companion crops, maize and soil was 
compared. We were able to positively discriminate the two companion crops from the three potential background endmembers 
i.e. soil, green maize, and maize stover. Sentinel-2 and WorldView-2 outperformed (> 98% overall accuracy) Landsat-8 and 

Quickbird (96% overall accuracy), because of their added advantage of the strategically located red-edge bands. Our results 
demonstrated the unique potential of the relatively new multispectral sensors’ and machine learning algorithms as a tool to 
accurately discern companion crops from co-occurring maize in ‘push-pull’ plots.  
 

1. INTRODUCTION 

1.1 Background 

Food security remains a challenge to millions of households in 
Africa and this is likely to worsen due to climate change and 
population growth (FAO, IFAD, UNICEF, WFP, 2019). One of 
the main sources of the chronic food insecurity observed in 
Africa is poor crop yields, largely caused by insect pests, weeds, 
unfavourable climatic conditions, and degraded soils (Khan et 
al., 2016). Weed and pest control, based on the ‘push-pull’ 

system, has become an important target for sustainable 
intensification of food production and adopted by many small-
holder farmers (Khan et al., 2008). In the ‘push-pull’ strategy, 
specifically chosen companion plants are grown in between and 
around the main crop (Pickett et al., 2014), in our case it is 
maize. These companion plants release semiochemicals that (i) 
repel insect pests from the main crop using an intercrop which 
is the ‘push’ component; and (ii) attract insect pests away from 

the main crop using a trap crop which is the ‘pull’ component 
(Khan et al., 2016).  

Although many small-scale farmers in Africa have welcomed 
and adopted the ‘push-pull’ system (Midega et al., 2015), 

identifying and evaluating the adoption rate and the 
improvement in yields has been conducted using rigorous and 
expensive field surveys, which have proven inconsistent, 
timeous and inaccurate (Khan et al., 2008; Midega et al., 2018). 

Therefore, there is a need to develop spatially explicit, 
repeatable, and accurate methods that provide synoptic and 
near-real-time identification and quantification of the ‘push-
pull’ plots and their acreage. This structured information is 

important as it facilitates for the forecasting of the crop yield, 
growth, health, rotation, stress, and potential damage by insect 
pests or weather.  Therefore, understanding the potential to map 
the various ‘push-pull’ components is a critical step towards 
achieving better detection and mapping accuracies that ensure 
strategic land use planning and wide-area mapping of the ‘push-
pull’ approach. 
 
Remote sensing provides an opportunity to accurately evaluate 

the intra-field variability within croplands, thus providing the 
needed capability to identify where the ‘push-pull’ system has 
been adopted and estimate their performance at large scales, 
with minimum cost (Mudereri et al., 2020a). Specifically, 
hyperspectral remote sensing provides several narrow and quasi 
contiguous bands that enhance the discrimination among 
different plant genera and species. This allows the possibilities 
to track the intra-field variabilities within croplands and thus 

improving detectability and separability of these variabilities 
(Adam et al., 2017; Mudereri et al., 2020b). However, essential 
baseline information using remotely sensed data of the most 
common climate-adapted companion crops i.e. the ‘push’ 
component; greenleaf Desmodium (Desmodium intortum) and 
Brachiaria (Brachiaria cv Mulato) and their spectral pattern at 
canopy level is still rudimentary.  
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On the other hand, the relatively new generation of 

multispectral space-borne sensors use relatively narrower 
wavebands (e.g. ~15 nm spectral width), including those in the 
red-edge region of the electromagnetic spectrum (EMS) centred 
at 705, 740 and 783 nm for Sentinel-2 and 724 nm for 
WorldView-2 that were not present in the previous broadband 
sensors like Landsat 7 and 8 (Chemura et al., 2017). Therefore, 
there has been a growing interest to test datasets from these 
sensors, regarding their potential to advance precision 

agriculture and other operational uses, particularly in low-
income regions (Dhau et al., 2018; Mudereri et al., 2019; Shoko 
and Mutanga, 2017).  
 

1.2 Companion crops in the ‘push-pull’ system 

In ‘push-pull’, maize is intercropped with the leguminous plant 
Desmodium which suppresses Striga through the roots and 
repels the stemborer moths "push". Brachiaria or Napier both 
popular fodder grasses is planted as a border around the field to 

attract female moth "pull". Desmodium produces volatile 
chemicals that attract predators of maize pests. A typical 
intercrop (push) and a companion (pull) crops in a ‘push-pull’ 
system are shown in Figure 1. 

 

Figure 1. ‘Push-pull’ components and cropping system (a) 
Brachiaria (pull crop), (b) greenleaf Desmodium (push crop), 
(c) maize stover and (d) bare soil and (e) ‘push-pull’ cropping 

system.  

 

There are a few variants of the ‘push-pull’ system using 
different companion crops such as silverleaf Desmodium (D. 
uncinatum) and Napier grass (Pennisetum purpureum). 
Although these companion crops were tested and found to be 
functional under different climatic conditions, they could not 
survive extended periods of drought (> 2 months) and higher 

temperatures (> 30ºC), which are prevalent in most arid regions 

in Africa (Midega et al., 2015). However, studies have shown 
that Brachiaria species tolerate longer periods of droughts and 
temperatures more than 30ºC (Pickett et al., 2014). Similarly, 
greenleaf Desmodium was found to tolerate higher temperatures 
with the ability to survive under drier conditions (Midega et al., 
2015). Therefore, these two most commonly planted companion 
crops were incorporated into the climate-adapted ‘push-pull’ 
technology.  

In this study, we investigated the spectral uniqueness of two 
most prominent companion plants (greenleaf Desmodium and 
Brachiaria) used in the climate-adapted ‘push-pull’ system with 
the co-occurring green maize crop (i.e. photosynthetically-
active) and maize stover; and examined the potential of using 

the relatively new multispectral sensors to detect their spectral 
characteristics. 
 

2. METHODS 

2.1 Study area 

Data were collected from on-station field experimental plots at 
the International Centre of Insect Physiology and Ecology 
(icipe) Duduville campus, in Nairobi Kenya. The experimental 

station is located at 1º 13′ 26.39″ S and 36º 53′ 47.21″ E at an 
altitude of 1 600 m. The climate of the study area is mainly 
subtropical, characterized by a yearly bimodal rainfall model 
with an average annual rainfall of 930 mm. Rainfall occurs 
between March and June i.e. during ‘long rains’ season and a 
‘short rains’ season spanning November to January. The annual 
average temperature is 18ºC and the relative humidity ranges 
between 50% and 70%.  

2.2 Spectral data collection 

The in-situ FieldSpec® Handheld 2™ analytical spectral device 
(ASD), hyperspectral data in the visible and near-infrared 
(VNIR) region of the EMS was used to collect a single snapshot 
of the canopy-level field spectral data of the companion plants 

in the wavelength range between 325–1075 nm (750 narrow 
wavebands) following the detailed procedure outlined in the 
study of Mudereri et al., (2020b). In each of the two sampled 
maize fields (10 m x 10 m), we laid out five quadrats measuring 
1 m × 1 m each along two crossing diagonal transects. 
Specifically, two quadrats were laid out across each of the two 
diagonal transects and 1 m away from the plot edges, while one 
quadrat was laid in the centre of the sample plot (Mudereri et 

al., 2020b). Using the 10 quadrats, we collected 200 spectra for 
each companion crop, soil, green maize (6th leaf collar), and 
maize stover (dry) resulting in a total of 1 000 spectra.  
 
The spectral measurements acquired using the ASD were 
filtered using the ‘noiseFiltering’ function and smoothened 
using the ‘Savitzky–Golay’ filter in the ‘hsdar’ package (Lukas 
et al., 2018) in R software (R Core Team, 2020). These filtered 

spectra were resampled to the spectral configuration of 
relatively new four multispectral sensors; namely, WorldView-
2, Quick bird, Landsat-8, and Sentinel-2 using the spectral 
response function, i.e. ‘SpectralResampling’ present in the 
‘hsdar’ package. Table 1 shows the band characteristics of the 
four multispectral sensors used and the specific bands that 
coincided with the limited data collected by the ASD instrument 
used (between 325 nm–1075 nm). 
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Sensor No of 

bands 

Band centres (nm) 

Landsat-8 8 444.5; 482.5; 557; 655; 
863.5; 1372.5; 1606; 
2194.5 

Quickbird 4 485; 560; 660; 830 

Sentinel-2 13 443; 490; 560; 665; 705; 

740; 783; 842; 865; 945; 
1375; 1610; 2190 

WorldvView-2 8 427; 478; 546; 608; 659; 

724; 831; 908 

 

Table1. Band characteristics of the four multispectral sensors 

used in the analysis. The bold shows the bands used in this 

analysis 

2.3 Random forest discriminant algorithm 

The wavebands from these four multispectral sensors were 
tested as predictor variables in a random forest (RF) model to 
discriminate between the five ‘push-pull’ components from the 
Desmodium-Brachiaria-maize combination. RF algorithm has 
been widely used in classifying vegetation-related classes with 
reasonably high classification accuracies particularly when 

hyperspectral datasets were utilized (Abdel-Rahman et al., 
2014). Further, RF algorithms do not require traditional 
regression assumptions, which makes it useful in many 
applications. The “Caret” package (Kuhn et al., 2018) in the R 
programming environment was used to execute and validate the 
model across the four data configurations of the multispectral 
sensors. 
  

2.4 Model evaluation  

The models’ performance was evaluated using the inherent data 
partition function in the ‘caret’ package. This was done using a 
10-fold cross-validation technique across all the data 
configurations of the four multispectral sensors. Model 
performance was presented, using boxplots of overall accuracy 
and Kappa across the four multispectral sensors.  
 

3. RESULTS 

3.1 Spectral behaviour of five ‘push-pull’ system 

components  

Figure 2 demonstrates the variation in the spectral responses of 
the different ‘push-pull’ components at different hyperspectral 
wavelengths. In general, the five components tested showed 

many potential waveband regions, which are useful in their 
discrimination among the studied ‘push-pull’ components e.g. 
within the green, red-edge, and NIR (750–1075 nm) regions. 
The NIR revealed multiple and wide scattering within the leaf 
structure of the four vegetation components i.e. Brachiaria, 
Desmodium, green maize and maize stover. Nonetheless, the 
NIR displayed significant differences in magnitude with 
Desmodium producing the highest plateau of reflectance when 

compared to all other components. Compared to the maize 
stover and soil, the patterns of all the green vegetation (green 
maize and the companion crops) were similar in the whole 
spectrum but differed in the magnitude (>2% difference 
between high and low).  
 
Green maize dominated the visible range i.e. green and red 
waveband regions but exhibited a lower reflectance response 

than both Brachiaria and Desmodium in the NIR region (Figure 
2). Although the Desmodium had the lowest reflectance in the 

red region of the spectrum, it had the steepest gradient in the red 

edge region compared to the Brachiaria and the green maize. 
On the other hand, the maize stover was conspicuously different 
as it showed higher reflectance across the visible bands but low 
in the NIR region (> 5% difference between highest and lowest 
reflectance values). Although the pattern of the maize stover 
was like that of the soil, the maize stover spectra showed higher 
reflectance values compared to the soil across the entire tested 
spectrum (325–1075 nm) 

  

 

Figure 2. Mean canopy spectra of the ‘push-pull’ system 
components within the 325 nm – 1075 nm wavelength spectrum 

 

3.2 ‘Push-pull’ system components spectral behaviour 

using the band configurations of the four multispectral 

sensors 

The spectral trend of the behaviour of the tested ‘push-pull’ 
components while using the hyperspectral data was similar to 
the trend observed when the analysis was conducted across the 

four multispectral sensors. However, there are limitations of the 
number of bands within Landsat-8 (n = 5) and Quickbird band 
(n = 4) configurations which reduced the data that could be 
extracted from them. Nonetheless, Figure 3 shows that there are 
various bands across the four multispectral sensors that have the 
potential for use in separating the spectra of the different ‘push-
pull’ components. In particular, the strategically positioned red-
edge bands and the NIR of Sentinel-2 and WorldView-2 show 

the variation in the gradient of the spectral curves for the 
different components. 
 

 

Figure 3. Mean canopy spectra of the ‘push-pull’ system 

components using the band configuration of four multispectral 
sensors 
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3.3 Model evaluation 

Sentinel-2 and WorldView-2 showed superiority in detecting 
and classifying among the five ‘push-pull’ components tested. 
The RF model replicates (10-fold cross-validation) used to 
classify the different components showed that the overall 
accuracy and Kappa statistic for Sentinel-2 and WorldView 2 
were > 98%, respectively. Comparatively, the classification 
performance using Landsat-8 and Quickbird was slightly lower 
(±4% difference) than Sentinel-2 and Worldview-2. 
  

 
 

Figure 4. Models performance for separating the five ‘push-

pull’ components as evaluated by overall accuracy and Kappa 
statistics, using all the resampled band configurations of four 

multispectral sensors 

 

4. DISCUSSION 

The findings from this current study showed that the companion 
crops can accurately be discriminated from crops and the soil 
components of the ‘push-pull’ system using the resampled 

multispectral wavebands and the RF discrimination algorithms. 
In this study, the results showed that the spectral behaviour of 
the companion crops and maize are very similar in pattern but 
differ in the magnitude of reflectance. Green maize is higher 
than both Brachiaria and Desmodium in the visible section of 
the EMS but lower in the NIR. This can be attributed to the 
differences in the leaf structure (leaf thickness, leaf mass, and 
leaf density) and the diversity of plant pigments occurring at 
different levels within the different co-occurring vegetation 

(Tesfamichael et al., 2018). A study by Serrano, (2008) 
demonstrated that thick leaves have a low correlation with 
chlorophyll content compared with thinner leaves. This could be 
the reason why green maize reflected more in the visible than 
both Brachiaria and Desmodium since the maize leaves are 
relatively thinner. Also, plant pigments are integrally related to 
the biological function and structure of the leaves. Chlorophyll 
absorbs light energy and allocates it to the photosynthetic 

system while, yellow pigments (carotenoids) also contribute 
energy to the photosynthetic apparatus and assist in resistance to 
environmental stress (Blackburn, 2007). Thus, these variations 
attributed to the differences in the reflectance of these 
components across the entire tested spectrum.  

Additionally, anthocyanins (red, pink, and purple pigments) 
also gather reactive oxygen intermediates or act as antifungal 
compounds (Litchenthaler and Buschmann, 2001; Sims and 
Gamon, 2002). In light of the importance of pigments for leaf 
and petal function, dynamics in pigment quantities may provide 
details regarding their physiological state (Thenkabail et al., 

2013). For instance, chlorophyll tends to decline more rapidly 

than carotenoids when plants are under stress or during leaf 
senescence (Sims and Gamon, 2002). Thus, the reflectance 
response to incident radiation is influenced by the quantity and 
the interplay between the ratios of these pigments within the 
different plants (Blackburn, 2007), in our case the ‘push-pull’ 
companion crops. Using the hyperspectral data, we found that 
although the 530–570 nm are the portions which are mainly 
inclined to the green reflectance peak, all the plants had the 

highest peak at 550 nm within the visible region of the EMS, 
however, they differed significantly in the range 550–680 nm 
and in the NIR (750–925 nm) regions. This information is 
however masked out when using the four multispectral sensors. 
This makes the multispectral sensors, with strategically position 
red-edge bands robust and more useful than their counterparts 
that lack these bands such as Quickbird and Landsat-8 (Shoko 
and Mutanga, 2017). For instance, Sentinel-2 covers more 
critical waveband regions for vegetation i.e. 4 bands while 

Landsat-8 covers only 2 critical waveband regions. Nonetheless, 
all the sensors tested in this study produced plausible accuracies 
and were demonstrated to be particularly useful in the detection 
and separation of the five ‘push-pull’ components examined. 
Sentinel-2 and Landsat-8, however, possess the additional 
advantages of being freely available and their relatively high 
temporal resolution (5 days revisit for Sentinel-2) (Makaya et 
al., 2019). RF provided plausible accuracies and modelling 

performance. The performance of RF, in this study, agrees with 
some studies that have utilized RF and leaf-level or canopy-
level hyperspectral data to detect a plant trait (Litchenthaler and 
Buschmann, 2001; Tesfamichael et al., 2018; Thenkabail et al., 
2013).  

5. CONCLUSIONS 

In this study, the possibilities of using canopy-level in-situ 
hyperspectral data for predicting five components of a ‘push-
pull’ system are demonstrated. There is huge potential in wide-
area mapping using spaceborne data for the distinction between 
‘push-pull’ and non ‘push-pull’ agricultural plots. Prediction 
and distinction of the components of ‘push-pull’ demonstrate 
satisfactory overall accuracies (> 95% overall accuracy). The 

red-edge bands of the Sentinel-2 and Worldview-2 satellite 
sensors provided superiority in the classification and detection 
of ‘push-pull’ companion crops than their counterparts i.e. 
Landsat-8 and Quickbird. For more precise results, these results 
can be vindicated by using the images produced by these 
multispectral sensors on a field or landscape scale to enumerate 
and detect ‘push-pull’ plots. The machine learning RF 
classification algorithm emerged as a very robust and reliable 

model for classification and predictions. However, there is a 
need to investigate the temporal (crop age) and spatial 
variability (within different soil type backgrounds) of the 
different potential companion crop combinations to explore 
upscaling options for monitoring the adoption and productivity 
of the ‘push-pull’ plots. 
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