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ABSTRACT: 

 

Spain is included in the top five European countries with the highest number of wildfires. Forest fire can produce significant impacts 

on the structure and functioning of natural ecosystems. After a forest fire, the evaluation of the damage severity and spatial patterns 

are important for forest recovery planning, which plays a critical role in the sustainability of the forest ecosystem. The process of 

forest recovery and the ecological and physiological functions of the burned forest area should be continuously monitored. Remote 

sensing technologies and in special LiDAR are useful to describe the structure of vegetation. The vegetation modelling and the initial 

changes of forest plant composition are studied in the forest after mapping the burned areas using Landsat-7 images and Sentinel-2 

images. Normalized Burn Ratio (NBR) index and Normalized Difference Vegetation Index (NVVI) is calculated as well as the 

difference before and after fire. The evaluation of temporal changes of vegetation are analysed by statistical variables of the point 

cloud, average height, standard deviation and variance. Fraction Canopy Cover (FCC) also is calculated and the point cloud is 

classified following the fuel model by Prometheus. An analysis method based on satellite images was completed in order to analyse 

the evolution of vegetation in areas that suffer forest fire. 
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1. INTRODUCTION 

Nowadays, wildfires constitute an important pressure in forested 

ecosystems, introducing a high risk of direct damage to humans 

and structures (Pausas et al. 2009). The analysis performed by 

the European Forest Fire Information System (EFFIS) indicate 

an increase in the length of the wildfire season the last 30 years 

(San-Miguel-Ayanz et al. 2017). Spain is included in the top 

five European countries with the highest number of wildfires. In 

2019, 10.648 forest fire have been registered in Spain, of which 

43,23% happened in the north west of Spain according to data 

from the Ministry of Agriculture, Fisheries and Food. Galicia is 

one of the most important forest areas in Europe and in the last 

year it has been registered 1.676 forest fires in 2019 cover of 

13.691 ha (Government of Spain 2019). 

 

Fire is one of the greatest forms of disturbance to terrestrial 

communities, and plays an important role in composition and 

structure of forest. As ecosystems recover from fire, changes 

occur in the composition and structure of vegetation affecting 

the mass, spatial arrangement and condition of fuels (Gosper, 

Prober, and Yates 2013). Understanding how ecosystem 

structure changes with time since fire is therefore critical for 

identifying appropriate fire return intervals for biodiversity 

conservation and in predicting the behaviour of fires (Alvarez et 

al. 2009; Gosper et al. 2012). Recurrent fire in short succession 

could lead to unfavourable management outcomes including the 

loss of habitat features of long-unburnt vegetation, decline in 

carbon stocks and decline in the extent of mature woodland 

vegetation communities which are distinct in floristic 

composition (Gosper, Prober, and Yates 2013). 

 

Remote sensing technologies, and in special LiDAR (Light 

Detection and Ranging) is an active remote sensing technology 

that can accurately measure three-dimensional vegetation 

structure. over large areas at a much lower cost than traditional 

field-based methodologies. The core value of aerial LiDAR lies 

in its capacity to penetrate the canopy cover down to the 

underlying ground surface (Hyyppä et al. 2008). Airborne full-

waveform LiDAR data contains large amounts of structural 

information, and presents a powerful avenue for providing 

detailed foliage distribution information over large areas. 

Studies based on LiDAR data have explored the possibilities to 

use these redundant vegetation reflections to map vertical 

vegetation structures (Hill et al. 2002; Suárez et al. 2005; 

Zimble et al. 2003). LiDAR derived canopy height, canopy 

height variation and canopy cover metrics have been used 

widely in forest ecological studies to determine or predict a 

number of important forest attributes, including forest vertical 

layering and overall architecture (Maltamo et al. 2005), 

vegetation strata and forest genera (Maltamo et al. 2005) and 

vegetation regeneration (Maltamo et al. 2005). LiDAR data 

have been successfully employed to quantify variation and 

dynamics in vegetation structure (Weishampel et al. 2007; 

Hantson, Kooistra, and Slim 2012; Korpela et al. 2009). 
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There are free available for Spain high spatial resolution LiDAR 

point cloud data (0.5-point measurement per m2) and the 

derived digital elevation models (25-50 cm per pixel). LiDAR 

data has been available as open data since 2008 in the National 

Centre for Geographical Information (CNIG 2019). 

Understanding community response to fire requires time series 

spanning these temporal scales (Watson et al. 2012). 

Contemporary sources documenting fire events, such as satellite 

images. 

 

Timely and accurate burned area mapping is essential for 

quantifying the environmental impact of wildfires. 

Traditionally, moderate to coarse resolution satellite sensors 

have been used, such as MODIS (Moderate Resolution Imaging 

Spectrometer (Regos 2018). However, their coarse spatial 

resolution (pixel size of 500 m or greater) provides only a rough 

estimate of the burn perimeter. Burned areas mappings with the 

detail required can be produced with high-resolution satellite 

imagery. Landsat data have been predominately used for this 

purpose (Hawbaker et al. 2017), due to their rich spectral 

information, specially the shortwave infrared (SWIR) bands 

important for burned area mapping. Landsat free data provision 

policy form the United States Geological Survey (USGS) since 

2008. The Sentinel-2 mission developed and operated by the 

European Space Agency (ESA) as part of the Copernicus 

programme of the European Commission (EC) is providing free 

of charge high-resolution optical imagery since 2015. The 

Sentinel-2 data are characterized by high spatial resolution (10-

20 m, depending on the band) and high temporal frequency (5 

days) front of 16 days of Landsat temporal resolution. There are 

recent studies have investigated their protentional for burned 

area mapping (Roteta et al. 2019; Amos, Petropoulos, and 

Ferentinos 2019). 

 

The present manuscript explores the extent that these two 

readily available hight-resolution data sources (aerial images 

and LiDAR) can be exploited to support more efficient 

vegetation structure mapping and monitoring. 

 

The main of this work is to analyse the potential of PNOA-

LiDAR as a tool for short-term as long-term monitoring of 

changes in vegetation structure after forest fire. Firstly, the 

study of area is chosen where LiDAR data are available before 

and after forest fire. Then, the NDVI and NBR index are 

calculated for the satellite images and the area of fires are 

mapped. Finally, the vegetation structure is analysed by Canopy 

Cover Fraction (CCF) index and vertical composition. In 

particular, the main contributions of this study are summarized 

as:  

 

- Development an algorithm to automatically 

calculated NDVI and NBR index for Landasat-7 and 

Sentinel-2 images. 

 

- Design of a methodology to group tree points by 

height, Prometheus classification and heights 

established in ASPRS classification. 

 

- Determination of vertical and horizontal 

parameters in structure of vegetation. 

 

- Analysis of vegetation changes prefire and 

postfire. 

 

2. MATERIAL AND METHODS 

2.1 Area of study 

The study area is located in the northwest of Spain. It belongs to 

the Natural Park of Baixa Limia Serra do Xurés, which has been 

catalogued as an Area for Special Conservation (ASC). The 

Municipality of Lobios is in the Forest District XV and is 

catalogued as a high-risk area and classified with a very high 

potential risk index (Xunta de Galicia 2018). The protected 

areas are ideal settings for research. The object of this study is 

an area of 802.60 Ha in the northeast part of the municipally of 

Lobios (Figure 1). The study area registered forest fires in 2001, 

2011 and 2017 (Regos 2018) in which the structural changes of 

vegetation will be analysed. The climatic type existing in the 

Baixa Limia is called sub-Mediterranean oceanic temperate, 

which indicates a certain aridity during the summer, this means 

a large part of vegetation is adapted of dry periods. Under this 

climatic type, the potentially dominant vegetation in most of the 

territory is Quercus pyrenaica and Quercus robur. The main 

tree species are, Betula alba, Quercus suber, Arbutus unedo, 

Pinus sp., Ulex sp., Cytisus scoparius and Erica sp. These are 

several endemic plants, including Portugal laurel and Prunus 

lusitanica, a species that colonizes the ravines and other areas 

that have high humidity. The biogeographical location of Baixa 

Limia greatly favours the diversity of the flora in this territory. 

 

 
Figure 1. Location of study area. 

 

2.2 Materials 

Low-density ALS data were provided by the PNOA (National 

plan of aerial photography) through the IGN (National 

Geographic Institute) website. The objective of the LiDAR-

PNOA project is to cover the entire Spanish national territory in 

point clouds with X, Y and Z coordinates obtained by airborne 

ALS sensors, with a density of 0.5 points per m2 and altimetric 

accuracy better than 20 cm. The ALS flight was performed in 

2009 and in 2016. Data were provided in 2 km × 2 km tiles of 

raw data points in a LAZ binary file (compressed LAS file), 

containing x and y coordinates (EPSG:25829 ETRS89/UTM 

Zone 29N) and ellipsoidal elevation Z. The LAZ files were 

decompressed using the Laszip command from the LAStools 

software (Isenburg 2012), to obtain the LAS files. Due to the 

large extension of the study area, the area was divided in two 

zones and in the first area only it was used the points were in the 

area affected by forest fire. 

In summary, the ALS point clouds were first filtered to generate 

a surface model (cell size 0.5 m), and the data was normalizing 

by subtracting the DTM from the point cloud. 
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In this work it will make use of satellite imagery to mapping the 

burned areas. Wildfires events after ALS data was in 2011 and 

in 2016 so it was used Landsat-7 images. Furthermore, in 2017 

was registered a wildfire in the area and to mapping was used 

Sentinel-2 images. The methodology described is the same for 

both images. 

Landsat-7 was launched in 1999 and involving three large 

American governmental organizations NASA (National 

Aeronautics and Space Administration), NOAA (National 

Oceanic and Atmospheric Administration) and USGS (United 

States Geological Survey). Landsat-7 is equipped with ETM+ 

(Enhanced Thematic Mapper Plus). A full surface scan by 

Landsat-7 takes 232 turns or 16 days. Satellite imagery were 

downloaded from the Landsat Viewer, a remote sensing satellite 

image tool. Inputs images used for this study were recorder on 

10 August of 2011 (pre-fire) and 18 February of 2012 (post 

fire). Only were considered the band 3 (wavelength 0.63-0.69 

µm) and band 4 (wavelength 0.77-0.90 µm) to calculate NDVI 

index, and band 7 (wavelength 2.09-2.35 µm) in combination 

with band 4 to calculate NBR index. The resolution of bands 

was 30 m. 

 

The imagery from Sentinel 2 consists of a partnership of twin 

satellites flying in the same orbit but phased at 180º to give a 

revisit frequency of 5 days. These satellites are a mission of the 

Copernicus program designed by the European Commission in 

partnership with European Space Agency (ESA). Satellite 

imagery from the Sentinel 2 mission was used and downloaded 

from the Copernicus Open Hub. The input images used in this 

study were selecting pursuing a low cloud percentage from 

Sentinel-2A satellite and processing level L2A. Images count 

with geometric and radiometric correction, which facilitates the 

methodology Two images were recorder on 6 August of 2017 

(pre-fire) and 24 December of 2017. They were considered the 

band 4 (central wavelength 665 nm) and band 8A (central 

wavelength 865 nm) to calculate NDVI index and band 4, band 

6 (wavelength 740 nm), band 7 (wavelength 783 nm), band 8A 

and band 12 (central wavelength 2190 nm) to calculate NBR 

index, with a spatial resolution of 20 m. 

 

2.3 Data processing 

This study was developed using QGIS software (QGIS 

Development Team 2013) and Python language (Van Rossum 

2007) for mapping and spatial analysis. The computer on which 

the data processing was carried out is an MSI GP72 LEOPARD 

PRO, with the following technical characteristics:  

 

- Processor: Inter(R) Core (TM) i7 – 7700HQ 

CPU @2.80GHz. 

  

- Installed RAM: 16.0 GB. 

 

- System type: 64-bit operating system, x64-based 

processor. 

 

Data processing begins detecting fire affected areas. NBR is 

used to identify burned areas and provide a measure of burn 

severity (Epting, Verbyla, and Sorbel 2005; Escuin, Navarro, 

and Fernández 2008). It is calculated as a ratio between the NIR 

and SWIR2 values in traditional fashion. The NIR band is 

sensitive to vegetation chlorophyll content, while the SWIR2 

band is sensitive to soil and vegetation water content 

(ELVIDGE 1990) providing information on typical conditions 

that occur after the fire events. NBR for Landsat 7 images was 

computed according to the Equation 1. 

 

𝑁𝐵𝑅 =
𝐵4 − 𝐵7

𝐵4 + 𝐵7
 

(1) 

 

where  NBR = Normalized Burn Ratio 

 B4 = band NIR (Near Infrared) 

 B7 = band SWIR-2 (Shortwave Infrared) 

 

NBR for Sentinel 2 images was computed according the 

equation 2. The BAIS2 spectral index for burned area mapping 

was specifically designed to take advantage of the Sentinel 2 

MSI spectral characteristics. The equation 2 present benefits 

from  vegetation properties described in the red-edge spectral 

domains and the radiometric response in the SWIR spectral 

domain, largely recognized to be efficient in the determination 

of burned areas (ELVIDGE 1990).  

 

𝐵𝐴𝐼𝑆2 =  1− 
𝐵06 ∗ 𝐵07 ∗ 𝐵8𝐴

𝐵4
 ∗  

𝐵12 − 𝐵8𝐴

 𝐵12 + 𝐵8𝐴
+ 1  

(2) 

 

where  BAIS2 = Index for burned area mapping 

 B06 = band NIR (Near Infrared) 

 B07 = band NIR (Near Infrared)  

 B8A = band NIR (Near Infrared) 

 B4 = band RED 

 B12 = band SWIR (Shortwave Infrared) 

 

Pre-fire, healthy vegetation has very high near-infrared 

reflectance and low reflectance in the shortwave infrared 

portion of the spectrum. Recently burned areas on the other 

hand have relatively low reflectance in the near-infrared and 

high reflectance in the shortwave infrared band. The burned 

area shows low values for NBR and BAIS2 indexes while 

healthy vegetation shows high values for NBR and BAIS2 

indexes (Figure 2). 

 

 
Figure 2. NBR and BAIS2 indexes pre-fire and post-ire 

situations. 

 

In a following step, the NBR difference (dNBR) between the 

pre-fire image and post-fire image, which gives an idea of the 

severity of the calcination is calculated by Equation 3. 

 

𝐷𝑁𝐵𝑅 = 𝑁𝐵𝑅𝑝𝑟𝑒𝑓𝑖𝑟𝑒 − 𝑁𝐵𝑅𝑝𝑜𝑠𝑡𝑓𝑖 𝑟𝑒  

 (3) 
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Figure 3 shows high values of dNBR which represent a higher 

severity of fire and dBAIS2, for the difference between BAIS2 

prefire and BAIS2 postfire. 

 

 
Figure 3. Difference between NBR and BAIS2 indexes. 

 

Once the area burned was mapped, the following step is the 

calculation of one of the most known and widely used spectral 

index, NDVI. It takes advantage of green strong vegetation 

absorption of visible red light, in contrast with its high 

reflection of near-infrared light. The damage to vegetation 

caused by fires results in a significant decrease of values. NDVI 

index was produced by Equation 4. In this study, prefire and 

postfire NDVI were calculated (Figure 4) 

 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 − 𝑅𝐸𝐷
 

(4) 

 

where NDVI = Normalized difference vegetation index 

 NIR = band4 (landsat7) and band8A (sentinel2) 

 RED = band3 (landsat7) and band4 (sentinel2) 

 

 
Figura 4. NDVI prefire and postfire in study area 

 

Next stage is the analysis from point clouds, thus ALS data 

were downloaded from the PNOA. In the case to data 

processing, two approaches can be considered depending of the 

synthesized of LiDAR data. The first one consists of derive 

variables from height distribution functions of the point cloud, 

while second one consists of synthesize the hight information of 

LiDAR thought raster layers generation. It has been decided to 

use the second approach because this process allows a 

simplification in the volume of data to be processed without 

significantly affecting the precisions of results. An algorithm 

was developed in python language to carry on the 

transformation of 3D points in 2D space. The pixel value is 

related with the z coordinate form the point cloud.  

First phase for the analysis of LiDAR data was the classification 

of ground points by the DTM of PNOA which is a free product. 

The point cloud has been grouped in cells of 2 m of side and the 

corresponding ground value is known by DTM. A filter was 

applied to classify the points in two groups, ground points and 

the rest of points. Next step was the automatic classification of 

vegetation points and then it carried on the standardized height 

of points. Last step was the stratification of the vegetation 

(Figure 4) according to the following height intervals: 

 

- Low vegetation: 0.15-0.5 m 

- Medium vegetation: 0.5-2 m 

- Medium-Hight vegetation: 2-4 m 

- Hight vegetation: > 4 m 

Figure 4. Vegetation stratified by height 

 

Once the vegetation was grouped by heights the statistical 

variables are calculated by GIS static analysis.  

 

The average height for each established vegetation stratum has 

been calculated as well as for the entire vegetation. In addition, 

standard deviation and variance have been calculated. These 

variables give the characteristics of variability in the vertical 

structure.  

 

The FCC has been calculated for each stratum of vegetation and 

also for the entire vegetation. The FCC indicates the proportion 

of ground covered by vertical projection of each vegetation 

stratum. Figure 5 shows the binary images of FCC calculated in 

2009 and 2016. The area 1 is smaller than area 2, because only 

was calculated the FCC in the burned area.  

 

 
Figure 5. FCC calculated for high vegetation stratum. 

 

The last step was focused in grouping the vegetation into 

Prometheus classes. In the European environment, a 

classification of particular interest for its adaptation to regional 
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conditions and its suitability for a remote-sensing based 

production process is that proposed in the European project 

Prometheus. This classification simplifies and adapts the NFFL 

(Northern Forest Fire Laboratory) (Albini 1976) system to the 

characteristics of Mediterranean vegetation. The main 

classification criterion in Prometheus is the type and height of 

the propagating element, divided into three well differentiated 

groups: grass, shrub and tree. The fire is then modelled taking 

into account the height and density of the propagating elements. 

Figure 6 show the fuels models according to Prometheus. 

 

 
Figure 6. Fuel models by Prometheus (Arroyo et al. 2006). 

 

The information extracted from the LiDAR data corresponds 

with the number of points in each generated interval also the 

percentage of vegetation points of the study area have been 

estimated. Intervals were generated every 0.5 m to achieve a 

better characterisation of the fuels on the surface (García et al. 

2011). An algorithm developed in python language do the 

automated process.  

 

The points are grouped in the bands (0.15-0.3,0.3-0.6,0.6-2,2-4 

and >4). In order to reach optimal classification conditions in 

the study area, the percentage of points were estimated 

according to the Equation 5.  

 

% 𝑝𝑜𝑖𝑛𝑡𝑠 =  
𝑇𝑃 𝑏𝑎𝑛𝑑

∑𝑃𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛
∗ 100 

(5) 

 

where TP band = The total points in each stratum 

 ∑Pvegetation = The sum of all points 

 

Once the percentage of points in each band was calculated the 

next step was the application of the classification conditions 

carried out to found out the fuel model. Figure 7a and Figure 7b 

shows the fuels classified in the study area. 

 

Figure 7a. Fuels classified by Prometheus model in 2009. 

 

 
Figure 7b. Fuels classified by Prometheus model in 2016. 

 

3. RESULTS AND DISCUSSION 

Figure 8 shows the results of the detection of burned area based 

in the calculation of NBR and BAIS2 indexes. NBR is 

frequently used to estimate burn severity. Figure 8 shows the 

results and also show the ground truth used to compare the 

results previously developed in a mapping burned areas by 

MODIS sensor between the years 2001 and 2017. (Regos 2018) 

 

 
Figure 8. Burned area mapping 

 

The total area burned in 2011 fire detected by imagery of 

Landasat-7 is 311 Ha, in comparison with the 474 Ha of the 

ground truth used. The total area burned in 2017 fire detected by 

Sentinel-2 is 335 Ha, while that the area of the ground truth 

used is 411 Ha. 

 

Imagery collected before a fire have very high near infrared 

band values and very low mid infrared band values. Imagery 

collected over a forest after a fire have very low near infrared 

band values and very high mid infrared band values. Higher 

dNBR indicate more severe damage. Areas with negative dNBR 

values may indicate increased productivity following a fire.  

Burn severity levels obtained calculating dNBR proposed by 

USGS to interpret the burn severity (Figure 9). The results of 

classification show the area burned in 2011 fire present more 

high severity than the fire occurred in 2017. The classification 

algo show the areas unburned that match with the previously 

unmapped areas. Results shows that fires had low-moderate 

severity. 
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Figure 9. Burn severity levels by dNBR and dBAIS2 

 

 

NDVI results shows the values near to 0 show rocky areas that 

can acquire some vegetation up to values close to 0.3 m. From 

this value presence of vegetation is detected. The higher the 

value, the more the leafy vegetation will be until reaches values 

close to 1. The comparation of NDVI values and the 

Prometheus classification in Figure 10 show results for the point 

cloud in 2016 and forest fire in 2017. It is possible to observe 

how the heights of both data sources matches. 

 

 
Figure 10. Comparation NDVI and Prometheus classification. 

 

The analysis of Prometheus classification was carried on and 

Table 1 show the area occupied for each fuel type. It is 

obviously that study zone 2 contains more pixel because the 

total area is 400 Ha while the area 1 only is analysed the burned 

area which represent 55 Ha. Fuel type 5 is the most represent in 

the study area, but in study zone 2 the fuel type 2 has also a 

considerable representation. On the other hand, fuel type 1 and 

fuel type 3 are the least represented. 

 

 

 Area (Ha) 
 Zone 1 (clip fire) Zone 2 

2009 2016 2009 2016 

Fuel type 1 0.01 0.01 0.66 1.98 

Fuel type 2 0.24 0.13 18.72 25.69 

Fuel type 4 0.31 0.71 6.03 4.69 

Fuel type 5 1.22 5.62 15.43 24.34 

Fuel type 6 0.75 2.74 5.81 13.72 

     

Table 1. Area represent for each fuel type classification. 

 

Results of the average height are show in the Figure 12. The 

vegetation is divided in 4 classes to calculate the average height, 

standard deviation, and variance.  

 

 
Figure 12. Average variables 

 

In the first vegetation group, low vegetation (0.15-0.5 m), is 

unchanged in terms of average height remain in 0.33 m. Respect 

of medium vegetation (0.5-2 m) the average height in 2016 is 

higher in zone 1 (1.44 m) respect to zone 2(1.03 m) but show 

similar values in both years. In the group of medium-high 

vegetation (2-4 m), the average height is similar in both years 

showing 2.3 m. In the last vegetation group, high vegetation 

(>4m), in zone 1 an increment of the average height is 

visualized in 2016, but it is minor than 1 m. The whole 

vegetation shows higher height in zone 1 in 2009 respect to 

zone 2, and a significant increase in 2016, being higher in zone 

2. 

 

Figure 13 show the results obtained for standard deviation of 

data. There are not greater variations in each stratum the degree 

of dispersion is greater in zone 1 in both years and there is more 

dispersion of data in 2009.  

 

 
Figure 13. Standard deviation 

 

Figure 14 show the results of FCC obtained for each stratum. In 

the group of low vegetation is appreciable the increment of FCC 

in study zone 1, which represents an increment of 18% from 

2009 to 2016, and an increment too of 15% in study zone 2. In 

medium vegetation stratum both areas suffer an increment of 

FCC and medium-high vegetation present a similar situation. 

While high vegetation stratum shows a higher increment of 

FCC in zone 1 of 20%, while zone 2 almost unchanged. 
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Figure 14. Fraction canopy cover 

 

4. CONCLUSIONS 

The difference obtains with respect of the ground truth in base 

of mapping burned area is based on the different resolution of 

MODIS sensor layer of 500 m, compared with the Landsat-7 

resolution of 30 m and Sentinel-2 resolution of 20 m, which 

allow mapping burned areas with greater accuracy. It is possible 

to affirm that the automatically methodology used to map 

burned areas could provide good results, but would be interested 

compared the results with fieldwork history. 

 

Burn severity data and maps can aid in developing emergency 

rehabilitation and vegetation restoration postfire. They can be 

used to estimate not only the soil burn severity but the 

likelihood of future downstream impacts due to flooding 

landslides and soil erosion. Future works could be developed 

during the next growing season and NBR datasets are often 

calculated again to assess vegetation survival and delayed 

mortality. 

 

Ecological recovery, including forest overstory density, tree 

regeneration, understory development and accumulation of 

forest floor biomass will vary across patches of different fire 

severity. Information on canopy cover is essential for 

understanding spatial and temporal variability in vegetation 

biomass.  

 

It has been compared that the classification of point cloud 

according with Prometheus classification of fuels obtains 

similar results comparing with the calculation of NDVI index. 

 

Results of statistical analysis of point cloud show the possibility 

to use PNOA-LiDAR data to characterize changes in the 

structure of vegetation.  

 

The results of this study have special interest for forest 

management in particular to know the state of vegetation and 

they evolution postfire. 
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