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ABSTRACT: 

 

This paper aims to map crops in two Brazilian municipalities, Luís Eduardo Magalhães (LEM) and Campo Verde, using dual-

polarimetric Sentinel-1A images. The specific objectives were: (1) to evaluate the accuracy gain in the crop classification using 

Sentinel-1A multitemporal data backscatter coefficients and ratio (σ0VH, σ0VV and, σ0VH/σ0VV, denominate BS group) in 

comparison to the addition of polarimetric attributes (σ0VH, σ0VV, σ0VH/σ0VV, H, and α, denominate BP group) and; (2) to assess 

the accuracy gain in the earliest crop classification, creating new scenarios with the addition of the new SAR data together with the 

previous images for each date and group (BS and BP) during the crop development. For BS and BP groups, 13 e 10 scenarios were 

analyzed in LEM and Campo Verde, respectively. For the classification process, we used the Random Forest (RF) algorithm. In the 

LEM site, the best results for BS and BP groups were equivalent (overall accuracy: ~82%), while for the Campo Verde site, the 

classification accuracy for the BP group (overall accuracy: ~80%) was 2% higher than the BS group. The addition of new images 

during the crop development period increased the earliest crop classification overall accuracy, stabilizing from mid-February in LEM 

and mid-December in Campo Verde, after 10 and 8 images, respectively. After these periods, the gain in classification accuracy was 

small with the addition of new images. In general, our results suggest the backscattering coefficients and polarimetric attributes 

extracted from the Sentinel-1A imagery exhibited a great performance to discriminate croplands. 

 

1. INTRODUCTION 

Brazil occupies the first positions in the world ranking of 

agricultural production of soybeans, corn, coffee, cotton, among 

others (FAOSTAT, 2020). Thereby, knowing where and which 

crops are present in the fields is useful in regional and global 

scales (Kussul et al., 2016; McNairn et al., 2014). This 

information is crucial for crop management, food security 

assurance and agricultural policy design (Arias et al., 2020; 

McNairn et al., 2014).  

 

Crop classification is one of the most important agricultural 

applications of Remote Sensing (RS) (Atzberger, 2013). RS 

provides synoptic character and data acquisition promptness 

highlighted as a technique to map and monitor the crops 

throughout their lifecycle (Oldoni et al., 2019a; Prudente et al., 

2019a; Veloso et al., 2017). Moreover, early or in-season crop 

information allows critical support for timely crop yield and 

production estimates (You and Dong, 2020). 

 

While RS data are essential for agricultural mapping and 

monitoring, to provide accurate crop information is a challenging 

step due to the high spatio-temporal dynamics (Denize et al., 

2019; Hütt and Waldhoff, 2018). Besides, optical cloud-free 

image acquisition is a challenge too (Whitcraft et al., 2015b; 

Wulder et al., 2015). Because of these factors, some regions 

might have only a few cloud-free optical RS data available 

during the crops vegetative cycle, especially at the end of 

flowering and beginning of plant senescence (Eberhardt et al., 

2016; Whitcraft et al., 2015a). Thus, the use of optical RS data is 

even more sensible in tropical, subtropical, and northern regions 

(Evans and Costa, 2013), where the cloud cover frequency is 

higher.  

 

Therefore, to overcome this cloud limitation, the Synthetic 

Aperture Radar (SAR), can be a useful alternative. SAR data 

collection can be performed under almost all-weather conditions, 

independently of lighting conditions and are little affected by 

atmospheric and cloud cover (Arias et al., 2020; Harfenmeister 

et al., 2019). For this reason, it is possible to obtain a dense 

temporal series of useful SAR data, even in areas with high cloud 

cover, such as tropical regions.  

 

However, SAR data interpretation is complex, with many factors 

influencing the interaction between plant and microwave beam. 

The returned SAR signal is influenced by canopy properties, like 

dielectric constant (or water content), geometry, orientation, 

topography and surface roughness, besides by the radar system 

features, like frequency, polarization, spatial resolution, incident 

angle, orbit, etc (Harfenmeister et al., 2019; Steele-Dunne et al., 

2017).  

 

For example, for the cropland, each radar polarization is more 

sensitive to certain characteristics of vegetation. In a SAR 

system, microwave beams vertically (V) polarized are more 

sensitive to the vertical structure, while the horizontally (H) 

polarized waves are more sensitive to horizontal structures 

(Denize et al., 2019; McNairn and Brisco, 2004). The co-

polarized HH waves demonstrate more sensitivity to surface 

scattering, while, the cross-polarization, VH, and HV, are more 

sensitive to volume dispersion (Denize et al., 2019; Veloso et al., 

2017).  

 

Moreover, radars operating at longer wavelengths (L and P 

bands) penetrate inside the canopy, while those of shorter 

wavelengths (C and X bands) interact with the upper layers of 

the canopy. These factors determine the radar backscatter from 

vegetation and they are crop-specific and vary as crop phenology 

changes, thus, there is significant potential for the use of SAR in 

agricultural applications, like classification, crop monitoring, 

and soil/vegetation moisture monitoring (McNairn and Brisco, 

2004; Steele-Dunne et al., 2017).   
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Besides the backscattering, information can be extracted from 

SAR data using the Polarimetric SAR (PolSAR) technique. This 

method uses information about the amplitude and phase of the 

signals reflected in different polarizations and stored in a 

complex vector structure (Ulaby, Fawwaz and Elachi, 1990). 

From the PolSAR technique, it is possible to use the target 

decomposition theorems (Cloude and Pottier, 1996). The 

decomposition theorems separate the scattering mechanisms of 

different natures, making it possible to infer the physical 

properties of the targets. It also can help improve segmentation, 

classification, target detection, and pattern recognition.  

 

The H/α decomposition (Cloude and Pottier, 1996) allows 

obtaining the polarimetric attributes of entropy (H) and alpha 

angle (α). Entropy indicates the number of dominant scattering 

mechanisms, making it possible to assess the degree of 

randomness of the scattering process (Cloude and Pottier, 1996). 

The H polarimetric attribute ranges from 0 to 1. Low H values 

(~ 0) indicate weak polarization, suggesting the presence of a 

single scattering mechanism. On the other hand, high H values 

(~ 1) indicate the presence of at least three targets that also 

contribute to depolarize electromagnetic waves. The alpha angle 

identifies the type of scattering, which varies from α = 0° 

characterized as superficial scattering, α = 45° volumetric 

scattering and, α = 90° double-bounce scattering (Cloude and 

Pottier, 1996).  

  

In this sense, free polarimetric SAR data from Sentinel-1A and 

1B satellites, which are available by European Space Agency 

(ESA), represent a new opportunity to investigate agricultural 

monitoring methods based on dense SAR time series (Denize et 

al., 2019), since Sentinel-1 has a high temporal resolution (12 

days Sentinel-1A and, 06 days when considering Sentinel-1A 

and 1B) and a spatial resolution around 10 m (ranging from 5 to 

40 m, depending on the acquisition mode). In this context, two 

specific goals were defined: (1) to evaluate the accuracy gain in 

crop classification by Random Forest algorithm using Sentinel-

1A multitemporal data backscatter coefficients (σ0) in the 

polarizations VH (σ0VH), VV (σ0VV) and the ratio between 

them (σ0VH/σ0VV), in comparison to the addition of 

polarimetric attributes (H and α), in two test sites in Brazil and; 

(2) to assess the accuracy gain of the earliest crop classification 

with the integration of additional SAR dates in the polarimetric 

attributes and backscatter coefficients. 

 

 

2. METHODOLOGY 

2.1 Study area 

Two municipalities were selected in Brazil as test sites for this 

study (Figure 1). One is Luís Eduardo Magalhães (LEM), located 

in western Bahia state, and the other is Campo Verde, located in 

the southeastern of the Mato Grosso state. Both areas are inserted 

into the Cerrado biome (Brazilian Savanna).  

 

The LEM central coordinates are 12º05’31” S and 45º48’18” W 

(Figure 1a). It comprises an area of 3,940.5 km², with an altitude 

of 720 m and presents tropical wet and dry climate (Aw), 

according to the Köppen–Geiger classification (Peel et al., 2007). 

The average annual rainfall is 1,511 mm and the average 

temperature is 24.2ºC. This municipality is inserted in the 

MATOPIBA economic region, which is an important 

agricultural frontier that comprises parts of Maranhão, 

Tocantins, Piauí, and Bahia states. The LEM agricultural 

production is based mainly on soybean (179,540 ha), corn 

(19,136 ha), sorghum (14,000 ha), cotton (12,100 ha), and beans 

(7,910 ha); these numbers correspond to the planted area of each 

culture in 2018 according to the Municipal Agricultural 

Production survey (PAM, 2018), held by the Brazilian Institute 

of Geography and Statistics (IBGE). Due to this agriculture 

importance, LEM has the 4th higher Gross Domestic Product 

(GDP), BRL 601,242.05 among Bahia municipalities (IBGE, 

2017).  

 

 
Figure 1. Study areas location: LEM (a) and Campo Verde (b). 

The images show a RGB composition with Entropy values in 

three different dates. The red polygons represent the spatial 

distribution from the LEM and Campo Verde Databases. 

The central coordinates of Campo Verde are 15º37’19.4” S and 

55º10’29.6” W (Figure 1b) and correspond an area of 4,794.56 

km². The region is characterized by an average temperature of 

22.3°C, average annual rainfall of 1,726 mm and Tropical Aw 

climate, according to the Köppen-Geiger classification (Peel et 

al., 2007). This municipality has an economic profile based on 

agribusiness, and according to the PAM survey (PAM, 2018), in 

2018 Campo Verde was the 10th Brazilian municipality with the 

highest value of agricultural production (BRL 1,905,073). The 

most cultivated crops were soybean (210,000 ha), corn (88,500 

ha), cotton (85000 ha), beans (3800 ha), and sorghum (2,000 ha). 

Besides, there are also other types of crops, livestock, and forest 

production (eucalyptus). 

 

In LEM and Campo Verde, two harvests are normally grown in 

one year. One during the raining season (or wet period), from 

October until March, that represents the first crop season in the 

agricultural calendar. The second one occurs in the dry period, 

from March until August, corresponding to the second crop 

season. 

 

2.2 Field Data 

Field reference is essential for remote sensing applications. For 

the present work, we used two available datasets, the LEM 

Database (Sanches et al., 2018a) and the Campo Verde Database 

(Sanches et al., 2018b). These databases provide field references 

about croplands and other land cover types. For our analysis, 
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information regarding the first crop season was selected from 

both test sites. The data in the databases were collected during 

fieldworks carried out in LEM, between 14-19th March 2018, and 

in Campo Verde, between 14-18th December 2015. 

 

LEM and Campo Verde database have 12 Land Use and Land 

Cover (LULC) classes, as specified for Sanches et al. (2018a and 

2018b). For this work, some classes were grouped due to the 

legend similarities and others due to the low samples available 

for the classification process. In this way, 05 classes were 

considered for LEM: Soybean, Corn, Other Annual Crops - OAC 

(beans, hay, millet, non-commercial crop, grass), Pasture, and 

Others (Cerrado, coffee, eucalyptus, conversion area). The 

number of polygons selected for each of these classes was 419, 

56, 175, 23, and 93, respectively, for Soybeans, Corn, OAC, 

Pasture, and Other classes. For Campo Verde, we got 04 classes: 

Soybean, OAC (beans, brachiaria, grass, millet, sorghum, soil, 

crotalaria, and turfgrass), Pasture, and Others (Cerrado and 

eucalyptus), with 352, 30, 48 and, 79 polygons respectively. 

 

It is important to highlight that Soybean and Corn represent the 

highest value of agricultural production for both municipalities 

(PAM, 2018). For this reason, each one was separate in one 

single class and the other crops were grouped into the OAC class. 

 

2.3  Sentinel-1A data and pre-processing 

Sentinel-1A images were acquired in IW (Interferometric Wide 

swath) mode, with a spatial resolution of 5m x 20m, dual-pol 

polarization VH and VV, and Level-1 Single Look Complex 

(SLC) processing level. The images were downloaded through 

the Copernicus Open Access Hub, also known as the Sentinels 

Scientific Data Hub (https://scihub.copernicus.eu/), with an 

open-source toolbox in a python routine, named SentinelSat 

(https://github.com/sentinelsat/sentinelsat) (Hu et al., 2018). In 

total, 13 images were downloaded for LEM (03-11-2017 to 03-

27-2018, scene T083), and 19 images for Campo Verde (05-10-

2015 to 03-09-2016, 10 images for T090 scene and 09 images for 

T091 scene). These intervals were used to cover all the first crop 

season. The images from each scene were pre-processing 

separately. Only after the pre-process, it was performed the 

mosaic from the Campo Verde scenes (with the exception of a 

date that does not require a mosaic).  

 

To pre-process Sentinel-1A data, the following steps were 

defined (Figure 2a): TOPSAR Split to select only the bursts that 

covered the study area; Orbit File: to correct the orbit; TOPSAR 

Deburst: to join the sub-swaths; Multilook: to resample the SAR 

images by a spatial average, with a window size of 4x1 pixels 

(pixel size converted to 14.04 m by 13.47 m, respectively, in 

azimuth and range directions). These steps were performed for 

all polarimetric attributes and backscattering coefficients.  

 

After performing the above mentioned steps (Figure 2a), to 

obtain the backscattering coefficients (σ0VH and σ0VV) (Figure 

2b), SAR images were filtered with Boxcar Filter with a window 

size of 7x7 pixels, to reduce the speckle effect. In sequence, the 

radiometric calibration step of SAR data was performed. 

Afterward, terrain correction was applied using the SRTM 

(Shuttle Radar Topography Mission), this process generated 

images with a spatial resolution of 14.04 m. Finally, the ratio 

between σ0VH/σ0VV was calculated. 

 

In turn, to obtain the polarimetric attributes, H-α polarimetric 

decomposition was processed (Figure 2c), generating the entropy 

(H) and alpha angle (α). In sequence, SAR images also were 

filtered with Boxcar Filter with a window size of 7x7 pixels, and 

terrain correction was applied using the SRTM. All the pre-

processing steps (Figure 2) were performed using the Sentinel 

Application Platform (SNAP) 7.0, and python routines. 

 

 
Figure 2 Pre-processing steps for each Sentinel-1 image: (a) 

pre-processing to both polarimetric attributes and 

backscattering coefficients; (b) backscattering coefficients; (c) 

polarimetric attributes. 

2.4 Crops classification scenarios 

Two crop classification groups were defined. The first group is 

formed by the backscattering coefficients in the polarizations VH 

(σ0VH) and VV (σ0VV), and the ratio between them (σ0VH/ 

σ0VV) (Lu et al., 2011), is the group: σ0VH, σ0VV, and 

σ0VH/σ0VV, as shown in Figure 2b. The second group is 

composed of the backscatter coefficients, ratio (Figure 2b), and 

the H, and α attributes, derived from the polarimetric 

decomposition (Figure 2c), being: σ0VH, σ0VV, σ0VH/σ0VV, H 

and α. The first group was named Backscattering (BS) and the 

second Backscattering Polarimetric (BP). 

 

For both groups, BS and BP, the accuracy during the period of 

crop development were simulated. For this, classifications were 

made considering BS and BP for each date, which included all 

images from the specific date and previous dates. Thus, a total of 

26 classifications scenarios were performed for LEM (13 

scenarios to BS group, and others 13 scenarios to BP group), as 

shown in Figure 3a. For Campo Verde, a total of 20 

classifications scenarios were performed (Figure 3b). For the 

first scenario (scenario 1) in LEM and Campo Verde, 3 attributes 

were used for BS (σ0VH, σ0VV, σ0VH/σ0VV), and 5 for BP 

(σ0VH, σ0VV, σ0VH/σ0VV, H and α). On the other hand, in 

LEM, 39 attributes were used for scenario 13 BS (the 3 attributes 

of each date x 13 dates), and 65 attributes for scenario 13 BP (the 

5 attributes of each date x 13 dates). 
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Figure 3. Date of images used in each classification scenarios 

for LEM (a) and Campo Verde (b): BS (Backscattering 

coefficients - σ0VH, σ0VV, and σ0VH/σ0VV) and BP 

(Backscattering coefficients + Polarimetric attributes - σ0VH, 

σ0VV, σ0VH/σ0VV, H, and α). 

The Random Forest (RF) algorithm was used due to excellent 

results for crop classifications and high velocity of processing 

(Breiman, 2001; Du et al., 2015; Pal, 2005; Rodriguez-Galiano 

et al., 2012). Besides that, RF does not assume a priori statistic 

distribution, allowing the use of radar data (Furtado et al., 2016). 

The RF was implemented using the machine learning library for 

Python, Scikit-Learn (Pedregosa et al., 2011). For each scenario 

of each group, a stack of data was created and insert to RF for 

classification. 

 

For training and validation, the cross-validation method was 

used. 2/3 of the polygons were randomly divided for training and 

1/3 for validation in 3 repetitions. Thus, pixels of the same 

polygons were not used simultaneously for training and 

validation. To train the RF algorithm, 60,000 pixels of each class 

were randomly selected from the training polygons. From the 

accuracy assessment, producer (PA) and user (UA) accuracies, 

and overall accuracy (OA) were calculated (Congalton, 1991; 

Olofsson et al., 2014). The time elapsed for classification was 

also recorded to analyze the viability of polarimetric process 

time. 

 

 

3. RESULTS 

For LEM, the best classification result was achieved just before 

the end of the soybean cycle (03-15-2018), corresponding to 

scenario 12 in BP, as can be observed in Figure 4a. Despite this, 

the results have started to stabilize in scenario 10 (Figure 4a), 

four images before the soybean cycle end, with overall accuracy 

(OA) around 79~82% in both groups, BS and BP. At this 

time/scenario, the soybean was in the period between the 

maximum vegetative vigor and the senescence beginning. After 

that, scenario 11 to scenario 13, the accuracy increase was small, 

but the processing time was considerably longer.  

 

 
Figure 4. Overall Accuracy (OA) and processing time for LEM 

(a) and Campo Verde (b) tests sites: BS (Backscattering 

coefficients - σ0VH, σ0VV, and σ0VH/σ0VV) and BP 

(Backscattering coefficients + Polarimetric attributes - σ0VH, 

σ0VV, σ0VH/σ0VV, H and α). 

For Campo Verde, the better OA obtained, around 78~80%, was 

achieved using the BP group, in the scenarios 8 and 10 (Figure 

4b). However, the processing time for both scenarios was longer, 

~100 seconds, when compared to the same scenario formed by 

BS. As in LEM, in Campo Verde, the OA also stabilized during 

the period of maximum vegetative vigor and the beginning of 

crop senescence.  

 

In general, for the LEM test site, although the best accuracy was 

obtained from the BP group, it was almost equal to that obtained 

for the BS group. In Campo Verde, the result obtained with the 

BP group was about 2% higher than the one obtained from BS 

for the 12 scenarios analyzed (exception scenario 1). Also, the 

scenarios formed with the largest number of images did not 

present much higher classification results. In LEM, for the 11, 

12, and 13 scenarios, in the BS and BP groups, the OA was 

around 80%, reaching 82% in the 12 BP scenario. The same 

happened to Campo Verde, where the BS and BP 8, 9, and 10 

scenarios showed the OA ~80% too. 

 

In some cases, for LEM, during the soybean development period, 

the accuracy of the classification using the BS group overcame 

the result from BP. Moreover, the time taken to classify both 

datasets was longer for the BP group. 

 

The UA and PA accuracies best scenario for LEM and Campo 

Verde are presented in Figures 4a and 4b, respectively. Soybean 

class obtained UA > 82%, and PA > 87% in both test sites. On 

the other hand, Pasture obtained the lowest accuracy, with UA 

~20%, and PA ~64% for LEM, and, UA ~27%, and PA ~52% 

for Campo Verde.  

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1039-2020 | © Authors 2020. CC BY 4.0 License.

 
1042



 

 
Figure 5. User (UA) and Producer (PA) accuracy for the best 

scenario results: (a) LEM: 03-15-2018 (scenario 12 BP); (b) 

Campo Verde: 03-09-2016 (scenario 10 BP). 

For LEM site, besides the lowest accuracy observed for Pasture 

class, 14% of the pixels of Others class were erroneously 

classified as Pasture. In Campo Verde, the biggest confusion also 

occurred with the Pasture class, 45% of the pixels were 

erroneously classified as Others, and 15% of the pixels Other 

class were erroneously classified as Pasture. Also, 10% of the 

Soybean pixels were misclassification with the Pasture.  

 

Figure 6 shows the maps of the best classification results for the 

two test sites. It is possible to observe isolated classified pixels, 

this occurs mainly because of the effect of speckle, which was 

not reduced in the pre-processing step. The effect of speckle 

produces a grainy appearance in SAR images. This effect 

occurred more intensely in Campo Verde compared to the LEM. 

 

 

4. DISCUSSION 

The results show better classification accuracy for the 

combination of backscatter coefficients with metrics derived 

from polarimetric decomposition – BP group. In the LEM test 

site (Figure 4a), the difference between the BS and BP groups 

was inferior compared to Campo Verde (Figure 4b). The 

processing time was longer for the classification using all metrics 

(BP) in comparison to only using backscatter coefficients (BS), 

being a trade-off about increased accuracy (Figure 4). 

 

In both test sites, classification accuracy was low at the 

beginning of the crop cycle. During this period, plants are 

beginning to emerge above the surface, and there is a greater 

influence of soil surface on the backscattering response, affecting 

the overall results of the classification. 

 

However, during crop growth, the vegetation tends to attenuate 

soil backscatter, because the ears, leaves, and stems are 

developing. The backscatter at C-band is sensitive to changes in 

plant development (McNairn and Shang, 2016), so it is expected 

that the different scenarios, formed by multitemporal SAR 

images detect the changes in the crop's structure, and improve 

the separability in the classification. During the phenological 

development of crops, such as soybean and corn, there is a 

greater contribution, especially of cross-polarization VH, of the 

ratio VH/VV, and H polarimetric attributes, that are more 

sensitive to volumetric scattering (Denise et al., 2019). The 

polarization VV demonstrates more sensitivity to vertical 

structures, like the stems of the plants. 

 

 

 
Figure 6. Maps for the best results of classification for LEM 

and Campo Verde test site: (a) LEM: 03-15-2018 (scenario 12 

BP); (b) Campo Verde: 03-09-2016 (scenario 10 BP). 

Oldoni et al. (2019b) demonstrated the greatest capabilities to 

accompany the growth of crops with the backscattering 

coefficients, σ0VV and σ0VH. The authors observed that both 

coefficients have increased during the beginning of soybean 

growth. Furthermore, the polarimetric attributes (H and α) 

demonstrated the potential for discrimination classes corn, 

soybean, and cotton in specific crop cycle periods. 

 

Arias et al. (2020), used Sentinel-1 multitemporal images, in VH 

and VV polarizations, to classify crops. Both polarizations 

demonstrated sensitivity to many phenological events, as the 
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structural characteristics of the canopy varied. The ratio 

(VH/VV) showed more sensitivity to vegetation growth, which 

allowed determining whether a field was vegetated or not but 

providing poor information about crop identification. 

 

Sanches et al. (2018a) used the Sentinel-1 SAR image to provide 

the crop classification in LEM, using a different approach. They 

used one image per-month, between June-2017 and May-2018. 

According to these authors, the accuracy was also improved as 

more Sentinel-1 images were added. However, the maximum 

accuracy for them was obtained in November-2017 (OA near 

85%) and decrease with the image from January-2018 (OA under 

50%). Sanches et al. (2018b),  used the backscatter coefficients 

of Sentinel-1, in VV and VV polarizations to classifying all 

classes of the Campo Verde Database. Their results showed an 

increase in accuracy from the beginning of the summer crop 

cycle. The overall accuracy stagnated after December when it 

came close to 65%. A similar result was reported in this research 

when the classification overall accuracy stabilizing in mid-

December in Campo Verde. 

 

In this research, it was observed that the accuracy increases until 

the crops stabilize, about 3.5 months and 2.5 months after the 

average start of the cycle in LEM and Campo Verde, 

respectively. After the crop periods of stabilizing, it was 

observed in LEM, that the results of classifications remaining 

constant close to 80~82% overall accuracy (Figure 4a), and in 

Campo Verde, remaining constant close to 80% overall accuracy 

(Figure 4b).  

 

This demonstrates the importance of acquiring multitemporal 

SAR images to maximize the accuracy gains of the results of the 

classification, especially of land use typologies that present a 

greater dynamic in space and time, such as crops. Tomppo et al., 

(2019) affirm that the multitemporal SAR image acquisition 

during the seed and reproductive phenology phases of the plant 

can improve the results accuracies of classifications of crops.  

 

In general, the Soybean class obtained the best producer and user 

classification accuracies (Figure 5) after the moment when 

overall accuracy stabilized (scenarios 10 to 13 for LEM, and 7 to 

10 for Campo Verde - Figure 4). The second best classification 

results were obtained for OAC class, with producer and user 

accuracy larger than 70%.  

 

On the other hand, the Pasture class had the worst producer and 

user accuracy (Figure 5). Its main misclassifications occurred 

with the Others class, wherein Cerrado is included in this class. 

Cerrado is also formed by natural pasture formations. These 

formations have a structure like the pasture used for cattle, which 

explains the confusion. Prudente et al. (2019b) also identified a 

similar problem. Another confusion erroneously classified that 

occurred was OAC with Soybean and Corn (Figure 5). The OAC 

class is formed by crops such as beans and sorghum, which have 

structures similar to soybeans and corn, respectively. This may 

explain the misclassifications among these classes. 

 

Although the classification results of the BS and BP groups have 

shown similar discriminatory potential, it can be observed in 

Figure 4b, for the Campo Verde test site, that for some scenarios 

(2-5) the addition of information from the polarimetric attributes 

increased the general accuracy of the classifications. The 

addition of the signal phase information (complex data), possibly 

made it possible to separate the scattering mechanisms of 

different natures, which may have helped in the discrimination 

of the targets. In this way, it is possible to note that these 

parameters can be used for improving the accuracy of crop 

classification, although more studies are needed to understand 

the gain of each crop. 

 

 

5. CONCLUSIONS 

In LEM test site, the best results were equivalent with or without 

the addition of polarimetric metrics (H and α) to the metrics 

obtained from backscatter coefficients (σ0VH, σ0VV, 

σ0VH/σ0VV). In the Campo Verde test site, the addition of 

polarimetric metrics showed an overall accuracy of around 2% 

higher than the non-use of polarimetric metrics, except for the 

first scenario. 

 

The addition of new images over the crop development period 

increases overall accuracy, stabilizing from mid-February in 

LEM, and mid-December in Campo Verde. After these periods, 

the gain in accuracy is small with the addition of new images. 

For future works, it is recommended to evaluate the use of 

segmentation or the combination with data obtained by optical 

sensors to improve the results. Besides, it is also recommended 

to carry out data mining to assess the performance of each 

polarimetric attribute and backscatter coefficient into each class, 

to form optimal sets that allow for better discrimination of 

different classes of land use and land cover. 
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