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ABSTRACT: 

 

The photosynthesis governs productivity and health of the forests. Traditionally, remote sensing derived reflectance measures have 

been used to assess forest phenology, productivity and stress. The chlorophyll pigments absorb solar radiation, and emit 

fluorescence in far red region of electromagnetic spectrum. Chlorophyll fluorescence directly relates to the photosynthetic activity 

of the plants. Measurement of chlorophyll fluorescence from space has recently been achieved in the form of Sun- Induced 

Fluorescence (SIF). But SIF response have been found variable with respect to variation in vegetation type, hence, there is a need 

to study SIF response of tropical forests of India considering their wide extent, contribution to national carbon cycle and climate 

resilience. In this study, intra- and inter-annual GOME-2 and OCO-2 SIF responses of contrasting Indian tropical forest types viz., 

dry deciduous (Betul, Madhya Pradesh), moist deciduous (Kalahandi, Orissa) and wet evergreen forests (Uttara Kannada, 

Karnataka) has been investigated with respect to rainfall, NDVI and GPP trends. The results show that dry, moist and wet forests 

of India have differences in photosynthetic activity at intra- and inter-annual scale. GOME-2 SIF observations were more variables 

than OCO-2 SIF, particularly during green-up and senescence phase. SIF explained higher seasonality for dry deciduous followed 

by moist deciduous and wet evergreen. Annually integrated SIF (proxy of GPP) was in order: wet evergreen>moist deciduous> dry 

deciduous. 

 

 

1. INTRODUCTION 

 

Measurements of Sun-Induced Fluorescence (SIF) from space 

have the potential to improve the accuracy of global 

photosynthesis maps. Whether a plant is photo-synthetically 

active or not can be detected directly by capturing the 

chlorophyll fluorescence radiation through remote sensing 

techniques. Earlier studies revealed that SIF product can be 

related with GPP (Lee et al., 2013; Guanter et al., 2014; 

Frankenberg et al., 2014F). SIF can be expressed by a similar 

equation in which few assumptions are made that relate with 

GPP and LUE (Damm et al., 2010; Guanter et al., 2014). Time 

of acquisition of data has huge impact on the relationship of 

fluorescence and photosynthetic rate (Tol et al., 2009). 

 

SIF is primarily retrieve through Fraunhofer Line Depth (FLD 

etc.) by Earth Observation (EO) satellite (Meroni et al., 2009). 

FLD uses Fraunhofer absorption line that introduced by oxygen 

band O2B (686nm) and O2A (760nm) (Plascyk, 1975; Moya et 

al., 2004). At present, global scale SIF retrieved through FLD 

algorithm is provided by a few satellites like (Global Ozone 

Monitoring Experiment - 2) and Orbiting Carbon Observatory 

2 (OCO-2) with up to a few km (Joiner et al., 2013; 

Frankenberg et al., 2014). However, these SIF sensors slightly 

differ with their retrieval channel and sensing time. GOME-2 

uses 734nm -758 nm channel (spectra) to detect morning SIF 

(9: 30 AM, local time) whereas OCO-2 uses 757 & 771 nm 

channels to retrieve SIF at 1:30 PM (local time). 

 

SIF also vary with different forest type comprises of different 

canopy structure and biochemical variables. About 90% 
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variable SIF is governed by canopy structure [LAI (Leaf area 

index) & LIDFa (leaf inclination distribution factor)] and 

biochemical variable [(chlorophyll concentration & Vcmax 

(maximum Carboxylase rate)] (Verrelst et al., 2015, Chen et al., 

1999; Tol et al., 2014; Walker et al., 2014). Time-series analysis 

provides a descriptive feature of seasonality [e.g. ARIMA (auto 

regressive integrated moving average) model]. Annual SIF 

variation is estimated by integrating SIF by AUC (area under 

curve) method (Reed et al., 1994). In present study, we tested the 

potential of SIF originated at different spectra and time, to 

capture the seasonality of different forest type induced by 

photosynthetic activity. 

 

 

2. METHODOLOGY 

 

2.1 Materials 

 

2.1.1 Satellite SIF Products: GOME-2 SIF (V27 Level 3) 

monthly data from 2014 to 2017 were downloaded from 

https://acd-ext.gsfc.nasa.gov/. GOME-2 sensor is a 

spectrometer on-board European meteorological satellite 

MetOp-A and MetOp-B, launched in the year 2006 in sun 

synchronous polar orbit. Its spatial resolution is 40km x 40 km 

and swath is 1920 km. It senses irradiance in wavelength range 

240nm-790nm at 0.5nm spectral resolution (Joiner et al., 2014). 

OCO-2 SIF product data was downloaded from September 2014 

to July 2018 from https://co2.jpl.nasa.gov. OCO-2 is an U.S. 

environmental science satellite which was launched on 2 July 

2014 in sun synchronous orbit. OCO-2 has spatial resolution of 

2.25km x 1.29km (Frankenberg et al., 2014). It measures Earth 

reflected radiation in O2-A band at 0.76 microns and CO2 band 
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at 1.61 and 2.06 µm. SIF is retrieval at O2-A band using the 

SIF emission spectra, ranges between 660 -850nm. 

 

2.1.2 Satellite-derived Biophysical Products: MODIS 

(MYD13C2) NDVI (Normalised Difference Vegetation 

Index) 8-days composite product at 0.05º spatial resolution 

was downloaded from NASA website 

(https://search.earthdata.nasa.gov). MODIS (MYD17A2H) 

GPP 8-day composite data of 500m pixel size of 2015-2017 

was obtained. GPP products based on fraction of absorbed 

photosynthetically active radiation (fAPAR) and 

photosynthetically Active Radiation (PAR) reflectance of 

vegetation which indicates the productivity of plants. 

 

2.1.3 Ancillary Data: District wise monthly rainfall data 

(AWS based) of different forested grids belonging to period 

2013 to 2017 was downloaded from Indian Meteorological 

Department (IMD) website (http://www.imd.gov.in/). In 

addition, the mean annual precipitation and temperature spatial 

data layers from Worldclim (www.worldclim.org/) was used. 

Vegetation type map of India was obtained from Reddy et al. 

(2015). 

 

2.2 Methods 

 

2.2.1 Selection of Contrasting Vegetation Types: 

According to Koppen-Geiger scheme of classification and 

based on vegetation type map of India (Reddy et al. 2015), three 

contrasting vegetation types were chosen i.e. Tropical Dry 

Deciduous (TDD) from Betul, Madhya Pradesh, Tropical Moist 

Deciduous (TMD) from Kalahandi, Orissa and Tropical Wet 

Evergreen (TWE) from Uttara Kannada, Karnataka of India 

(Figure 1). 

 
 

Figure 1. Location of selected forest type in India 

 
The factors such as data availability, species composition, Mean 

rainfall (MRF), Mean Temperature (MT) (℃) area extent (to 

suffice GOME-2 pixel extent) and seasonal variation were taken 

into account for selection of the site within the selected 

vegetation type (Table 1). 

 
 

S. 

No. 
Forest 

Type 

Dominant Species 
MT 

(℃) 

MRF 

(mm) 

1. TDD Tectona grandis & 
Butea sp. etc. 

23-29 750 - 
1900 

2. TMD Shorea robusta & 
Terminalia sp. etc. 

21- 26 1200- 
2000 

3. TWE Diptero carpus & 
Mesua hopea etc. 

24-27 2000- 
3000 

 

Table 1. Type of selected forest and their specific 

characters 
 

2.2.2 Pre-Processing of SIF Data: GOME-2 and OCO-2 SIF 

SIF data were downloaded in NetCDF (.nc) and NetCDF-4 

(.nc4) in 2-D and 1-D data format respectively. NetCDF format 

can be directly opened in HDF viewer, Panoply, MATLAB and 

R (CRAN) etc. software. ArcGIS uses “Make NetCDF Raster 

Layer” tool from ArcTool box to converts 2-D NetCDF file to 

other raster format (.TIF). 

 

GOME-2 SIF images of Indian region were extracted from the 

global coverage. However, OCO-2 SIF data global coverage is 

provided in the form of point layer (1-D). A Python script in 

Linux was used to extract are OCO-2-point data for Indian 

region. Negative and no data values were removed from raster 

layer marking as error or flag. 

 

2.2.3 Intra and Inter-Annual SIF Trend Analysis: Box 

plot method showing lowest value, highest value, lower quartile, 

upper quartile, distribution or range and median value were used 

to show the SIF trends using R studio (CRAN team, 2018). 

ARIMA (auto regressive integrated moving average) model is 

used to find out the temporal trend of SIF varying with other 

variables (e.g. rainfall, NDVI, and GPP) through time series 

analysis (CRAN team, 2018). In this study trend and point 

inflection (TPI) methods are used jointly by the help of CRAN- 

R statistical software (CRAN team, 2018). TPI method permits 

easy discrimination of growing season having multiple growth 

seasons. Pre-defined or comparative references value has been 

used to identify the transition phase (i.e. leaf fall as end of 

senescence, leaf flush as onset of greenness) as a threshold value. 

Phenological transition periods is the time lag between two 

specific phenological conditions. 

 

The inflection point method based on detection of values and 

point at particular range of time (Reed et al., 1994). Trend 

derivative methods used to estimate time integrated SIF for inter- 

annual variation analysis. tSIF estimated by using AUC (Area 

Under Curve) with quantitative accuracy tests through library 

(DescTools) available in R- core package. AUC drawn either one 

of these method “trapezoid”, “step” or “spline”. “spline” method 

is used with ‘splinefun’ function integrate in ‘function’. Loess 

regression is applied to smoothen the time series dataset and then 

time integrated value is calculated (Figure 2). 

 

Figure 2. Time integrated SIF (tSIF) smoothened using 

spline function 

 

2.2.4 Relationship of SIF with Biophysical Parameters: 

The biophysical parameters impact and pattern on SIF was 

analysed. Also seasonal as well as spatial variation examined. 

Partial correlations applied between SIF of GOME-2 and these 

parameters. The climatic variables are aggregated spatially and 

distributed monthly for each selected sites of forest. Individual 

variables relationship is derived and studied. Correlation 
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coefficient of rainfall ground station point data and GOME-2 

SIF is estimated. In this relationship one is ground data i.e. 

district rainfall IMD data and other one is satellite product. 

Bias and variance is estimated. 

 

This involves the study of phenological events and relationship 

during stress as well as growing phase. For this tSIF (time 

integrated SIF) and tNDVI (time integrated NDVI) values are 

studied for stress as well as for growing phase. The generated 

values are compared with each other. To derive GPP 

relationship with GOME-2 SIF similar above section trend 

analysis is done. Coefficient of regression value are also 

generated to compare the relationship of one variable with each 

other. 

 

3. RESULTS AND DISCUSSION 

 
3.1 Intra-Annual SIF Trend Analysis 

 

Seasonal variations affect the photosynthetic activity by 

regulating the phenology of forest. Seasonal variation (intra- 

annual) are shown by box-plot of monthly SIF for tropical dry 

deciduous, moist deciduous and wet evergreen forest type 

(Figure 3). 

 

 
 

Figure 3. Intra-annual trend of SIF derived from GOME-2 (left) 

and OCO-2 (right) for different forest type. 

 

3.1.1 Tropical Dry Deciduous (TDD): GOME-2 SIF values 

show large variation in minimum and maximum values 

indicating dry deciduous forest undergo minimum as well as 

maximum period of photosynthetic activity (Figure 3, top). 

Similar trend is also observed for OCO-2 SIF response with high 

variability during growth phase i.e., July –August and negligible 

during senescence. Though both GOME-2 SIF and OCO-2 able 

to capture the seasonality of dry deciduous forest well, yet 

GOME-2 SIF response was found tracking seasonal changes 

more clearly. The variability in SIF in June reaches to a 

maximum value of more than 1 and minimum value less than 

0.5, due to leaf flush resulting into accelerating metabolic 

activities (Dadhwal et al., 2012) which causes this variation in 

SIF after leaf emergence. 

 

In July, August & September growth of trees, particularly foliage 

is maximum with optimum growth condition. The higher 

metabolic activities of growing phase promote high productivity 

(Jha et al., 2013) thus account for high SIF values. Senescence 

phase starts from end of November and the forest remains 

leafless till March (Shah et al., 2007). To withstand the high 

temperature and low rainfall, TDD forests shed their leaves that 

reduces the transpiration rate and helps for their survival (Singh, 

Kushwaha, 2005). In the month of February and April, due to 

undergrowth (shrubs and herbs such as grasses) exposure (Pande 

et al., 2002), they also contribute to SIF showing more variability 

as compared to January and December. 

 
3.1.2 Tropical Moist Deciduous (TMD): These forests receive 

rainfall for four to five months. Due to this, the duration of 

growth phase length is more i.e., May to October. So, the growth 

is evenly distributed due to prolonged favourable condition for 

growth resulting into slow growth showing lesser SIF values 

during growth phase and high during senescence phase as 

compared to dry deciduous forest (Figure 3, middle). The leaves 

emerge in this type of forest during May –June. The SIF is quite 

higher as compared to previous months. The variability in SIF 

was found high because the selected forest has a mixed forest 

having different leaf emergence phases for different species 

found in this forest (Sinha et al., 2017). Peak growth phase of 

this forest ranges from end of June to October (Singh et al., 1993) 

which shows high values of SIF all round these months. 

Variability of SIF is more in the months of June and July due to 

maximum growth. Senescence phase starts from end of 

December and the forest remains leafless till March when the 

flowering starts (Poorter et al., 2007). 

 

 
3.1.3 Tropical Wet Evergreen (TWE): In the tropical wet 

evergreen, the seasonal variability do not show any specific trend 

as compared to dry deciduous and moist deciduous forests as the 

leaf fall, growth and senescence phases are not separable. For the 

evergreen vegetation, the SIF values remains uniform throughout 

the year due to no specific season for leaf fall so they keep on 

growing all-round the year (Dash et al., 2010). Still during 

August, it has attained maximum growth with highest value of 

SIF around 2.0. Minimum photosynthesis in the month of 

January. Due to metabolic activities throughout the year (Pascal 

et al., 2004), the variability in SIF is more during all months with 

a maximum variability in the month of June with highest SIF 

(Figure 3, bottom). The OCO-2 SIF response deviated from 

GOME-2 SIF in the month of April and September except these 

two months, there is similarity between growing as well 

senescence phase of both the satellite SIF trends. 

 

3.2 Time Series Analysis (Intra- And Inter-Annual SIF) 

 

SIF of three contrasting tropical forest types show different level 

of photosynthetic activity in different months. Overall mean SIF 

values for wet evergreen is more as compared to dry and moist 

deciduous. But maximum SIF response was observed in August 

for dry deciduous. It indicates that dry deciduous forest have 

high photosynthetic capacity for short duration (Figure 4). 
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Figure 4. Time- series trends analysis for monthly variable 

[SIF (GOME-2), GPPMODIS, NDVIMODIS, and Rainfall 

(RF)] from 2014 to 2017 (n=48). 

 

To predict the seasonal cycle, the SIF derived from GOME-2 

served as an effective predictor for different forest types. The 

trend is more closely corresponded with rainfall and GPP than 

with NDVI. 

 

3.2.1 Tropical Dry Deciduous (TDD): The pattern and 

seasonality that are obtained through SIF data are different from 

traditional vegetation indices records. The SIF & GPP shows 

enhanced productivity from July to October and values reaches 

to peak during post monsoon months i.e. August, September and 

October whereas rainfall is at its peak in the month of June and 

July. During dry months they shed leaf (April, May, June) so, the 

SIF, GPP and NDVI reaches to minimum in each year to limit 

evapotranspiration loss (Singh & Kushwaha,2005). SIF and 

rainfall shows highest value in the year 2016 whereas NDVI and 

GPP showing similar trend for all the years. As compared SIF 

from these three variables the correlation with rainfall is better 

than other two variables i.e. (R2=0.62) (Figure 5). SIF relates 

to GPP and NDVI with R2 =0.58 and 0.5 respectively (p 

<0.005). 

 

 

Figure 5. GOME-2 SIF relationship with rainfall (a), GPP 

(b) and NDVI (c) for TDD 

 

3.2.2 Tropical Moist Deciduous (TMD): SIF shows rapid rise 

after receiving first shower of rains, i.e. from May which is 

different while comparing to dry sites which shows rise in value 

during late June supporting the findings of Sinha et al., (2017). 

In the year 2016 and 2017 SIF and rainfall follow each other but 

not in 2014 and 2015. The trend of GPP and NDVI remain same 

for entire four years whereas SIF reaches to peak value 2.4 

during 2016. It was also observed that SIF reacted sharply to 

increasing rainfall amount during growing phases of forests, 

more sharply than NDVI. On the other hand, sharp decrease in 

SIF was observed in post-monsoon period indicating increasing 

level of water stress in the forests for which NDVI did not show 

much sensitivity till November months. Rainfall shows highest 

R2 with SIF R2 = 0.55 (p<0.5) for TMD forest (Figure 6). SIF is 

not well correlated with GPP and NDVIMODIS with R2=0.4 

(p<0.5) for TMD forest.  

 

 
 

Figure 6. GOME-2 SIF relationship with rainfall (a), GPP 

(b) and NDVI (c) for TMD 

 

3.2.3 Tropical Wet Evergreen (TWE): The SIF response of 

TWE is unique. NDVI trend of 2015 did not show seasonal 

variation (Prasad et al. 2007) but SIF showed seasonal variability 

for the same period. This shows that SIF is more related to 

phenology as well as stress in evergreen species than NDVI. The 

seasonal correlation between SIF and GPP was also weaker in 

the wet tropics, mostly because of the minimal GPP seasonality 

and noise in the data (Giardina et al., 2018) (Figure 7). 

 

Figure 7. GOME-2 SIF relationship with rainfall (a), GPP 

(b) and NDVI (c) for TWE 
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Leaf emergence takes place in February and March (pre- 

monsoon) and led to rise of SIF value in each year but the same 

could not captured using NDVI. Flowering and fruiting takes 

placed in between December-March. Wet evergreen was found 

less sensitive to precipitation seasonality. As trees in tropical 

wet evergreen forests contain more biomass and have deep 

rooting systems which enables to access them deeper soil 

moisture thus avoid impacts of drought month on 

photosynthetic capacity. 

 

3.3 Inter-Annual SIF Trend Analysis 

 

Minor differences were observed in the values of yearly tSIF 

estimated from original curve and smoothened curve by AUC 

and spline algorithm. The unit of tSIF depend upon the SIF 

unit (i.e. mW/m2/nm/sr). Overall tSIF (2014-2017) estimated 

through GOME-2 shows highest for TWE whereas OCO-2 

showed tSIF for TMD was slightly higher than TWE (Table 

2). 
 

GOME-2 

Year 2014 2015 2016 2017 Mean SD 

TDD 7.98 10.40 9.60 9.50 9.37 0.88 

TMD 11.50 10.70 11.80 11.50 11.38 0.41 

TWE 12.30 11.90 10.70 12.30 11.80 0.66 

Mean 10.59 11.00 10.70 11.10   

SD 1.88 0.65 0.90 1.18   

OCO-2 

Year 2015 2016 2017 Mean SD  

TDD 5.07 6.81 5.84 5.91 0.71  

TMD 6.86 5.99 5.98 6.28 0.41  

TWE 5.99 6.14 6.64 6.26 0.28  

Mean 5.97 6.31 6.15    

SD 0.73 0.36 0.35    

 

Table 2: Time integrated SIF (tSIF) from GOME-2 and OCO-2 

 

Annual tSIF estimated from GOME-2 (tSIFGOME-2) was higher 

than tSIF from OCO-2 (tSIFOCO-2) for almost all year (Table 2). 

Total tSIF was lowest for TMD forest type than TMD and TWE 

estimated from both the SIF sensors. tSIFGOME-2 of TDD for year 

2016 and 2017 is almost same whereas, tSIFOCO-2 shows highest 

value for year 2016 instead of 2015, as rainfall was also recorded 

higher for the same year. Yet, tSIF for year 2015 shows little 

anomaly as OCO-2 estimates higher for TMD and lower for 

TDD and TWE but GOME -2 estimates highest for TDD than 

TMD and TWE. TWE shows highest photosynthetic activity 

than TMD and TDD forest type. 

 

The dry deciduous and moist deciduous forest revealed similar 

trends in both SIF and NDVI but wet evergreen forest exhibited 

more prominent differences in SIF and NDVI (Figure 8). This 

is because SIF is associated with chlorophyll molecules 

function (Frankenberg et al., 2014) and not only greenness of 

leaf whereas NDVI rely only on greenness of leaf (Anyamba et 

al., 2001). 

 

 

 

 

 

 
 

 

 

Figure 8. Illustration of pattern difference using (a) SIF & (b) 

NDVI values 

 
 

4. CONCLUSION 

 

GOME-2 SIF observations efficiently captured the seasonal 

variability than OCO-2 SIF. Estimated monthly SIF and annual 

tSIF are guided by the rainfall for all forest type. Observation 

shows that, SIF effectively captures the photosynthetic 

variability linked with leaf transition periods (i.e. leaf flushing 

and senescence phase) particularly in dry deciduous forest. 

Monthly SIF also shows unique characteristic of dry deciduous 

forest with a peak and deep annually. SIF potentially captures 

seasonality while NDVI gets saturated specially in evergreen 

forest. Annual tSIF as a proxy of photosynthetic activity (i.e. 

GPP) shows, wet evergreen forest sequestrated more carbon than 

moist deciduous and dry deciduous forest. GPP from MODIS 

can be replaced by tower generated GPP to get a more accuracy 

in terms of relation. In future, SIF can be used as an important 

tool to measure temporal and spatial variability of photosynthetic 

activity, stress pattern, and forest health of different forest type. 

 
 

ACKNOWLEDGEMENTS 

 

All authors would like to thank Director, Indian Institute of 

Remote Sensing (IIRS) for providing logistic facilities to 

execute this research. Dr S. K. Srivastav, Dean (A), IIRS is 

thanked for guidance and encouragement. 

 
 

REFERENCES 

 

Anyamba, A., Tucker, C. J., Eastman, J. R., 2001. NDVI 

anomaly patterns over Africa during the 1997/98 ENSO warm 

event. Int. J. Remote Sens., 22(10), 1847-1860. 

 

Chen, J.., Liu, J., Cihlar, J., Goulden, M.., 1999. Daily canopy 

photosynthesis model through temporal and spatial scaling for 

remote sensing applications. Ecol. Modell. 124, 99–119. 

https://doi.org/10.1016/S0304-3800(99)00156-8 

 

Dadhwal, V. K., 2012. Assessment of Indian carbon cycle 

components using earth observation systems and ground 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1047-2020 | © Authors 2020. CC BY 4.0 License.

 
1051



inventory. Int Arch Photogram Remote Sens Spat Inform Sci, 

39, 249-254. 

 

Damm, A., Guanter, L., Paul-Limoges, E., van der Tol, C., 

Hueni, A., Buchmann, N., Eugster, W., Ammann, C., 

Schaepman, M.E., 2015. Far-red sun-induced chlorophyll 

fluorescence shows ecosystem-specific relationships to gross 

primary production: An assessment based on observational 

and modeling approaches. Remote Sens. Environ. 166, 91–

105. https://doi.org/10.1016/j.rse.2015.06.004 

 

Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, 

J.A., Frankenberg, C., Huete, A.R., Zarco-Tejada, P., Lee, 

J.E., Moran, M.S., Ponce-Campos, G., Beer, C., Camps-

Valls, G., Buchmann, N., Gianelle, D., Klumpp, K., Cescatti, 

A., Baker, J.M., Griffis, T.J., 2014b. Global and time-

resolved monitoring of crop photosynthesis with chlorophyll 

fluorescence. Proc. Natl. Acad. Sci. U. S. A. 111. 

https://doi.org/10.1073/pnas.1320008111 

 

Dash, J., Jeganathan, C., Atkinson, P. M., 2010. The use of 

MERIS Terrestrial Chlorophyll Index to study spatio-temporal 

variation in vegetation phenology over India. Remote Sens. 

Environ. 114(7), 1388-1402. 

 

Frankenberg, C., Dell, C.O., Berry, J., Guanter, L., Joiner, J., 

Köhler, P., Pollock, R., Taylor, T.E., 2014.Remote Sensing of 

Environment Prospects for chlorophyll fluorescence remote 

sensing from the Orbiting Carbon Observatory-2. Remote 

Sens. Environ. 147, 1–12. 

https://doi.org/10.1016/j.rse.2014.02.007 

. 

Jha, C. S., Thumaty, K. C., Rodda, S. R., Sonakia, A., Dadhwal, 

V. K., 2013. Analysis of carbon dioxide, water vapour and 

energy fluxes over an Indian teak mixed deciduous forest for 

winter and summer months using eddy covariance technique. J. 

Earth Syst. Sci., 122(5), 1259-1268. 

 

Joiner, J., Guanter, L., Lindstrot, R., Voigt, M., Vasilkov, A.P., 

Middleton, E.M., Huemmrich, K.F., Yoshida, Y., 2013. Global 

monitoring of terrestrial chlorophyll fluorescence from 

moderate-spectral-resolution near-infrared

 satellite measurements : 

methodology, simulations, and application to GOME-2. Atmos. 

Meas. 6, 2803–2823. 

https://doi.org/10.5194/amt-6-2803-2013 

 

Joiner, J., Yoshida, Y., Guanter, L., Lindstrot, R., Voigt, M., 

Jung, M., Vasilkov, A., Middleton, E., Huemmrich, K.F., 

Tucker, C.J., Frankenberg, C., Berry, J.A., Schaefer, K., 

Koehler, P., 2014. New Measurements of Chlorophyll 

Fluorescence with Gome-2 and Comparisons with the Seasonal 

Cycle of Gpp from Flux Towers. 5th Int. Work. Remote Sens. 

Veg. Fluoresc. 7–11. 

 

Lee, J.-E., Frankenberg, C., van der Tol, C., Berry, J.A., Guanter, 

L., Boyce, C.K., Fisher, J.B., Morrow, E., Worden, J.R., Asefi, 

S., Badgley, G., Saatchi, S., 2013. Forest productivity and water 

stress in Amazonia: observations from GOSAT chlorophyll 

fluorescence. Proc. R. Soc. B Biol. Sci. 280, 20130171– 

20130171. https://doi.org/10.1098/rspb.2013.0171 

 

Meroni, M., Rossini, M., Guanter, L., Alonso, L., Rascher, U., 

Colombo, R., Moreno, J., 2009. Remote sensing of solar-

induced chlorophyll fluorescence: Review of methods and 

applications. Remote Sens. Environ. 113, 2037–2051. 

https://doi.org/10.1016/j.rse.2009.05.003 

 

Moya, I., Camenen, L., Evain, S., Goulas, Y., Cerovic, Z.G., 

Latouche, G., Flexas, J., Ounis, A., 2004. A new instrument for 

passive remote sensing: 1. Measurements of sunlight-induced 

chlorophyll fluorescence. Remote Sens. Environ., 91, 186–197. 

https://doi.org/10.1016/j.rse.2004.02.012 

 

Pande, P. K., Meshram, P. B., Banerjee, S. K., 2002. Litter 

production and nutrient return in tropical dry deciduous teak 

forests of Satpura plateau in central India. Trop. Ecol., 43(2), 

337-344. 

 

Pascal, J. P., Ramesh, B. R., Franceschi, D. D., 2004. Wet 

evergreen forest types of the southern Western Ghats, 

India. Trop. Ecol., 45 (2), 281-292. 

 

Patel, N. R., Padalia, H., Devadas, R., Huete, A., Kumar, A. S., 

Krishna Murthy, Y. V. N., 2018. Estimating net primary 

productivity of croplands in Indo-Gangetic Plains using GOME- 

2  sun-induced  fluorescence  and  MODIS  NDVI.   Curr.   Sci. 

(00113891), 114(6). 

 

Plascyk, J.A., 1975. The MK II Fraunhofer Line Discriminator 

(FLD-II) The MK II Fraunhofer Line Discriminator (FLD -II) 

for Airborne and Orbital Remote Sensing of Solar-Stimulated 

Luminescence. optical Eng. 14, 339–346. 

https://doi.org/10.1117/12.7971842 

 

Poorter, L., Kitajima, K., 2007. Carbohydrate storage and light 

requirements  of  tropical  moist  and  dry   forest   tree   species. 

Ecology, 88(4), 1000-1011. 

 

Prasad, V. K., Badarinath, K. V. S., Eaturu, A., 2007. Spatial 

patterns of vegetation phenology metrics and related climatic 

controls of eight contrasting forest types in India–analysis from 

remote sensing datasets. Theor. Appl. Climatol., 89(1-2), 95. 

 

R Core Team, 2018. R: A language and environment for 

statistical computing. R Foundation for Statistical Computing, 

Vienna, Austria. URL http://www.R-project.org/. 

 

Reed, B. C., Brown, J. F., VanderZee, D., Loveland, T. R., 

Merchant, J. W., Ohlen, D. O., 1994. Measuring phenological 

variability from satellite imagery. J. veg. sci., 5(5), 703-714. 

 

Reddy, C. S., Jha, C. S., Diwakar, P. G., Dadhwal, V. K., 2015. 

Nationwide classification of forest types of India using remote 

sensing and GIS. Environ. Moni. Assess. 187(12), 777. 

 

Singh, K. P., Kushwaha, C. P., 2005. Paradox of leaf phenology: 

Shorea robusta is a semi-evergreen species in tropical dry 

deciduous forests in India. Curr. Sci., 88, 1820−1824. 

 

Shah, S. K., Bhattacharyya, A., Chaudhary, V., 2007. 

Reconstruction of June–September precipitation based on tree- 

ring data of teak (Tectona grandis L.) from Hoshangabad, 

Madhya Pradesh, India. Dendrochronologia, 25(1), 57-64. 

 

Giardina, F., Konings, A. G., Kennedy, D., Alemohammad, S. 

H., Oliveira, R. S., Uriarte, M., Gentine, P., 2018. Tall 

Amazonian forests are less sensitive to precipitation variability. 

Nat. Geosci., 11, 405–409. 

https://doi.org/10.1038/s41561-018-0133-5 

 

Singh, O., Sharma, D. C. Rawat, J. K., 1993. Production and 

decomposition of leaf litter in sal, teak, eucalyptus and poplar 

forests in Uttar Pradesh. Indian For., 119(2), 112–121. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1047-2020 | © Authors 2020. CC BY 4.0 License.

 
1052

http://www.r-project.org/
https://doi.org/10.1038/s41561-018-0133-5


 

Sinha, S. K., Padalia, H., Kumar, A. S., 2017. Space-borne 

sun- induced fluorescence: an advanced probe to monitor 

seasonality of dry and moist tropical forest sites. Curr. Sci., 

113(11), 2180. 

 

Tol, C. van der, Berry, J.A., Campbell, P.K.E., Rascher, U., 

2014. Models of fluorescence and photosynthesis for 

interpreting measurements of solar-induced chlorophyll 

fluorescence. J. Geophys. Res. Biogeosciences, 119, 2312–

2327. https://doi.org/10.1002/2014JG002713.We 

 

Tol, C. van der., Verhoef, W., Rosema, A., 2009. A model for 

chlorophyll fluorescence and photosynthesis at leaf scale. 

Agric. For. Meteorol. 149, 96–105. 

https://doi.org/10.1016/j.agrformet.2008.07.007 

 

Verrelst, J., Rivera, J.P., van der Tol, C., Magnani, F., 

Mohammed, G., Moreno, J., 2015. Global sensitivity analysis 

of the SCOPE model: What drives simulated canopy-leaving 

sun- induced fluorescence? Remote Sens. Environ., 166, 8–21. 

https://doi.org/10.1016/j.rse.2015.06.002 

 

Walker, A.P., Beckerman, A.P., Gu, L., Kattge, J., 

Cernusak, L.A., Domingues, T.F., Scales, J.C., Wohlfahrt, 

G., Wullschleger, S.D., Woodward, F.I., 2014. The 

relationship of leaf photosynthetic traits - Vcmax and Jmax - 

to leaf nitrogen, leaf phosphorus, and specific leaf area: A 

meta-analysis and modeling study. Ecol. Evol., 4, 3218–

3235. https://doi.org/10.1002/ece3.1173 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1047-2020 | © Authors 2020. CC BY 4.0 License.

 
1053




