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ABSTRACT: 

 

Lidar (light detection and ranging) data are becoming more and more important in the analysis of the most relevant forest parameters. 

This study aims to compare the most recent segmentation methods for single trees using the ALS (Airborne Laser Scanning) point 

cloud and the CHM (Canopy Height Model). The methods used were the Li et al., method developed in 2012 and the Multi CHM 

method developed in 2015. The parameters analysed were the height and diameter for the individual trees and the volume and density 

for the entire forest. The efficiency of each method was verified by comparing the estimated parameters with those measured through 

30 test areas. To better identify the useful parameters for the correct calibration of the algorithms, the population was divided into three 

layers according to the vertical structure and chronological class. From the comparison of the volumes obtained with the above methods 

and those calculated for the test areas, it emerges a tendency to over-segment for the Multi CHM method, while for the appropriately 

calibrated Li method there is a better correspondence to reality. The F-score values for the volumes obtained for the Li method are 

between 0.52 and 0.69 while for those obtained for the Multi CHM method are between 0.47 and 0.55. When compared with relascopic 

measures for each of the 48 parcels, a mean absolute difference ~127 m3/ha and ~141 m3/ha were found for Li2012 and MultiCHM 

respectively. 

 

 

 

 

1. INTRODUCTION 

Lidar data (light detection and ranging) are becoming 

increasingly important in the analysis of the Earth surface 

(Pirotti, 2019) and in particular the main forest parameters. 

Nowadays lidar technology is used in the drafting of forest 

management plans mainly as support in the stratification of the 

stand in forest units and in the verification of the parcel 

boundaries (Leckie et al., 2003).  

 

The estimation of volumes is currently carried out by methods 

based on the estimation of the basimetric area and its conversion 

into volumetric parameter. These methods consist of measuring 

diameters for the whole forest or for test areas or the relascopic 

technique. The importance of knowing the volume of a stand is 

fundamental for a correct planning that guarantees the 

opportunity to use the woody products without depleting the 

wooded areas. 

  

Remote sensing methods for estimating forest volumes are the 

topic of a very large number of investigations ever since remote 

sensing became an accessible technology. Optical and radar 

imagery are often used together (Vaglio Laurin et al., 2016). 

Vegetation indices have provided biomass models that work 

better at low biomass values and saturate over thick vegetation 

(van der Meer et al., 2000).  

 

Laser scanning brought a new frontier in estimation of volume 

and biomass. Laser scanning has attracted particular interest due 

to its unique advantage, i.e. the capability to penetrate through 

the foliage and capture both tree structures and the ground (Lim 

et al., 2003).  Traditional forest inventories measure the diameter 

at breast height of the tree and estimate volume with allometric 

models (Dalponte et al., 2018; Jucker et al., 2017). Volume and 

aboveground biomass (AGB) are then tied to other models 

related to species and other factors. Estimation of DBH from 

airborne laser scanner data is only possible through allometric 

equations.  Accurate canopy height models from laser scanning 

surveys allow area-based and single-tree based methods (Pirotti 

et al., 2017), and derived informative layers such as damage 

assessment (Pirotti et al., 2016). 

 

Algorithms for individual tree detection and segmentation from 

lidar data have been widely investigated (Dalponte et al., 2008; 

Dalponte and Coomes, 2016; Pirotti et al., 2017). All methods, to 

the authors' knowledge, require some type of parameter tuning, 

that is provided as scalar values or linked to some functions, that 

change depending on forest parameters, such as tree density, 

structure and tree height (Pirotti et al., 2017). It is well known 

that forest structure can be aggregated up to a point, as forest 

management is spatially aggregated in parcels that supposedly 

have a constant population structure. Parcels are joined to look-

up-tables that link height, diameter and volume, whose 

proportions are supposedly constant for the forest population in 

the parcel.  

 

The aim of the study is to verify the applicability of lidar data in 

the estimation of forest volume using two methods that have been 

implemented in the R environment. 

 

 

2. STUDY SITE 

The study area is located in the province of Trento, in the Italian 

Alps. The entire area extends on the orographic left of the Val di 

Fiemme close to the lake of Stramentizzo (46 ° 15 '45' 'N, 11 ° 

23' 27 '' E), hydroelectric basin on the river Avisio. The total area 

is about 708 ha. The minimum altitude of the area is 790 m a.s.l., 

near Lake Stramentizzo, while the maximum altitude is 1718 m 

a.s.l. in loc. Palleta; the prevailing altitude is between 1000 and 
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1400 m a.s.l. The orography is overall uniform; the slopes are 

quite steep with a progressive decrease of the slope as the altitude 

increases. The dominant exposure is North with variations 

between North-West and North-East. 

 

The forest area is composed almost exclusively of conifers, with 

the predominance of spruce (Picea abies L.) which mixes with 

white fir (Abies alba Mill.) and larch (Larix decidua Mill.) 

depending on the station. The broadleaved trees are poorly spread 

and consist mainly of beech (Fagus sylvatica L.). The great 

presence of single-layer spruce forests is attributable, in addition 

to the environmental conditions suitable for the species, to the 

single-specific reafforestations that until a few decades ago were 

carried out after the clear cut. 

 

 
 

 
Figure 1.  Location of study area (top) and area with damaged 

areas (bottom). 

 

 

The VAIA storm at the end of October 2018 created heavy 

damages in the property (Figure 1 and  Figure 2). The damaged 

area is ~104 ha for a total of ~51,000 m3, estimated from previous 

forest plans actualized to today. 

 

 

Figure 2.  Damaged areas (courtesy of A.von Longo). 

 

3. METHODS 

3.1 Stratification  

For this study, 3 types of layer were identified related to the 

structure of the forest and the evolutionary stage: multi-layers, 

mature single-layers and young single-layers. The detection of 

the layers was conducted on video through the affixing of the 

semi-transparent CHM orthophoto; this operation, associated 

with a blinking operation (rapid switching on and off of the layer) 

allowed a provisional delineation of the layers subsequently 

verified in the field (Alberti et al., 2013). The study of volumes 

per single tree renders the classification of the stand as a function 

of density inessential. 

 

3.2 Sampling 

In the study area 30 test areas were fixed with a radius of 15 m 

and an area of 707 m2. The positioning of the centre of the test 

area was not random. For the placement of the test areas, the 

characteristics of the stand were considered, researching areas 

with mean dendrometric parameters, excluding areas where 

biotic and abiotic disorders have occurred recently. 15 areas were 

assigned to the multi-layer, 10 areas to the old single-layer and 5 

areas to the young single-layer. 

 

Two pickets were placed for the georeferencing of the test area 

and the points were acquired by the use of the Trimble TSC3 

controller combined with the Trimble R8s GNSS System 

receiver. The points were acquired with a horizontal error of less 

than 40 cm. 

 

The centre of the test area was acquired through triangulation 

with pickets. In the phase of acquisition of the position of the 

trees included in the test areas for all trees it has been established 

the species, the diameter and the height. All the peculiar 

characteristics of the trees as the steep inclination of the trunk or 

dead subjects were also noted (Montaghi et al., 2013). 

The plants and pickets were acquired through the total station 

Trimble S6 combined with the Trimble TSC3 controller.   

 

3.3 Method A – Li2012 

This method, developed by (Li et al., 2012), allows the 

segmentation of individual trees from the cloud of ALS points 

arising from the lidar. The algorithm is particularly suitable for 

the study area because it was developed for mixed coniferous 

forests on rough terrain (Li et al., 2012). The method is based on 

the principle that the spacing at the bottom of the crown is less 

than near the apices. It is necessary to identify the correct 

interdiction thresholds for each layer so as to limit errors due to 

over-and-under-segmentation. These thresholds depend on the 

shape and position of the trees. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1055-2020 | © Authors 2020. CC BY 4.0 License.

 
1056



 

 

First, the ALS cloud must be normalized in order to facilitate the 

identification of local maxima. In the segmentation phase the 

algorithm identifies the local maximum in the cloud of points and 

it identifies it as a “target tree”. Then it associates all the points 

within a predetermined threshold to the “target tree” excluding 

the points belonging to other plants. Once segmented, the target 

tree is removed from the point cloud, so that the algorithm can 

detect the new local maximum (Li et al., 2012). All operations 

were implemented with the Rstudio software. 

 

3.4 Method B – MultiCHM 

The MultiCHM method, described by Eysn et al., in 2015, is 

based on iterative development of CHM at decreasing heights 

and acquisition of the local maximum (LMF) for each band (Eysn 

et al., 2015). 

 

For the generation of the CHM it is necessary the normalization 

of the cloud of ALS points through the use of a DTM. From the 

normalized ALS point cloud a CHM is generated between two 

predetermined elevations. To prevent errors due to the presence 

of pixels with elevations greater than the crown surface, a CHM 

is created by assigning the 95 th percentile for each raster cell 

(Eysn et al., 2015). The CHM without outliers is used for the 

detection of local maxima (LM), the points fixed in this operation 

provide the position and the height of the trees, these data are 

saved in a database at each iteration. Then a lower elevation 

CHM is generated and the above operations are repeated until the 

ALS points are exhausted (Eysn et al., 2015). The algorithm used 

in this method proceeds to the detection of apices through a 

mobile window with a fixed size of 3x3 pixels. 

 

To prevent problems related to double counting all the points 

belonging to the single tree located below the actual apex must 

be eliminated. The points saved in the database are placed in 

descending order by identifying the point with the largest height, 

it is identified as “real apex”. The identification of the following 

"real apex' is carried out by validating previously established 

horizontal and vertical distance thresholds. If the distance is 

lower at these thresholds the point is eliminated, in the case of 

greater distance the point is identified as the “real apex” (Eysn et 

al., 2015). 

 

3.5 Comparison 

In order to test the accuracy of the Li and MultiCHM methods, 

the results of these methods were compared in the test areas, 

parcels and layers. 

 

The aim of such verifications is to determine which of the two 

methods is the most suitable for the stand and to determine the 

total volume of the layer and parcel level. All operations were 

conducted with Qgis software. 

 

3.5.1 sample area check. The matching procedure for the 

trees measured in the forest and those resulting from the methods 

shall consider the position factor only. For the determination of 

the searching area a fixed buffer of 2 m was chosen, applied to 

the points corresponding to the trees measured in forest. This 

threshold is necessary due to the slight natural inclinations of the 

plant and also due to the inaccuracies due to the geo-referencing 

of the points related to the trees surveyed in the field. The points 

corresponding to the trees extracted with the two methods were 

then cut out using the 2 m buffer as a mask. They were 

subsequently screened for irregularities. 

 

The tree points were then assigned to the three classes: 

• true positives (TP): points arising from the method that 

match correctly to truths on the ground; 

• false negatives (FN): truths on the ground without 

correspondence with the points arising from the methods; 

• false positives (FP): erroneously extracted points from the 

method, as they are without real correspondence; 

 

These values, however, do not return a single index relative to 

the accuracy of the method. For this reason, the accuracy 

measurement F-score (Eq. 2) calculated through the harmonic 

mean of precision and recall was applied.  

 

 
𝑟 =

𝑇𝑃

𝑇𝑃+𝐹𝑁

𝑝 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

 (Eq. 1) 

 

  

 𝐹 = 2 ∙
𝑝∙𝑟

𝑝+𝑟
 (Eq. 2) 

 

where p and r are respectively precision and recall values. 

 

3.5.2 Check on parcel.  The comparison of the two methods 

used for the volumetric estimation of stands was carried out not 

only by test area but also at parcel level. The application of the 

method to parcel level turns out to be very important for a 

comparison with the historical data of the property. It is important 

to specify how historical data should be used as an indication and 

not as a real parameter as they are also derived from estimations. 

 

3.5.3 Check on strata.  Comparison of layer results may be 

useful in understanding the sensitivity of methods applied in 

relation to the variability of stands. A careful analysis of the 

results obtained by the MultiCHM method and the Li method 

allows to identify the areas in which the methods are suitable so 

as to try to understand the limits and potential of them. 

 

 

4. RESULTS AND DISCUSSION 

Total volume per parcel was aggregated from single trees and 

comparison with reference values for each sample area, each 

parcel, and each stratum was carried out.  

 

The term “differences” will be used instead of “error”, because it 

must be noted that the figures considered for control are from 

relascopic measurements and these do not have a level of 

accuracy such that it can be used as control (e.g. 10x more 

accurate). In literature errors from relascopic measures are 

between 4 and 10%, with higher error values for uneven-aged 

dense forests  (Pesonen et al., 2009; Piqué et al., 2011). Our area 

included both even-aged and multi-strata forests, therefore we 

can assume an error in relascopic measures in the higher range. 

Accounting for this factor is important; it does not decrease the 

validity of the method, but clarifies that differences do not 

necessarily imply that one method is better, but how close it 

comes to a more common estimation method, i.e. sample 

relascope areas. 

 

4.1 Sample areas 

Sample areas had each tree position, diameter and height known, 

so a strict control was carried out. Table 1 below shows the 

detection scores.  
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 Li2012 MultiCHM 

Precision 0.38 0.49 

Recall 0.60 0.40 

F-score 0.46 0.44 

Table 1. Tree detection rates and overall F-score. 

 

The detection scores were weighted with volume values because 

volume is the most important factor. Table 2 shows results after 

weighting with volume. 

 

 Li2012 MultiCHM 

Precision 0.50 0.49 

Recall 0.58 0.51 

F-score 0.54 0.50 

Table 2. Detection scores weighted with volume. 

 

The two tables above show how MultiCHM performed better in 

terms of detecting tree position, but mostly on smaller trees, 

whereas Li2012 had a better performance to detect the larger 

trees, thus a better prediction of volume. It must be noted that any 

automatic tree detection method is strongly dependent on how 

parameters are tuned, and that the way that the two methods were 

applied might be further improved. The Li2012 method was 

slight tuned by applying different values of a parameter called 

dt2 which is an adaptive distance threshold  (Li et al., 2012). 

Different dt2 values were used for the three strata; even-aged, 

multiplanar and  

 

4.2 Parcels 

Comparison was carried out by aggregating total volume per 

parcel and results are presented and compared between the two 

methods and relascopic measures done over 350 sample areas. 

Table 3 below shows the results. 

 

  
parcel multichm li2012 relascope diff.multichm diff.li2012 

1 202 346 526 -324 -180 
2 505 675 839 -333 -163 

3 828 1071 863 -36 208 

4 765 912 643 123 270 
5 679 1009 1167 -488 -158 

6 374 613 626 -251 -13 

7 525 684 702 -177 -18 
8 841 798 621 220 177 

9 605 842 678 -73 164 

10 529 684 624 -95 60 
11 517 791 646 -129 145 

12 802 856 806 -4 50 

13 741 902 1052 -310 -150 
14 610 884 613 -2 271 

15 498 638 548 -50 90 

16 467 577 560 -93 17 
17 335 464 573 -237 -109 

18 650 689 611 38 78 

19 400 585 564 -164 21 
20 527 665 697 -170 -32 

21 426 713 433 -6 280 

22 441 607 475 -35 132 
23 556 755 698 -142 57 

24 385 568 579 -194 -11 

25 757 807 673 84 134 
26 588 652 558 30 94 

27 575 748 458 117 290 

28 720 855 443 276 411 
29 424 443 684 -260 -241 

30 348 655 1802 -1454 -1147 
31 466 634 932 -466 -298 

32 405 557 22 383 536 

33 550 700 752 -202 -52 

34 610 736 576 34 160 

35 590 893 436 154 457 
36 380 541 434 -54 107 

37 525 743 588 -63 155 

38 350 494 377 -27 117 
39 473 563 616 -143 -53 

40 369 545 650 -281 -105 

41 601 633 662 -61 -29 
42 627 696 670 -42 26 

43 448 610 536 -88 73 

44 646 870 725 -79 145 
45 570 718 639 -69 79 

46 71 142 129 -57 13 

47 230 293 415 -185 -121 
48 158 298 1215 -1057 -918 

Table 3. Volume values (m3/ha) and differences. 

 

 

Overall differences were aggregated to provide metrics that 

summarize differences between the two methods using some 

accuracy metrics in Table 4 below.   

 

 Li2012 MultiCHM 

MD 21 m3/ha -134 m3/ha 

MAD 179 m3/ha 195 m3/ha 

RMSD 279 m3/ha 320 m3/ha 

MD* 49 m3/ha 104 m3/ha 

MAD* 127 m3/ha 141 m3/ha 

RMSD* 159 m3/ha 182 m3/ha 

Table 4.  Basic difference metrics comparing the methods 

with the relascopic measures. MD=mean of 

differences, MAD=mean of absolute differences, 

RMSD=root mean square error of differences. 

Asterisk shows values without the 5 outliers. 

 

Table 4 above shows that Li2012 comes closer to the relascopic 

values, but with a very small difference from MultiCHM. Figure 

3 below shows that the differences are not correlated with area 

size. There are 5 gross differences in parcels 32, 28, 35, 48 and 

30. The differences are due to difficulty assigning an updated 

volume value from relascopic figures, as those areas underwent 

a windthrow event of VAIA storm. These parcels that were 

partially damaged, had to be recalculated be removing the 

damaged part from all calculations. This process leads to extra 

errors that very likely caused those differences.    

 

 

Figure 3. Distribution of differences over area size. 
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4.3 Strata  

Aggregating to the three strata mature single-layered, multi-

layered and young stands values have the results in the following 

table.  

 

 

 Li2012 MultiCHM 

mature single-layered 78800 77777 

multi-layered 168030 116504 

young stands 16666 8558 

Total 263496 202839 

Table 5. Total volume m3/ha for all strata. 

 

 

 

Dividing the 30 sample areas according to each stratum provides 

more information on F-Scores, precision and recall divided in the 

three strata. Results are summarized in Table 6 below. 

 

 

 

 young stands single-layered multi-layered 

 A B A B A B 

Recall 0.65 0.47 0.50 0.44 0.50 0.39 

Precision 0.74 0.67 0.55 0.46 0.58 0.44 

F-score 0.69 0.55 0.52 0.47 0.54 0.41 

Table 6.  A=Li2012 B=MultiCHM – hit accuracies weighted 

with volume. 

 

 

An initial look at the table above shows a higher accuracy in 

young stands, where it is known that due to higher tree density, 

tree-based methods often perform worse. It must be noted that the 

Li2012 methods was tuned for the three strata, respectively 

young-stands had dt2=1.25, single-layered had dt2=2.0 and 

multi-layered had dt2=1.5. This differentiation was not applied 

to MultiCHM also because its parameters are different. As can be 

noted, and as was mentioned at the beginning of this article, 

tuning parameters is a fundamental step for a good result. It is 

trivial that a method can be over-fitted to a certain scenario, but 

in this case, fitting was done over 30 sample areas and applied to 

48 parcels that were then compared (see Table 3). This provides 

a better idea of the replicability of the method. 

 

4.4 Damaged trees volume estimation 

The estimated volume of timber felled by Vaia storm by the 

property staff is ~50,200 m3. The volume estimation was carried 

out in the days following storm by extracting the volumetric 

values both from the current forest management plan and from 

the register of clear cuts made in previous years in the areas 

affected by the storm. 

 

For the damanged areas, the value of 1.5 was used as an 

interdistance dt2. The volume obtained from the application of 

the Li method for damaged areas is 51,084 m3, with an 

overestimate of 1.76% compared to the volumes estimated by the 

forestry company. The volumes estimated by the Li method were 

confirmed by the quantity of timber cleared in 2019, Wood-use 

work carried out from April to December 2019 affected about 

50% of the areas affected by the storm with the extraction of 

about 27,000 m3 of material including lumber and biomass for 

wood chips. 

 

 

5. CONCLUSIONS 

Estimating volume in forests using lidar is an important task that 

deserves further investigation due to the many different forest 

scenarios. In this work a simple comparison was carried out. The 

objective is not to define best method, but to show how figures 

can vary due to different factors, such as disturbance (windthrow 

from VAIA storm) and estimation method (relascope vs lidar-

derived models).   

 

This study reported two methods: from the comparison of the 

volumes obtained with the above methods and those calculated 

for the test areas, it emerges a tendency to over-segment for the 

Multi CHM method, while for the appropriately calibrated 

Li2012 method there is a better correspondence to reality. The F-

score values for the volumes obtained for the Li method are 

between 0.52 and 0.69 while for those obtained for the Multi 

CHM method are between 0.47 and 0.55. When compared with 

relascopic measures for each of the 48 parcels, a mean absolute 

difference ~127 m3/ha and ~141 m3/ha were found for Li2012 

and MultiCHM respectively. 
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