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ABSTRACT: 
 
Crop classification based on satellite and aerial imagery is a recurrent application in remote sensing. It has been used as input for 
creating and updating agricultural inventories, yield prediction and land management. In the context of the Common Agricultural 
Policy (CAP), farmers get subsidies based on the crop area cultivated. The correspondence between the declared and the actual crop 
needs to be monitored every year, and the parcels must be properly maintained, without signs of abandonment. In this work, Sentinel-
2 time series images and 4-band Very High Resolution (VHR) aerial orthoimages from the Spanish National Programme of Aerial 
Orthophotography (PNOA) were combined in a pre-trained Convolutional Neural Network (CNN) (VGG-19) adapted with a double 
goal:  (i) the classification of agricultural parcels in different crop types; and (ii) the identification of crop condition (i.e., abandoned 
vs. non-abandoned) of permanent crops in a Mediterranean area of Spain. A total of 1237 crop parcels from the CAP declarations of 
2019 were used as ground truth to classify into cereals, fruit trees, olive trees, vineyards, grasslands and arable land, from which 
80% were used for training and 20% for testing. The overall accuracy obtained was greater than 93% both, at parcel and area levels. 
Olive trees were the least accurate crop, mostly misclassified with fruit trees, and young vineyards were slightly confused with cereal 
and arable land. In the assessment of crop condition, only 9.65% of the abandoned plots were missed (omission errors), and 7.21% of 
plots were over-detected (commission errors), having a 99% of overall accuracy from a total of 1931 image subset samples. The 
proposed methodology based on CNN is promising  for its operational application in crop monitoring and in the detection of 
abandonments in the context of CAP subsidies, but a more exhaustive number of training samples is needed for extension to other 
crop types and geographical areas. 
 
 

                                                                 
*  Corresponding author 
 

1. INTRODUCTION 

Crop classification using satellite and aerial imagery is a 
recurrent application in remote sensing, obtaining useful input 
for creating and updating agricultural inventories at different 
scales, yield prediction (Doraiswamy et al., 2005), generation of 
phenology maps, and land management. Different data sources 
and resolutions have been used for crop classification, such as 
low resolution MODIS (Moderate Resolution Imaging 
Spectroradiometer) images (250 m/pixel) (Wardlow et al., 
2007) and mid-resolution Landsat images (30 m/pixel) 
(Devadas et al., 2012) for large-area crop mapping of extensive 
crops (cereal, soybean, alfalfa,…); four-band very high-
resolution (VHR) images (Ozdarici-Ok et al., 2015), combining 
optical and synthetic aperture radar (SAR) images (Recio et al., 
2011; Kussul et al., 2016), which provide information about 
vegetation structure and biochemical properties (Orynbaikyzy et 
al., 2019), or a more sophisticated integration of LiDAR data 
and hyperspectral airborne images for crop species 
classification (Liu and Bo, 2015).  
 
In addition to the integration of different data sources, a variety 
of methodological approaches have been tested. Particularly 
efficient is the use of time-series datasets to characterise the 
temporal signature of crops along the year, allowing the 
classification of intensive crops with dynamic vegetation 
changes and smaller parcel size, such as the case of smallholder 
crop classification (Lambert et al., 2018). The emergence of 

VHR sensors has supposed a transition from pixel-based to 
object-based classification methods, which are more suited for 
the extraction of contextual features to enhance classification. 
They have been tested with success by combining different mid-
resolution (Peña-Barragán et al., 2011) and VHR data sources 
(Devadas et al., 2012; Abdullah Sohl et al., 2015; Liu and Bo, 
2015). However, image segmentation for the definition of 
objects is a common source of errors working in agricultural 
landscapes, especially in spectrally heterogeneous crops, such 
as vineyards, fruit trees and orchards, where vegetation and soil 
coexist in the same parcel. In these cases, parcel-based 
approaches seem to work better, where objects are directly 
obtained from the agricultural database parcel boundaries (Ruiz 
et al., 2007). This approach has been applied in fragmented 
agricultural landscapes or permanent crops (Ruiz et al., 2009; 
Schmedtmann et al., 2015; Kussul et al., 2016). 
 
In the context of the Common Agricultural Policy (CAP), 
farmers get subsidies based on the area cultivated. The 
correspondence between the declared and the actual crop needs 
to be monitored by the Governments of European countries 
every year. Furthermore, farmers should be subsidized only if 
the crop is properly maintained and there are no signs of 
abandonment. During the last years Copernicus data, in 
particular Sentinel-1 and Sentinel-2 images, are made freely 
available and their use is fostered by the European Union with 
the objective of enabling greater transparency and comparability 
of CAP results in different Member States (Kanjir et al., 2018). 
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In addition, national high-resolution image sets, such as aerial 
orthoimages from the National Programme of Aerial 
Orthophotography (PNOA) in Spain, even if they do not have a 
temporal dimension, can provide annual VHR four-band 
multispectral data very useful for the monitoring of the CAP 
declarations. In this context of CAP monitoring system, since 
the subsidies payment is made per agricultural administrative 
plot, parcel-based image classification seems to be a 
straightforward and efficient method in terms of completeness 
of feature extraction, noise reduction and processing time.  
 
The use of satellite imagery time-series to specifically develop a 
CAP monitoring system had been tested first using series of 
Landsat ETM+ images following a parcel-based approach 
(Schmedtmann and Campagnolo, 2015). Later, 
Sitokonstantinou et al. (2018) compared parcel-based 
classification using Landsat-8 and Sentinel-2 images, obtaining 
superior performance of the latter due to the improved spatial, 
spectral and temporal characteristics, and Campos-Taberner et 
al. (2019) classified Sentinel-1 and Sentinel-2 images following 
a pixel-based approach. However, the use of VHR images has 
not been reported yet for this purpose.  
 
Less attention has been paid to the identification of crop 
abandonment using remote sensing techniques, which is also a 
relevant issue to monitor in the context of the CAP. Alcántara et 
al. (2012) tested methods to map abandoned agriculture at broad 
scales with coarse-resolution satellite imagery (MODIS) using 
NDVI time series from 2003 to 2008 and phenology data, 
obtaining a classification overall accuracy of 65%. Yusoff and 
Muharam (2015) used Landsat images, crop phenology 
information and an object-oriented classification to detect crop 
abandonment at a finer scale, and Hermosilla et al. (2012) 
classified aerial high resolution images where some basic 
abandonment classes were included. 
 
Crop classification has been done using different methods. 
Initially it was based on traditional statistical classification 
methods, later machine learning techniques were used, such as 
decision trees, random forest, support vector machine, etc. 
During the last several years, deep learning techniques based on 
the massive use of training samples are opening new 
perspectives. Among them, convolutional neural networks 
(CNN), which are able to learn automatically from raw images 
and to avoid the use of specifically designed features, definitely 
have a potential that needs to be explored in different 
applications. In this sense, Hu et al. (2018) proposed an 
improved CNN to automatically construct the training dataset 
and classify Landsat-8 images in generic land cover types, 
obtaining an overall accuracy improved by 5% and 14% 
compared to the support vector machine method and the 
maximum likelihood classification method, respectively. Chang 
et al. (2019) applied CNN to forest classification, Chen et al. 
(2019) to the classification of hyperespectral images, and Wang 
et al. (2019) to classify VHR imagery, also in generic land 
cover types. 
 
However, CNN have not been studied yet for the specific 
classification of crops at parcel level using a combination of 
VHR, multispectral and time-series images. The goals of this 
work are: (i) to adapt a CNN to the classification of agricultural 
parcels in different crop types and to evaluate its accuracy for 
the classification of 4-band (visible and near-infrared) very 
high-resolution aerial imagery combined with Sentinel-2 time-
series; and (ii) to apply this CNN to automatically detect crop  
condition (i.e., abandoned vs. non-abandoned) of permanent 

crops (fruit trees, olive trees and vineyards) in a Mediterranean 
area. 
 

2. MATERIAL 

2.1 Study area and data 

The study area is located in the Valencian region on Eastern 
Spain, in the municipalities of Utiel and Requena (Figure 1). 
This is a predominantly agricultural area with a majority of 
permanent crops, being the dominant crop the vineyard, then 
fruit trees and olive trees, and some other non-permanent crops, 
mainly cereals. 

A total of 1237 crop parcels were selected from the CAP 
declarations of 2019 in these two municipalities (Figure 1), 
provided by the Department of Agriculture of the Valencian 
regional government. The parcels were selected from the 
predominant crops in the area: vineyard, fruit trees, olive trees, 
grassland and cereal. From the first three permanent crop types, 
some of them corresponded to abandoned parcels, as checked in 
the field during the 2019 CAP campaign. The Spanish Land 
Parcel Identification System from 2019, published by the 
Ministry of Agriculture, Fisheries and Food and updated every 
year, was used to extract the parcel boundaries. 

 

 

Figure 1. Location of the study area in the Valencian region 
(Spain): Overview (left) and detail with the distribution of the 

crop parcels depicted in red (right).  

 

Two types of images were used in this study. On one side, VHR 
four-band (visible and NIR) orthoimages (0.25 m/pixel 
resolution) from the Spanish National Programme of Aerial 
Orthophotography (PNOA) acquired in June 2019 and provided 
by the Institut Cartogràfic Valencià (ICV). On the other side, a 
Sentinel-2 image time-series radiometrically corrected at level 
2A (bottom of atmosphere) from the European Space Agency 
(ESA) repository, in the framework of the Copernicus European 
programme. The time-series was composed of 62 Sentinel 2A 
and 2B images acquired from September 2018 to September 
2019 (Figure 2). 

 

 

 

 

 

Figure 2. Temporal distribution of the Sentinel 2A and B time-
series acquired from September 2018 to September 2019. 

Since the Sentinel-2 features extracted for classification in this 
study were based on the Normalized Difference Vegetation 
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Index (NDVI), only bands 4 (red) and 8 (NIR) were used, both 
at 10 m/pixel of spatial resolution. The images were pre-
processed at parcel level and only non-cloud pixels were used 
according to the mask band available in level 2A products of 
Sentinel-2. Removing remaining outliers followed two 
conditions. When the number of pixels remaining was less than 
90% of the total pixels in the parcel, this image was not used for 
that parcel. On the other hand, if the NDVI difference of a 
parcel between a date and neighbouring dates was greater than 
their mean standard deviation, then this image was neither used 
for that parcel. In this way, we avoided anomalous pixel values 
in some dates at parcel level. The pre-processing was finished 
by obtaining the monthly NDVI average of the values per 
parcel, from September 2018 to September 2019.  
 

3. METHODS 

3.1 Definition of classes and sampling 

The classes were defined attending to the main crops in the area 
and following the legend of the SIGPAC database. Thus, for the 
crop classification, in addition to classes vineyard, fruit trees, 
olive trees, grassland and cereal, arable land was also 
considered, representing those minority crops that at the 
moment of the orthoimage acquisition did not have vegetation. 
Given the differences in the fruit tree orchards and vineyards 
between the adult trees and the very young trees, two 
provisional classes were defined only for classification 
purposes, young fruit trees and young vineyards, composed of 
those parcels where the trees were just planted and they did not 
have yet a prominent vegetative activity (Figure 3). 
 
For the classification of crop condition, only two classes were 
defined, abandoned and non-abandoned, corresponding to those 
permanent crops (vineyards, fruit trees and olive trees) that 
presented discontinuities in tree rows, abundance of weeds or 
lack of vegetative activity. Some examples of abandoned crops 
are also shown in Figure 3. 
 
From the 1237 parcels available, 80% were randomly selected 
for training the classification process and the remaining 20% for 
testing, so the evaluation was done with 248 parcels fully 
independent from those used to train the neural network.  
 
A restriction of the VGG-19 CNN used is that the size of the 
input images must be constant. Therefore, from our initial data 
set, a total of 11,836 image subsets of 128x128 pixels each were 
obtained from the initial sample of parcels available (1237). 
This means that the original orthoimage underlying each parcel 
was cut in 128x128 pixels image subsets (from now these will 
be referred as “samples”). Table 1 shows the number of parcels 
and samples used per class as training or testing sets. 
 
 

 N. Parcels N. Samples 
Classes Training Test Training Test 
Cereal 96 21 1502 156 
Fruit trees 369 96 2874 754 
Olive trees 98 26 1012 461 
Grassland 17 4 475 347 
Arable land 46 10 352 167 
Vineyard 363 91 3020 716 
Total 989 248 9235 2601 

 
Table 1. Distribution of the number of parcels and samples 
among the different classes, training and testing sets. 
 

Therefore, a total of 9235 image subsets (samples) were used as 
input to train the CNN, as well as NDVI temporal features 
derived from Sentinel-2 time-series coming from 989 training 
parcels. The next two subsections describe the features 
extracted and the architecture of the CNN. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. Examples of orthoimage subsets of parcels with the 
classes defined for crop classification and crop condition. 

 
3.2 Feature extraction 

After pre-processing of the Sentinel images, the NDVI was 
extracted at pixel level for all the images of the time series and 
its monthly average was computed. Then, the mean and 
standard deviation of NDVI values were obtained, building a 
temporal NDVI curve per parcel. In addition of the mean and 
standard deviation of the 13 monthly NDVI values -from 
September 2018 to September 2019 (i.e., 26 features) - the 
following phenology-related features were computed for every 
temporal NDVI curve per parcel (Figure 4):  
 
1) Maximum value of NDVI 
2) Minimum value of NDVI 
3) Slope between maximum and minimum NDVI values 
4) Slope from May to June 
5) Integral of all the values of the NDVI 
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6) NDVI integration from November 2018 to February 2019  
7) NDVI integration from March to May 2019 
8) NDVI integration from May to August 2019 
 
 

 
 

Figure 4. Graphical representation of a temporal NDVI curve 
with the phenology-related features computed per parcel from 

the Sentinel-2 images. 
 
At the end, a total of 34 temporal and spectral features derived 
from Sentinel-2 NDVI curves were available per every parcel 
considered. 
 
3.3 Description of the convolutional neural network (CNN) 

We used the pre-trained VGG-19 CNN. This network has been 
trained on more than a million 224x224 3-band images from the 
ImageNet database (Russakovsky et al., 2015) in 1000 different 
classes. The pre-trained VGG-19 CNN was fine-tuned, keeping 
the first four convolutional blocks that correspond to more 
generic aspects of the image, such as edges, but modifying the 
weights of the last block and the top model by re-training the 
CNN with our specific training set. The number of neurons of 
the last layer was also changed from the original value, 
coinciding with the desired number of output crop classes. A 
learning rate of 0.001, optimizer SGD, decay 0.0001, 
momentum 0.9, application of Nesterov momentum and 10 
epochs were used for the crop type classification CNN. In the 
case of the CNN for identification of abandonment, a learning 
rate of 0.001, optimizer RMSprop and 5 epochs was the 
optimum set of parameters tested. 
 
We designed two CNN-combined and independent models, one 
for the classification of crop types and the other to identify 
abandoned and non-abandoned permanent crops (see Figure 5). 
The former consists of a multi-class image classification (i.e., 
eight classes), while the purpose of the latter is that, given a 
parcel, we could identify if this is abandoned or not (i.e., a 
binary classification problem). The overall architecture 
followed for the CNN was (Figure 5): the use of the pre-trained 
VGG-19 CNN for the convolution block, a NN for the top 
model of this block, in parallel another NN for the Sentinel-2 
features, then both NN merge to end up in a hidden and a final 
layer, whose number of neurons depends on the image 
classification type. 
 

More specifically, the pre-trained VGG-19 requires an input of 
three bands, however, our input images were composed of four 
bands (red, green, blue and infrared). Therefore, we added a 
previous convolution 2D with three filters and a kernel filter 
size of 1×1 to make input images compatible with VGG-19 
input. Next, VGG-19 is composed of five convolutional blocks 
as follows: (i) two convolutions 2D with 64 filters each and a 
max pooling, (ii) two convolutions 2D with 128 filters each and 
a max pooling, (iii) four convolutions 2D with 256 filters each 
and a max pooling, (iv) four convolutions 2D with 512 filters 
each and a max pooling, and (v) four convolutions 2D with 512 
filters each and a max pooling. Among the five convolutional 
blocks, we only set the last one as trainable, while the others 
kept the pre-trained values. After the convolutional blocks of 
VGG-19 we set a flatten and three hidden layers with 4096, 
1500 and 300 neurons. Additionally, we applied a dropout of 
0.5 in the connection between contiguous layers.  
 
In order to introduce the Sentinel-2 derived features, we set a 
two-layer NN with 34 and 16 neurons, the first layer serving as 
input of the 34 features used. Again, we applied a dropout of 0.5 
between contiguous layers. Then, we merged the 300 and 16 
neurons from the convolutional blocks and Sentinel-2 NN, 
respectively, to create a fully-connected NN with a hidden layer 
of 50 neurons, and the output with a number of neurons equal to 
the eight classes for the crop type image classification, and one 
for the crop condition (i.e., abandoned or not) binary 
classification. In the combined top model we used in each 
hidden layer the ReLU activation, except for the output layer, 
where we used the softmax and sigmoid activation for the multi-
class and binary classifications, respectively.  
 
Finally, in the case of the multi-class classification we obtained 
the probability that an input belongs to that neuron or class. 
Therefore, the class with the higher probability is the one that is 
assigned to that input. For the binary classification, we obtained 
the probability that an input belongs to non-abandoned, so if the 
probability is below 50% it will belong to the class abandoned. 
 
3.4 Evaluation 

The evaluation of the crop classification results was performed 
at three levels: sample-based, parcel-based and area-based. The 
20% of the total parcels (i.e., 248) was used as testing set. From 
these parcels, 2601 128x128 pixels image subsets were 
extracted for the sample-based evaluation. Since the payment of 
the CAP subsidies is applied by area, from the economic point 
of view it is important to know the accuracy of the classification 
at area level, so the losses due to errors can be quantified. In 
order to perform area-level evaluation the results obtained at 
parcel-level were weighted by the area occupied by each parcel. 
 
The error matrices of the classification were computed at the 
three levels, then three standard indices were obtained: the 
overall accuracy, as the percentage of items correctly classified; 
the producer’s accuracy, as the percentage of items belonging to 
a class correctly classified; and the user’s accuracy, as the 
percentage of correct items classified in every particular class. 
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Figure 5. Architecture of the fine-tuned VGG-19 convolutional neural network used for crop type classification (above) and 
identification of crop abandonment (below) (PNOA refers to the input images used from the Spanish National Programme of Aerial 

Orthophotography). 
 
 

 
  

4. RESULTS AND DISCUSSION 

In the following two sub-sections we present and analyse the 
results obtained in the evaluation of crop type classification and 
in the detection of abandonment in permanent crops. 
 
4.1 Crop classification 

Table 2 and Figure 6 summarize the results obtained in the 
classification of six different crop types. Although initially eight 
classes were considered, after the classification, preliminary 
classes young fruit trees and young vineyard were eventually 
merged with classes fruit trees and vineyard, respectively. 
 
Overall classification accuracies are greater than 93% at the 
three classification levels, but the area-based evaluation shows 
better results, as represented in Figure 6. This can be explained 
because larger parcels, which have more weight in this type of 
evaluation, are better classified than smaller parcels. Larger 
parcels are easier to characterize, since more image subsets are 
involved and the errors are easily masked out. Additionally, 
they usually have a more even distribution of plants as they are 
more modern and more homogeneous crop growing agricultural 
practices are applied, as opposite to older smallholding parcels. 
 
The lowest producer’s and user’s accuracies correspond to class 
olive trees, which is mostly confused with fruit trees. There is 
an evident similarity of these two permanent crops, their 
spectral response along the year does not change much, so the 
Sentinel-2 derived features do not provide much information. 
On the other side, their structure, understood as the distribution 
of trees in the parcel, is very similar in both crops. Their main 
difference is related to the separation of trees in the plot, which 
in the case of olive trees is greater. Since the image subsets that 

are introduced in the CNN are only 128x128 pixels, and the 
orthoimages spatial resolution is 0.25 m/pixel, the area covered 
could not be sufficient in some cases to characterize the 
structure of the olive trees. A potential solution for this could be 
to increase the size of the image subsets, as well as the 
introduction of some structural features derived from the VHR 
images in the CNN. In this sense, Balaguer et al. (2010) and 
Ruiz et al. (2011) proposed some structural features derived 
from the semivariogram and from the Hough transform of the 
parcel VHR images to classify tree crops, obtaining promising 
results. In the future, the inclusion of these types of features as 
input in the CNN could help to improve the discrimination of 
these two classes. The results of olive trees are slightly lower 
when evaluated per parcel with respect to per sample, but they 
improve when are evaluated per area. This reinforces the 
previous argument that small parcels are more difficult to 
characterize and, subsequently, to classify.  
 
Other errors are related to the misclassification of vineyards 
with cereal and arable land. In the first case, the temporal 
features derived from Sentinel-2 image series should have more 
relevance in the classification, since the phenology and 
agricultural calendar of both crops are different. This leads to 
think that the 34 Sentinel-2 temporal features have considerably 
less influence than the VHR images, probably because they are 
introduced in the last part of the CNN, the so called top model, 
and only merge and interact with the neurons conveying 
information of the VHR images in a hidden layer at the end of 
the NN (see Figure 5). Future work should be focused on 
providing more relevance to those features in the classification 
by modifying accordingly the CNN structure. In the second 
case, the misclassification of vineyards with arable land, this 
basically happens with the very young vineyard plantations, 
where plants are still too small and the proportion of soil, like in 
arable land parcels, is much greater.  
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Samples 
(2601) 

Parcels  
(248) 

Area  
(393 ha) 

OvAcc=94.1% OvAcc=93.1% OvAcc=96.1% 

Classes PrAcc UsAcc PrAcc UsAcc PrAcc UsAcc 

Cereal 95.5% 82.8% 100% 87.5% 100% 86.3% 

Fruit trees 93.4% 94.6% 96.9% 90.3% 98.8% 94.0% 

Olive trees 89.6% 91.4% 61.5% 84.2% 83.7% 96.5% 

Grassland 99.1% 96.4% 100% 100% 100% 100% 

Arable land 98.2% 85.4% 100% 90.9% 100% 96.0% 

Vineyard 94.0% 99.6% 95.6% 100% 95.7% 100% 

  
Table 2. Crop type classification results using the proposed 

CNN, presented in terms of samples, parcels and area-based. 
(OvAcc: Overall Accuracy;  PrAcc: Producer’s Accuracy; 

UsAcc: User’s Accuracy). 
 
 

 
  

Figure 6. Comparison, in terms of producer’s and user’s 
accuracies, of the three types of evaluation performed at sample, 
parcel and area levels for crop classification using the described 

CNN. 
 
As pointed earlier, several works reveal the complementarity of 
time series of multispectral and SAR images (e.g., Sentinel-2 
and Sentinel-1) for crop monitoring. However, even if VHR 
aerial images had not been tested yet together with Sentinel-2 
time series for crop classification and CAP monitoring, they 
have shown a great synergy in this study for the accurate 
classification of a combination of annual and permanent crops. 
Good results were reported for classification of annual crops, 
such as rice, corn, soybean (Xu et al., 2019), in addition to 
cereals, sunflower and even vineyards (Sitokonstantinou et al., 
2018), but permanent crops such as fruit or olive trees have very 
subtle changes in their vegetation indices time series curves 
along the agricultural year, so the use of at least one VHR 
image can be decisive to increase the classification accuracy of 
these crop types, particularly when parcel sizes are small, such 
as the case of some areas in the Mediterranean region.  
 
The use of CNN is opening new perspectives for crop 
classification, feature extraction is not necessary or may be 
drastically reduced, saving computing time and simplifying the 
classification procedure. However, compared to other methods, 
CNN needs to substantially increase the number of training 
samples to improve the results and have robustness (Chen et al., 
2019). In addition, their architecture must be carefully designed 
to optimize the results, and when using different data sources 
like in our case (VHR orthoimages and Sentinel-2 time series), 

the merging of these datasets should be tuned depending on the 
crop types in the area. 
 
4.2 Identification of abandoned crops 

Since not a sufficient number of abandoned parcels was 
available for a proper evaluation at parcel-level, the crop 
condition, i.e., the identification of abandoned crops, was 
evaluated only using the image subsets extracted from the 
original parcels. A total of 1931 samples were used, from which 
114 were abandoned and 1817 non-abandoned, Table 3 shows 
the error matrix with only these two classes, as well as the 
overall accuracy and the accuracies of producer and user. Only 
abandoned parcels from classes vineyards, fruit trees and olive 
trees were used. 
 
Since most of the parcels belong to non-abandoned class, the 
overall accuracy (99 %) is not a robust accuracy indicator in this 
case, being biased by the much greater proportion of samples 
from this class. However, producer’s and user’s accuracies of 
class abandoned are robust, providing information about the 
proportion of abandoned samples correctly detected, and the 
proportion of samples detected as abandoned that are correct, 
respectively. Interpreting the results, only 9.65% of the 
abandoned plots from any of the three classes considered were 
missed (omission errors), and 7.21% of plots were over-detected 
(commission errors). 
 
 

R
ef

er
en
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 Classified as 

Classes Abandoned Non-abandoned 

Abandoned 103 11 

Non-abandoned 8 1809 

 PrAcc 90.35% 99.56% 

 UsAcc 92.79% 99.40% 

 OvAcc 99.02% 

 
Table 3. Results in the identification of abandoned crops. Only 
abandoned parcels from classes vineyards, fruit trees and olive 

trees were used. (OvAcc: Overall Accuracy;  PrAcc: Producer’s 
Accuracy; UsAcc: User’s Accuracy). 

 
These can be considered as good results for the operational 
application in the detection of abandonments in the CAP 
monitoring tasks. Even being aware that more classes should be 
tested, the three classes used in this study are probably the most 
relevant in the Mediterranean region of Spain, where a main 
part of these type of permanent crops are becoming 
economically unprofitable for traditional farmers, so the rate of 
abandonment is increasing. Thus, given a declared parcel for the 
CAP subsidies in one of these classes, using this CNN-based 
method abandoned parcels could be automatically detected with 
a low rate of errors. 
 
Previous studies mapping abandoned agriculture over large 
areas with MODIS data obtained an overall classification 
accuracy of 65% (Alcántara et al., 2012). Even if these studies 
are not comparable due to the differences in spatial resolution 
used, our results are promising for the automated identification 
of abandonment in permanent crop parcels for operational use 
in CAP monitoring. 
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5. CONCLUSIONS 

We fine-tuned a pre-trained convolutional neural network 
(VGG-19) with two different goals: the classification of crop 
types at parcel-level, and the identification of abandoned parcels 
with permanent crops. The input datasets were 4-band VHR 
aerial orthoimages and temporal and spectral features derived 
from Sentinel-2 time series images. After applying and testing it 
on a consistent set of parcels with known crop type and 
condition, the results show that the overall accuracy of the 
tested crop types is over 93%. Errors affect more to small 
parcels, olive trees (confused with fruit trees), and vineyards 
(confused with cereal and arable land). In order to increase the 
classification accuracy, larger input image subsets and the 
inclusion of some selected VHR image features may be needed 
to better capture the distribution of patterns of the trees in the 
parcel. In addition, a further modification of the CNN 
architecture to enhance the interaction of VHR images and 
Sentinel-2 time series derived features could increase the 
synergy of these two datasets.  
 
The proposed CNN was able to distinguish between abandoned 
and non-abandoned permanent crops with a very low error rate, 
which is encouraging for the operational application in the 
detection of abandonments in the CAP monitoring tasks 
However, future tests should be done in both applications by 
including more crop types and increasing the number of training 
samples, in order to improve robustness and applicability to 
different areas.  
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