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ABSTRACT: 

Oak trees are the primary component in Mediterranean agro-silvopastoral systems. Since the second half of the 20th century, 

however, a severe oak decline has been observed. Climate change reinforces this problem, which is consistent with worldwide 

observable tree dieback. As the trees have significant ecological and socio-economic functions, their observation and assessment of 

vitality are increasingly researched. Satellite remote sensing is very well suitable for large-scale surveys of the extensive and 

sometimes hardly accessible areas. This study investigates the usability of high-resolution WorldView-3 data for the classification of 

tree vitality. The ground truth was collected on an Andalusian dehesa at the end of September 2019, timely corresponding with the 

satellite data acquisition. After customary post-processing of the WorldView-3 data, 10 vegetation indices (ARVI, CIgreen, CSI, 

DPI, EVI, GNDVI, NDVI, PSRI, RENDVI, and RGI) were calculated from the multispectral image. Three machine learning 

classifiers (Maximum Likelihood, Random Forest, and Support Vector Machine) were then used for a supervised image 

classification with three vitality classes (healthy, sick, and dead). Independent ground truth data were used for the validation. The 

best results were achieved with the red edge normalized difference vegetation index (RENDVI) and the Support Vector Machine 

classifier (F1 scores between 0.27 and 0.72). A maximal overall accuracy of around 0.6 is, however, improvable. Further studies 

should focus on other classification methods, more reliable ground truth, and combined analyses of spectral and structural data. 

*  Corresponding author 

1. INTRODUCTION 

Agroforestry is regarded as a promising solution for sustainable 

land use and achieving the ambitious climate goals of the 

European Union (Eichhorn et al., 2006; Hernández-Morcillo et 

al., 2018; Tittensor et al., 2014). Mixing the cultivation of trees, 

pasture, and crops in agro-silvopastoral systems can help to 

reduce soil erosion and nitrogen leaching, fix CO2, and enhance 

biodiversity (den Herder et al., 2017; Kay et al., 2019; Palma et 

al., 2007). In the western Mediterranean, sparse holm oak 

(Quercus ilex) and cork oak (Quercus suber) coverage in a 

savannah-like landscape characterize the agro-silvopastoral 

systems of dehesas in Spain and montados in Portugal. Both 

terms are hereinafter summarized as dehesas. The trees have 

various environmental and socio-economic benefits. It is known 

that tree shades reduce the evapotranspiration, the soil beneath 

the tree canopy is rich in nutrients and organic matter, and thus 

the pasture under the trees has a higher quality (Moreno and 

Obrador, 2007; Serrano et al., 2018). The socio-economic value 

bases on cork production, the famous Iberian ham (jamón 

ibérico), big game hunting, and tourism (Fagerholm et al., 

2019; Moreno and Obrador, 2007; Moreno and Pulido, 2009). 

Dehesas are a prime example of sustainable balanced human 

land use and ecosystem protection. Since the second half of the 

20th century, however, there is increasing concern that this 

balance can hardly be maintained (Costa et al., 2014). Due to 

agricultural intensification and improper management, the 

ecosystems lose their regenerative capacity and vitality, marked 

by a significant oak tree decline (Camilo-Alves et al., 2013; 

Díaz et al., 1997; López-Sánchez et al., 2017). The important 

tree layer is, in particular, stressed through droughts (Gil-

Pelegrín et al., 2008) and diseases (Tiberi et al., 2016), caused 

for example by the ambrosia beetle (Bellahirech et al., 2019) or 

'la seca', a sudden dieback of oak trees caused by oomycete 

disease (Costa et al., 2014). The soil-borne pathogen 

Phytophthora cinnamomi may be the main factor for the tree 

decline (Camilo-Alves et al., 2013). To protect the ecosystems, 

dehesas have been included in the European Nature 2000 

network, they are protected by the EU directive 92/43, and the 

autonomous community Extremadura introduced the dehesa 

law, which restricts the pruning of trees (European Union, 

1992; Moreno and Pulido, 2009; Plieninger and Schaar, 2008). 

Nevertheless, dehesas still undergo a significant land use 

change, reinforced by climate change and hence they are 

regarded as a highly vulnerable ecosystem in the Mediterranean 

(Costa et al., 2016; Navarro-Cerrillo et al., 2019; Rolo and 

Moreno, 2019). 

Strong research interest on oak trees and their decline can be 

observed as they are fundamental for the ecosystem (Camilo-

Alves et al., 2013; Costa et al., 2010). Satellite remote sensing 

is frequently used for capturing the extensive dehesa 

landscapes. Data from Landsat (Allen et al., 2018; Aubard et al., 

2019; Hernández-Lambraño et al., 2019) or Sentinel-2 

(Godinho et al., 2018) are widely used due to the easy 

accessibility and free availability. Furthermore, quite long time 

series are available for both sensors, which allows time series 

analyses. A shortcoming, however, is the spatial resolution of 

10 m and 30 m. With these data, studies can be carried out on a 

regional scale, but studies at tree scale are hardly feasible as the 

oak trees typically have a crown diameter of 4–10 m. The 
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modern commercial earth observation satellites WorldView-2 

(WV-2) and WorldView-3 (WV-3) offer much higher 

resolution data. WV-2 provides panchromatic and multispectral 

images of 0.46 m and 1.84 m resolution, respectively. WV-3 

reaches a resolution 0.31 m and 1.24 m in the panchromatic and 

multispectral range, respectively (DigitalGlobe, 2020). These 

high resolutions may allow a satellite-based investigation of tree 

vitality and oak decline at tree scale. Maybe due to the quite 

high purchasing costs, very few studies exist so far. 

Furthermore, the orthorectification of satellite images of regions 

with high relief energy can be problematic.  

Navarro-Cerrillo et al. (2019) used WV-2 data in combination 

with airborne laser scanning (ALS) data to classify defoliation 

levels of holm oaks. Gonçalves et al. (2018) estimated oak and 

pine biomass from WV-2 data. To the best of the authors' 

knowledge, there is no study where WV-3 data has been used to 

investigate tree vitality in a dehesa ecosystem. Research on this 

is urgently required, as the varying success of oak regeneration 

is also a global problem (Annighöfer et al., 2015). The aim of 

this study is a first investigation of the usability of WV-3 data 

for mapping tree vitality in a dehesa ecosystem in a 

mountainous region. About 1000 trees in the study area were 

manually mapped as ground truth. The orthorectified and 

atmospherically and topographically corrected image is 

classified with ten different vegetation indices and three 

different machine learning classifiers. 

2. MATERIALS AND METHODS 

2.1 Study area 

This study was conducted on the Dehesa San Francisco, which 

is located close to the small village Santa Olalla del Cala, about 

60 km north of Sevilla (Figure 1). The region has high relief 

energy as it lies in the Sierra Morena, one of the main mountain 

systems in Spain. A continental Mediterranean climate 

dominates the area, with dry, hot summers and mild winters. It 

usually rains only from autumn to spring. The dehesa covers an 

area of 500 ha with an altitude ranging between 350 m and 

500 m above sea level. The territory is ideal for a study on tree 

vitality, as besides healthy areas, there are areas with a few 

diseased trees and severely affected areas (Sapp et al., 2019). 

2.2 Data 

The primary data basis for this study is a WV-3 satellite image 

from 22 September 2019 (Figure 1). The image was captured 

around noon, which minimizes shadows. The whole image 

contains some cirrus clouds which fortunately lie apart from the 

Dehesa San Francisco. The image was purchased with a 

resolution of 0.5 m and 2.0 m in the panchromatic and 

multispectral range, respectively. The multispectral image 

contains 8 bands in the visible near infrared spectrum between 

425 and 950 nm. 

Freely available ALS Data were downloaded from the Spanish 

National Geographic Institute (Instituto Geográfico Nacional, 

2020) to generate a high-resolution digital elevation model 

(DEM) for the orthorectification of the satellite image. The 

ground returns were filtered from the LiDAR point cloud and 

interpolated to a DEM raster with 1 m resolution. 

As ground truth, the vitality of about 1000 oak trees was 

manually mapped in a field campaign at the end of September 

2019. The shapes of the trees, which were digitized in a student 

thesis, were used as spatial base for this mapping. The trees are 

located in 12 areas of about 5 ha each (Figure 1). These areas 

Figure 1. Study area with manually mapped tree vitality and allocation to training/validation areas for the classification. 
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are distributed across the dehesa and cover different vitality 

conditions. They also differ in location factors, like sun-exposed 

southern and shaded northern slopes. Previous to the campaign, 

maps of the trees have been created as georeferenced pdf files. 

The trees could be easily located in the field with these maps 

opened in the Avenza Maps app (Avenza, 2020) on a mobile 

device. The app shows the current position on the map, using 

the mobile phone's GPS sensor. This accuracy is sufficient for 

orientation on the map. The species (holm or cork oak) and 

degree of vitality were mapped for each tree. As a measure of 

vitality, the percentage of defoliated and decolorized parts was 

estimated. In the post-processing, the two percentages were 

summed up. All trees with a sum < 15% were classified as 

healthy and those with a sum > 95% as dead. Those in the range 

in between were classified as sick. 

2.3 Satellite data processing 

The WV-3 image was orthorectified with the DEM using the 

Rigorous Orthorectification of the ENVI 5.5.2 Photogrammetry 

Module. 30 easily identifiable oaks were used as ground control 

points (GCPs). In ArcGIS Pro 2.4.3, the trees were identified 

using the bing aerial image data. A hillshade of the digital 

surface model (DSM) with 1 m resolution of the entire ALS 

point cloud was created to determine the exact center of the 

trees. For the obtained XY coordinates, the Z coordinates were 

derived from the DEM. WGS 1984 UTM Zone 29N was used 

as spatial reference system. In the ENVI Orthorectification 

wizard, the trees were identified as GCPs in the high-resolution 

panchromatic image and the UTM coordinates were assigned to 

the image coordinates. The image coordinates were then 

converted for the lower resolution multispectral image. By this 

conversion, the accuracy of the identification in the 

panchromatic image could be maintained. The orthorectified 

image was then atmospherically and topographically corrected 

using ATCOR-3 with a dry rural atmosphere and the DEM.  

2.4 Classification of tree vitality 

The finally corrected image was transferred to ArcGIS Pro, 

which was used for the calculation of the vegetation indices 

(VIs) and the vitality classification. Ten VIs were selected from 

studies on tree canopy cover and vitality in dehesa systems 

(Godinho et al., 2018, 2016; Navarro-Cerrillo et al., 2019). 

Table 1 shows the VIs and their formulas. The VIs were 

calculated for each pixel of the entire dehesa using the raster 

calculator. All VIs were calculated for the ATCOR-corrected 

and for the non-corrected image to investigate the usefulness of 

such a correction. The 12 manually mapped areas were divided 

into 8 training and 4 validation areas for the subsequent 

classification. The validation areas were chosen to represent 

different levels of vitality and locational factors. An ArcGIS 

model was established to execute the classification training and 

validation. Three machine learning classifiers were used to test 

their performance, namely Maximum Likelihood (ML), 

Random Forest (RF), and Support Vector Machine (SVM). The 

main steps of the model can be summarized as follows: 

� Train classifier with data from training areas. 

� Classify raster pixel-wise with the three vitality classes 

(healthy, sick, and dead). 

� Calculate the zonal statistics for each tree polygons in 

the validation areas. The majority and median of the 

pixel values per polygon were used to assign a tree to a 

class. 

� Create 1000 accuracy assessment points within the tree 

polygons in the validation areas with manually mapped 

vitality as ground truth. 

� Update accuracy assessment points with zonal statistics 

value as classified value. 

� Compute error matrix. 

� Export error matrix as excel file. 

Finally, a python script using the pandas library (McKinney, 

2010) was written to, firstly, merge the 120 error matrices into 

one excel sheet and, secondly, calculate the F1 score as a 

measure of the classification's accuracy. Based on this table, the 

numerical results of the classifications can easily be compared. 

Furthermore, the raster data sets were visually inspected. 

3. RESULTS 

This study investigates tree vitality on a Spanish dehesa by 

calculating VIs from multispectral WV-3 data and classifying 

tree vitality using supervised image classification techniques. 

The ground truth was manually mapped and can be summarized 

as follows: the training data set contained 704 oak trees, of 

which 479 were mapped as healthy, 207 as sick, and 18 as dead; 

the validation data set included 354 trees, of which 218 were 

mapped as healthy, 118 as sick, and 18 as dead.  

Ten VIs (ARVI, CIgreen, CSI, DPI, EVI, GNDVI, NDVI, 

Vegetation index Name Formula 

ARVI Atmospherically resistance vegetation index 

CIgreen Chlorophyll index green 

CSI Carter stress index 

DPI Double peak index  

EVI Enhanced vegetation index 

GNDVI Green normalized vegetation index 

NDVI Normalized difference vegetation index 

PSRI Plant senescence reflectance index 

RENDVI Red edge normalized difference vegetation index 

RGI Red-green ratio index 

Table 1. Vegetation indices, selected from the literature (Godinho et al., 2018, 2016; Navarro-Cerrillo et al., 2019). 
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PSRI, RENDVI, and RGI) were each calculated for the 

ATCOR-corrected and the non-corrected image. The ArcGIS 

model was executed with the ML, RF, and SVM classifiers to 

classify each pixel. The majority and median of the pixel values 

per polygon were used to assign a tree to a vitality class 

(healthy, sick, and dead). This processing resulted in 120 error 

matrices. 

The results of the ATCOR-corrected images are generally better 

than those of the non-corrected images. Only these results will 

thus be considered in the following. The overall accuracy of 

these classifications is listed in Table 2 for the approaches based 

on the majority and median of the pixel values. The weakest 

results were achieved with the ML classifier, while both other 

classifiers produce comparable results. The SVM classification, 

however, performed slightly better overall. Whether the 

majority or median of the pixel values is more suitable as a 

statistical measure cannot be concluded from these results. 

Majority as zonal 

statistic value 

Median as zonal 

statistic value 

Maximum Likelihood 

ARVI 0.46 0.46 

Clgreen 0.44 0.45 

CSI 0.58 0.60 

DPI 0.17 0.16 

EVI 0.45 0.47 

GNDVI 0.56 0.56 

NDVI 0.53 0.54 

PSRI 0.46 0.41 

RENDVI 0.51 0.50 

RGI 0.43 0.42 

Mean 0.46 0.46 

Random Forest 

ARVI* 0.62 0.58 

Clgreen 0.55 0.52 

CSI 0.58 0.55 

DPI 0.53 0.52 

EVI 0.52 0.49 

GNDVI* 0.59 0.53 

NDVI 0.61 0.62 

PSRI 0.56 0.51 

RENDVI* 0.63 0.63 

RGI 0.55 0.50 

Mean 0.57 0.55 

Support Vector Machine  

ARVI 0.59 0.61 

Clgreen 0.54 0.52 

CSI 0.57 0.56 

DPI* 0.63 0.63 

EVI* 0.49 0.51 

GNDVI 0.61 0.61 

NDVI 0.60 0.62 

PSRI 0.56 0.56 

RENDVI* 0.58 0.57 

RGI 0.54 0.50 

Mean 0.57 0.57 

Table 2. Overall accuracy of the classifications with majority 

and median as zonal statistic value for all VIs and classifiers 

using the ATCOR-corrected image. * Maps of these VIs are 

shown in Figure 2. 

The VI raster data sets of the entire dehesa were equally 

colorized for visual control. The maps for the ARVI, GNDVI, 

and RENDVI with RF classifier and the DPI, EVI, and 

RENDVI with SVM classifier are shown in Figure 2. Although 

the overall accuracy for the ARVI with RF and DPI with SVM 

was reasonably good, the maps are not satisfying. It is hardly 

possible to detect a spatial pattern in both maps. Comparing the 

maps for the GNDVI with RF and EVI with SVM with the 

pattern of the trees (Figure 1) a better correspondence can be 

found, although both have slightly worse results in the overall 

accuracy. The two maps for the RENDVI demonstrate the 

impact of the chosen classifier on the outcome. While with RF, 

the largest part of dehesa is classified as healthy; with SVM, 

larger parts are classified as dead. Compared with Figure 1, the 

raster of the RENDVI with the SVM classifier looks more 

reliable. For example, the almost vegetation-free south-facing 

slope in the very south is classified as widely dead alias 

vegetation-free.  

The error matrices and F1 scores with the majority and median 

as zonal statistic values, classified with RENDVI and SVM, are 

shown in Table 3. The accuracy assessment is based on 1000 

randomly placed points. From these points, 697 were classified 

as healthy from the ground truth, 124 as sick, 95 as dead, and 

84 as were invalid since they were inside the tree polygons 

during their creation, but outside the clipped raster used for the 

zonal statistics. The F1 scores show that the best results are 

achieved for the classification of healthy trees. The 

classification of sick and dead trees provides moderate to 

unsatisfactory results, but the median seems to be slightly better 

suitable than the majority. 

Healthy Sick Dead Total User's 

accuracy

F1

score

Majority

Healthy 437 189 5 631 0.69 0.72

Sick 117 82 8 207 0.40 0.32

Dead 35 32 11 78 0.14 0.22

Total 589 303 24 916

Producer's 

accuracy 

0.74 0.27 0.46 Overall 

accuracy

0.58

Median 

Healthy 390 155 3 548 0.71 0.69

Sick 180 121 10 311 0.39 0.39

Dead 19 27 11 57 0.19 0.27

Total 589 303 24 916

Producer's 

accuracy 

0.66 0.40 0.46 Overall 

accuracy

0.57

Table 3. Error matrices with the majority and median of the 

pixel values, classified with RENDVI and SVM. 

The raster classified with RENDVI and SVM in comparison 

with the mapped ground truth is shown for areas number 4 and 

11 in Figure 3. It is clearly visible that the classification gives 

very different results depending on the individual tree. The 

discussion will examine the reasons for this in more detail. 

4. DISCUSSION  

Firstly investigating the usability of WV-3 data for classifying 

the vitality of Mediterranean oak trees can be stated as the 

overall aim of this study. The satellite image of the mountainous 

region in the Sierra Morena was orthorectified and 

atmospherically and topographically corrected using 
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conventional methods. The orthorectification was quite 

challenging due to the high relief energy in the study area. 

Although a very high-resolution DEM was used, a satisfying 

orthorectification without GCPs was not possible. Furthermore, 

the question remained which image of the earth's surface could 

be assumed to be as close as possible to the real ground? 

Initially, bing aerial image data was used as a reference. A 

comparison with the high-resolution DEM showed, however, 

Figure 2. Maps of the classified raster data set of the entire dehesa. ARVI, GNDVI, and RENDVI with Random Forest 

classifier (left) and DPI, EVI, and RENDVI with Support Vector Machine classifier (right). Green, orange, and red indicate 

pixels classified as healthy, sick, and dead, respectively. 
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that easily identifiable objects like streets did not match. The 

ALS data was finally considered to be the most reliable 

reference, as the data is collected with an active sensor system, 

which is quite close to the earth's surface compared to satellite 

data and should, therefore, contain less distortion. Based on the 

DSM and DEM, 30 GCPs were established, which allowed a 

satisfying orthorectification of the satellite image. For further 

surveys, a placement of GCPs in the field and their acquisition 

with a precise GPS would be useful. 

In general, all classifications did not provide entirely satisfying 

results. With a maximal overall accuracy of 0.63, all results are 

rather average. Several reasons can be the cause of this. An 

essential aspect of supervised classifications is the selection of 

training and validation areas. In this study, the manually 

digitized shapes were taken from a student thesis to select the 

pixels for each individual oak tree. The contours of the trees 

were drawn quite roughly, as shown in Figure 3. It can thus be 

assumed that for several trees, pixels were included that could 

not actually be assigned to the tree, or conversely, actual pixels 

of the tree were not considered for the classification. For a more 

precise determination of the tree contours, the ALS data could 

be valuable. As Navarro-Cerrillo et al. (2019) showed, a tree 

segmentation approach based on a region growing algorithm 

can also be applied to determine the shape of oaks trees from 

ALS data in savannah-like dehesa ecosystems. The principle 

idea is that a local maxima filter is used to determine the highest 

point of a tree and then a region growing segmentation 

algorithm (Erikson and Olofsson, 2005) is used to determine the 

area of the tree crown. This approach will be investigated in a 

future study as the ALS data is available from the Spanish 

National Geographic Institute. 

Another potential source of error is the ground truth for the 

supervised classification. The vitality status of the trees was 

estimated in the best possible consistent way. As the percentage 

of defoliated and decolorized parts is sometimes challenging, in 

particular for large trees, this can bias the classification. First, 

further studies should examine alternatives, for example, 

unsupervised classifications. Second, quantitative parameters of 

tree vitality as ground truth would be beneficial. Martinez-

Trinidad et al. (2010) found that electrical resistance readings 

can detect vitality differences in trees. They, however, also 

concluded that vitality is a complex variable and that visual 

assessment is necessary. Buddenbaum et al. (2015) used 

ground-based visible near and short wave infrared (VNIR and 

SWIR) imaging spectroscopy for drought stress monitoring of 

tree seedlings. Such data would be beneficial for the presented 

approach. For practical reasons, however, this is only possible 

with small trees. Alternatively, spectral ground truth could be 

captured with low-flying airborne systems such as unmanned 

aerial vehicles (UAVs). Jenal et al. (2019) have recently 

introduced a novel UAV-borne VNIR/SWIR sensor, which 

might produce appropriate data. 

In summary, these results support the enormous potential of 

WV-3 data for investigating the tree vitality of Mediterranean 

oaks. As oak or generally tree decline is a worldwide problem, 

reinforced by climate change, research in this area is urgently 

required (Annighöfer et al., 2015; Rolo and Moreno, 2019). 

Although the accuracy of the classifications is only moderate, it 

can be assumed that better results can be achieved with the 

presented suggestions for improvement. In particular, the 

combination of spectral and structural data should be 

investigated as shown by Navarro-Cerrillo et al. (2019) for 

classifying defoliation levels of holm oak or by Hartling et al. 

(2019) for the classification of urban tree species. WV-3 offers 

great potential, as in addition to the 8-band multispectral images 

in the VNIR range investigated here, the sensor can capture 8-

band multispectral images in the SWIR range. Analysis of the 

VNIR/SWIR domain may enable the detection of water stress in 

vegetation, as shown, for example, by Buddenbaum et al. 

(2015). It might also be worthwhile for further studies to divide 

the entire data set into several sub-sets and to perform a leave-

one-out cross-validation for more robust results. 

5. CONCLUSION 

This study aimed to firstly investigate the usability of 

WorldView-3 data for mapping tree vitality in a dehesa 

ecosystem in a mountainous region. An image from late 

September was analyzed for which ground truth data were 

collected. The orthorectification of the image could finally be 

performed satisfactorily. The distortion caused by high relief 

energy in the study region is, however, a factor to be taken into 

account for further studies. Out of the ten investigated 

vegetation indices (ARVI, CIgreen, CSI, DPI, EVI, GNDVI, 

NDVI, PSRI, RENDVI, and RGI) and three machine learning 

classifiers (Maximum Likelihood, Random Forest, and Support 

Vector Machine), the best results were achieved with the red 

edge normalized difference vegetation index (RENDVI) and the 

Support Vector Machine classifier. Future studies will aim at 

obtaining more reliable ground truth, investigating other 

Figure 3. Comparison between the raster classified with 

RENDVI and Support Vector Machine and the mapped 

ground truth. Shown are area 4 (top) and area 11 (bottom) 

in Figure 1. 
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classification methods, and performing combined analyses of 

spectral and structural data to improve the results. 
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