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ABSTRACT: 

 

The integration of modern technologies in farming poses a challenging task to the research community. In this work, the task of 

selective cropping and treating is considered, whereas learning algorithms can provide essential assistance on crop growth and disease 

prediction, species recognition and fruit detection. In this paper, we introduce a highly specialized object detection (OD) and 

classification dataset of tomato fruits that contains class information for the ripening stage of each tomato fruit apart from its 

corresponding bounding box. With this dataset we aim to encourage the development of task-specific production ready object detection 

algorithms, as well as to evaluate and provide a baseline result of common state-of-the-art generic OD algorithms. In detail, a thorough 

presentation of the most common OD datasets takes place, where we discuss both generic OD and some highly specialized datasets. 

Our dataset contains more than 250 images and 2400 annotations in total. The dataset contains class information for three ripening 

stages of a tomato fruit provided by expert agriculturists, while providing views consistent with the targeted real-world use case 

scenario. Compared to other OD datasets our proposition differs in core areas such as the quality of the annotations, the object size 

distribution and the public availability. Evaluating the performance in our dataset for six object detection models we draw conclusions 

about the strength and weaknesses of each one’s performance. Finally, we present a future roadmap of revisions and discuss some 

future research topics that could improve the performance of OD algorithms in our dataset. 

 

 

1. INTRODUCTION 

Agriculture plays a crucial role in humanity’s everyday life as 

well as in the global economy. As world population increases 

rapidly and the natural resources are running out, the need for 

precision farming is becoming more and more evident. Advanced 

technologies can be used to provide automated solutions for 

manually performed tasks supporting, thus, precision farming. 

Hence, the integration of those modern technologies in farming 

poses a challenging task to the research community from a 

variety of scientific fields such as Remote Sensing, Machine 

Learning or Robotics. Especially regarding the field of cropping 

management, the integration of advanced IT technologies in 

farming can provide essential assistance on crop prediction, 

species recognition, disease prediction, etc. 

 

Thus, there is an increased interest in the development of deep 

learning algorithms for various agricultural procedures. For 

instance, (Pantazi et al., 2016) present a novel method that 

focuses on crop prediction. This proposed method accumulates 

data from satellite imagery, crop growth characteristics and in-

situ soil measurements for accurate wheat yield prediction. 

Regarding the species recognition task, (Grinblat et al., 2016) 

introduce an algorithm for identification and classification of 

legume species from leaf vein morphological patterns. 

Furthermore, concerning the disease detection diagnosis, 

(Ferentinos, 2018) proposes a CNN-based method, that classifies 

leaves as healthy or diseased in various plants from images.  

 

The accurate detection of different crops as well as the 

identification of their ripening stage are considered challenging 

and essential tasks. For the achievement of accurate results at 

these tasks, the need of a high-quality labelled dataset is required. 

However, there is a lack in such publicly available benchmark 

datasets for precision farming, which restricts the efficient 

application of modern technologies, like machine learning 

algorithms, in greenhouses. To encourage and support the 

detection of specific crops, we introduce a dataset for tomato 

fruits detection.  

 

Tomato is one of the most popular vegetables that plays a 

significant role in agricultural economy. Due to its planting 

characteristics, such as large planting area, the collecting of 

tomato is a time-consuming and intense activity. Moreover, its 

characteristics, like the short lifespan and sensitivity of the fruit, 

make tomato collection a difficult and delicate procedure that 

needs accurate timing. Thus, the development of an automated 

collecting mechanism, that can help tomato harvesting activity 

efficiently is particularly important. A critical part in the research 

of automated collecting mechanisms is object detection 

techniques based on images of tomato fruits in greenhouses. 

Therefore, the existence of a high quality and realistic tomato 

dataset is equally important, as can be used for the precise 

detection of those fruits.  

 

Across literature there is a severe lack of such datasets, especially 

considering those freely available, while the few that exist 

differentiate over the proposed dataset in various aspects, such as 

the vastly different viewing angle or the very small quantity of 

available data. In the context of this work the task of selective 

cropping and treating is considered, where machine learning 

algorithms can provide essential assistance on crop growth and 

disease prediction, species recognition and fruit detection. The 

main objective of this work is to address the need for a task-

specific object detection dataset for tomato fruits, namely 

“Tomato Object Detection (TomatOD)”, for precision agriculture 

applications that typically require highly accurate localization.  
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In this paper, we introduce a highly specialized, novel object 

detection and classification dataset of tomato fruits, that contains 

class information for the ripening stage of each tomato fruit apart 

from its corresponding bounding box. The ripening stages of 

tomatoes can provide information about their harvest; in this 

dataset these stages are represented by three classes, unripe, 

semi-ripe and fully-ripe. Moreover, the TomatOD dataset is 

freely available for research purposes. 

 

The rest of the paper is structured as follows. In section 2, a 

thorough review of typical object detection dataset is presented, 

while the introduced TomatOD dataset and its statistical analysis 

is described in Section 3. In Section 4, some state-of- the-art 

detection algorithms are presented and, in Section 5, those 

algorithms are trained and evaluated on our proposed dataset. 

Lastly, the main impact points of TomatOD dataset are revised in 

Section 6, while we draw some conclusions and propose further 

future work.  

 

2. OBJECT DETECTION DATASETS OVERVIEW 

Object Detection (OD) is one of the most challenging problems 

in computer vision, aiming to determine the location of certain 

objects on images and videos as well as to classify them among 

specific classes. Typically, the localization of object is described 

by a bounding box. OD can be applied in a wide range of 

applications like autonomous driving, object/people tracking, 

security and transportation field, etc. Recently, the introduction 

and free distribution of huge OD datasets has been the most 

contributing factor in the wide use of deep learning algorithms in 

the field of object detection. Some of the most common OD 

datasets for various tasks are descripted in this section.   

 

One of the most well-known benchmarks in object classification 

and detection tasks is the PASCAL Visual Object Classes (VOC) 

dataset introduced in (Everingham et al., 2010). The PASCAL 

VOC challenge had been released annually from 2005 to 2012 

and it is considered a reference dataset in object detection tasks, 

even though it contains only 20 basic categories. The first version 

was released in 2005 and it contained only 4 categories. In 2007 

version of the PASCAL VOC dataset, the fixed final number of 

20 classes was introduced. In the last iteration, VOC2012 dataset, 

it has over 12K images, with more than 28K annotated objects of 

20 classes. Moreover, the PASCAL VOC dataset is not exposed 

to systematic bias in its data, like image centered objects, good 

illumination or non-occluded objects. 

 

Following PASCAL-VOC, the first large-scale dataset is the 

ImageNet (Deng et al., 2009), containing over 14 million images 

organized into over 1000 classes.  The images of this dataset 

collected from various online sources, which have variable 

appearances, positions, viewpoints, poses, background clutter, 

occlusions and lighting conditions. Focusing on generic object 

localization and detection tasks, the ImageNet Detection 

(ILSVRC17 DET) dataset uses a subset of 476K images of 

ImageNet Dataset with 534K bounding box annotations from 200 

categories.  

 

One of the most used datasets in OD is the Common Objects 

Context (COCO) dataset (Lin et al., 2014), published by 

Microsoft. It contains more than 2.5M labelled instances of 91 

object categories in a total of 328K images, where 82 out of 91 

categories of this dataset have more than 5K labelled instances. 

The categories are selected in order to be a representative set of 

all real-world categories and to be relevant to practical 

applications. The dataset is targeted at the detection of objects 

that can be found in everyday life in their natural environments. 

 

Additionally, the Open Images dataset contains diverse images 

with complex scenes and several objects per image. Since its 

introduction in 2016, the creators of the dataset have published 

several updated versions, with the 2018 version, namely the Open 

Images V4 (Kuznetsova et al. 2018), to be among the most 

popular iterations. In 2020, the most contemporary version of this 

dataset, Open Images V6, was published, containing more than 9 

million annotated images, while the annotations include object 

bounding boxes, image-level labels, object segmentation masks, 

visual relationships and localized narratives. 

 

A numeric comparison of these four object-detection focused 

datasets can be found in Table 1. It is observed that the ImageNet 

provides much more categories and significant more images than 

           
                              

Figure 1. Sample images with annotations. Tomatoes below a certain size are considered out of scope. Green boxes are of class 

unripe, orange boxes of class semi-ripe and red boxes of class fully-ripe. 

 

 
Table 1. Comparison between common OD datasets 

 

Pascal ILSVRC2017

VOC2012 (ImageNet)

Images 12K 476K 328K 1.7M

Annotations 28K 534K 2.5M 15M

Classes 20 200 91 600

Instances / 

Image
2.3 2.7 7.7 8.3

COCO
Open 

Images V6
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PASCAL VOC. COCO, on the other hand, contains fewer 

categories, but more instances per category than ImageNet. 

Moreover, the COCO dataset has more categories than the 

PASCAL VOC dataset as well as significantly more instances per 

category. However, Open Images dataset is the largest dataset of 

the four, given the number of total images, annotations and 

categories. Another crucial observation among these datasets is 

the number of labelled instances per image; the COCO dataset 

contains significantly more instances per image than both 

PASCAL VOC and ImageNet dataset. Specifically, it has an 

average of 7.7 instances per image instead of 2.3 and 2.7 

instances per image respectively. Once again, the Open Images 

dataset is the most information rich of the four, since it contains 

8.3 instances per image. Additionally, 10% of COCO images 

have one class per image, while the ImageNet contains more than 

60% of images with a single object class. PASCAL and Open 

Images have over 60% and 20% of images with one category.  

The datasets were designed to address the need for generic object 

detection; however, some particular classification and detection 

tasks demand more specialized, “task-specific”, datasets. In the 

field of autonomous driving, for example, the KITTI dataset 

(Geiger et al., 2012) is one of the most well-known benchmarks 

for 2D and 3D object detection for this task. For human action 

understanding, the AVA (Gu et al., 2018) is a labelled video 

dataset with audiovisual annotations, aiming to improve the 

understanding of human activity. Regarding, the classification 

and detection of animal species and plants in the real world, the 

iNaturalist Species dataset (Van Horn et al., 2018) is among the 

most common choices. 

 

Regarding classification and detection tasks for Precision 

Agriculture, specially designed datasets also do exist. Relative to 

crop detection, the CropDeep dataset (Zheng et al., 2019) is a 

specialized dataset for species classification and detection of 

common vegetables and fruits. Specifically, CropDeep have 

classes of different parts and growth stages of vegetables and 

fruits, as well as similar parts of different different species, like 

flowers and leaves. It contains more than 31,000 images with 

over 49,000 annotated objects of 31 different classes. The images 

were collected by IoT visual cameras, autonomous robots and 

smartphones in greenhouses. The dataset contains different parts 

and growth periods of vegetables and fruits, but also similar parts 

of different species. Among the 31 categories, the CropDeep 

dataset contains four growth stages of tomato, which are ripe, 

unripe, early-blossom and full-blossom. The dataset is not 

publicly available, although it can allegedly be provided from the 

author by email. 

 

Focusing on the detection of key organs of tomatoes using CNN 

architectures, the work of (Sun et al., 2018) introduces a dataset 

of over 5,000 images with annotated objects of tomato flowers, 

immature green and mature red tomatoes. The images are mostly 

close-up shots and were collected with high definition camera on 

greenhouse in different times and light conditions. It is not 

mentioned in the paper if the dataset is publicly available and 

whether the annotation process was done by experts or not. 

Another specialized dataset for grape detection is introduced in 

(Santos et al., 2020). This dataset is publicly available and 

contains 300 images with over of 4,000 boxed clusters from 5 

different grape varieties, as well as binary segmentation masks 

for a subset of clusters. 

 

3. TOMATOD DATASET 

TomatOD is a novel dataset aiming to provide a realistic use case 

scenario for a highly specific task, whereas a robotic arm 

navigates across the corridors of a soilless tomato cultivation 

greenhouse and performs location mapping as well as ripening 

stage estimation of every tomato fruit in the greenhouse. The 

TomatOD dataset contains images of tomato fruits and high-

quality expert annotations from a group of two agriculturists. The 

dataset contains 277 images with 2418 annotated tomato fruit 

samples of unripe, semi-ripe and fully ripe class, making it 

suitable as a benchmark in detection and classification of 

tomatoes in greenhouses. The TomatOD dataset can be found 

here (https://github.com/up2metric/tomatOD). Moreover, it is 

mentioned that the annotations of the introduced dataset are 

provided in a COCO compatible format. Our dataset is 

summarized in Table 2. In this section the data acquisition in the 

greenhouse, and the (manual) annotation procedures as well as 

the statistical analysis of the dataset are described in detail.  

 

IMAGES ANNOTATIONS 

277 2418  

 unripe semi-ripe fully ripe 

1592 395 431 
 

Table 2. Images and annotations of tomatOD dataset 

  

3.1 Data acquisition 

Images of tomato plants containing unripe, semi-ripe and fully 

ripe tomatoes were collected from a soilless cultivation 

greenhouse in Crete, Greece. The data acquisition process took 

place in April 2019 and lasted 3 days. The camera that was used 

is a CMOS 12MP Ximea Machine Vision sensor. We selected 

this sensor to better simulate views of a camera mounted on top 

of a robotic arm, that navigates through the corridors of the 

greenhouse in order to capture the location and ripening stage of 

each tomato in a greenhouse. The final images depict rows of 

crops of tomato plants. The greenhouse provides a controlled 

environment regarding the lighting conditions, thus most images 

share ambient lighting characteristics. All in all, the set of images 

contained in our dataset were captured in a fashion that simulates 

a specific use case scenario. 

 

 

Figure 2. Proportions of classes of tomatOD dataset 

 

3.2 Annotation Procedure 

The image annotation procedure includes the localization of 

tomatoes fruits in the image and the identification of 

corresponding class of ripening stage. Since the correct 

annotations play an important role in the accurate training of 

detection algorithms, this procedure is of great importance. The 

annotation of tomato dataset was done manually by two 

specialized agriculturists with deep knowledge on the tomato 

growing procedure. The online tool that was used for data 

annotation is our in-house annotation tool, namely the 

“ANNOTATOR”, powered by up2metric. The annotated data 

follow some specifications. At first, only the relatively big 

tomato fruits on the first and second rows on the branches of 

plants were annotated, given that they appeared clearly and they 

were not blurred. Next, only the fruits, that are not occluded more 

than 50% of their size were annotated. In the case of a bunch, the 
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tomatoes were annotated one by one independently. Finally, all 

the blurred or very small fruit objects in the first two rows were 

manually erased from images. The final set of annotations 

include a bounding box for the location of the fruit and a list of 

labels of the corresponding class of ripening stage provided by 

the agriculturist experts. Tomato fruits of the third and over row 

are ignored.   

 

3.3 Statistical Analysis 

The statistical analysis of the dataset is very crucial, since it gives 

valuable insights about the data, which can lead in a deeper 

understanding and thus the design of better “task-specific” 

detection algorithms. Firstly, the appearance frequency of each 

category of TomatOD dataset is presented. In Figure 2 the three 

classes of the TomatOD as well as their relative appearance 

frequencies are shown. The class unripe is the most frequent with 

1592 instances, the fully-ripe is the second among the three 

classes with 431 instances and the semi-ripe with 395 instances 

is the last frequent one. The classes of the TomatOD dataset are 

clearly not balanced, however their relative proportion is in line 

with the actual appearance frequency of each class in a realistic 

scenario. Another major point of interest, and a huge 

differentiating factor for our dataset is the size distribution of 

bounding boxes. Thus, the percentile relative size of each 

bounding box is calculated, that indicates the proportion of the 

diagonal length of each box over the diagonal length of the 

image. In Figure 3, the histogram of the percentile relative size 

distribution of the TomatOD bounding boxes is presented. The 

graph of Figure 3 is skewed right. Most of the bounding boxes 

have size between 3% to 15% relative to the image size. 

Additionally, the graph shows that the maximum bounding box 

in size is only 23% relative to the whole image size, thus the 

bounding boxes of tomato fruits cover a small area on images in 

general, adding extra difficulty to the OD task. 

 

 

Figure 3. Histogram of relative size distribution (%) of 

bounding boxes in the TomatOD dataset 

 

Moreover, the number of labeled instances per image is 

computed for the TomatOD dataset. As it is shown in Figure 4, 

only 1% of images have one category per image and 11% of 

images include 8 instances, while the maximum number of 

instances per image, which is 20, is found only in 0.72% of the 

images. Finally, the TomatOD dataset has an average of 8.7 

instances per image. Figure 5 presents some further insight 

regarding the total number of categories found in each image. 

This type of information describes the variety of the object in 

each image. It is observed, that more than half of the TomatOD 

images contain objects of all 3 categories, while less than 8% of 

the images have objects of a single category.  

 

Finally, according to established protocols of machine learning 

methods, we propose an official train-test split for the TomatOD 

to ensure that any algorithms evaluated on our dataset can present 

easily comparable results in a straightforward manner. We 

adopted a 80%/20% train-test split ratio, which in our estimation 

represents a fine trade-off between the amount of training data 

and the adequacy of test data to provide a representative subset 

of a realistic use case scenario. Please, note that the selection of 

the training and test data respectively was conducted in a semi-

random manner; we exploited our statistical analysis in order to 

constraint our random selection algorithm to come up with a 

train-test split that maintains about the same split ratio both on 

the image level (19.9% test size) and the total annotations level 

(19.3% test size). 

 

3.4 Comparison to other Datasets 

TomatOD dataset differentiates over common generic object 

detection datasets in many ways. At first, due to its task specific 

nature the total number of classes contained in our dataset is 

significantly smaller. However, our set of classes pose a much 

harder problem due to the high correlation between our 

categories, i.e. all classes refer to the same tomato fruit, in 

different ripening stages. Another differentiating factor suggest 

the constrained imaging conditions of our data; in contrast to 

generic OD, our goal is to simulate a specific scenario. So, our 

data derive from the same machine vision camera system, 

maintain a similar camera pose while external conditions such as 

lighting or the greenhouse context also remain constant. Such a 

setup allows OD algorithms to be able to train with less data 

compared to generic OD datasets, like COCO, due to the 

constrained nature of our task. Last, while most generic OD 

datasets rely on rough annotations, or even crowdsourced ones, 

in combination with massive data to provide a useful dataset, we 

adopt a radically different approach; we invest in rich high-

quality annotations to overcome the need for more data. In 

 

Figure 4. Histogram of the number of annotation instances 

per image 

 

Figure 5. Distribution of the number of categories appeared 

in TomatOD images 
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addition, the high specificity and correlation of our classes set 

requires expert knowledge from a group of agriculturists to 

provide annotations of the highest quality. 

 

Compared to other specialized datasets, designed for 

classification and detection tasks for Precision Agriculture 

similar to ours, the TomatOD dataset contains less images and 

annotations. However, the data annotations were done by expert 

agriculturists; thus, the annotations are more precise. 

Additionally, the TomatOD data describes a real-world use case 

scenario involving tomato plants in a greenhouse, while the 

images of the dataset resemble those captured from a camera 

mounted on a robotic arm. This kind of specialized set-up is 

useful in a wide range of application in a greenhouse. The size 

distribution of annotations in our dataset significantly differs to 

that of other specialized datasets; in fact, the TomatOD dataset 

contains much smaller objects, so the detection of such small 

bounding boxes poses a challenging task. Moreover, the 

TomatOD is a freely publicly available dataset for the detection 

and classification of tomato fruits in unripe, semi-ripe and fully 

ripe classes from images. 

 

4. OBJECT DETECTION METHODS 

Over the last years, more and more powerful deep learning 

models for object detection are built. Those models vary on their 

architecture, but also differ on their training procedure, the 

optimization loss function, etc. Roughly, modern object detection 

networks can be divided in two main categories, the one-stage 

and the two-stage detectors. The one-stage detectors can achieve 

high inference speed, while the two-stage detectors can detect 

objects with high localization and object recognition accuracy.  

 

The difference between those two categories of networks is 

mostly in their architectures and the way they predict the 

bounding boxes. Specifically, an architecture of a two-stage 

detector typically contains a region proposal step, which 

proposes candidate object bounding boxes. Afterwards, features 

are extracted from each candidate bounding box and 

classification and bounding-box regression tasks are performed. 

Such approaches include R-CNN (Girshick et al., 2014), Fast R-

CNN (Girshick, 2015), Faster R-CNN (Ren et al., 2015) and 

Mask R-CNN (He et al., 2017). Next, the most common of them, 

the Faster RCNN detector, is presented. 

 

Faster-RCNN (Ren et al., 2015) is a region-based CNN detector. 

It is an enhanced version of the former Fast-RCNN (Girshick, 

2015) and the original R-CNN (Girshick, 2015). This detector 

consists of two networks, the first one is a region proposal 

network (RPN), which is a fully convolutional network, for the 

generation of region proposals in a wide range of scales and 

aspect ratios (anchors) and the second one is a detection CNN, 

which uses those proposals for classification and localization. 

Additionally, anchors of various scales and ratios are used, 

making the network able to detect objects of different sizes. Due 

to the fact that RPN shares some convolutional layers with the 

detection network, the overall detection procedure is further 

accelerated. 

 

On the other hand, one-stage detectors predict boxes and class 

probabilities directly from image pixels, without any region 

proposal step, for this reason they can achieve much faster 

inference time and therefore are able to be used for real-time 

applications and on mobile devices. Such one-stage detectors 

include MultiBox (Erhan et al., 2014), SSD (Liu et al., 2016), 

YOLO (Redmon et al., 2016), YOLOv2 (Redmon, Farhadi, 

2017), YOLOv3 (Redmon, Farhadi, 2018), RetinaNet (Lin et al., 

2017) and Pooling Pyramid Network (Jin et al., 2018). A 

presentation of the most common and novel ones follows. 

 

SSD (Single Shot MultiBox Detector) (Liu et al., 2016) is a one-

stage detector that predicts multiple category scores and box 

locations per inference step. The predictions are done for a fixed 

set of default bounding boxes, which have different aspect ratios 

and scales at each location for several feature maps. The SSD 

network predicts a set of offsets for those default boxes as well 

as their confidence scores using an aggregation step of some 

specific feature maps at the end of the network. The VGG16 is 

used as a common backbone architecture for SSD network, 

however variants with other backbones such as the Inception v2 

or some MobileNets do exist. SSD is able to handle objects with 

various sizes, by combining predictions from feature maps with 

different resolutions. Under typical configurations, the SSD 

detector cannot perform equally well in detecting objects in 

smaller scales.  

 

YOLOv3 (Redmon, Farhadi, 2018) is an one-stage object 

detector and an improved version of YOLO (Redmon et al., 

2016) and YOLOv2 (Redmon, Farhadi, 2017). The contribution 

of this algorithm is the real-time detection of objects on images. 

The YOLO series of algorithms have a unified architecture which 

can determine the location and the class of objects with a single 

neural network. As an improvement to the previous networks, 

YOLOv3 performs multilabel classification for object detections 

in images. Moreover, the newer version of YOLO makes 

detections at three different scales. Due to the benefits of multi-

scale predictions, YOLOv3 has better performance for small 

objects but worse for medium and large objects. 

 
Figure 6. Accuracy vs Epochs diagram for the OD algorithms on train and test sets. 
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RetinaNet (Lin et al., 2017) is another one-stage object detector. 

During the training of one-stage detectors, there is an extreme 

foreground-background class imbalance problem, which is not 

happening in the case of two-stage detectors. In order to 

overcome this issue, RetinaNet uses the focal loss. This loss 

function is formed to down-weight the easy examples and thus 

focus on the hard training examples, which improve the overall 

prediction accuracy. As a result, RetinaNet achieves high 

inference speed, as the other one-stage detectors, but also more 

accurate results. As an extra advantage, RetinaNet improves the 

precision for detecting small and medium objects over a typical 

SSD. 

 

PPN (Pooling Pyramid Network) (Jin et al., 2018) is also a one-

stage object detector, similar to SSD (Liu et al., 2016) with two 

simple changes. Firstly, the box predictor of PPN is shared for 

feature maps at different scales, instead of using independent box 

predictors of SSD. Secondly, the convolutions between feature 

maps of SSD are replaced by max pooling operations. The PPN 

model manages to reduce the model size but also to maintain 

accuracy similar to that of an SSD. 

 

5. EXPERIMENTS 

In order to set benchmark results, six state-of-the-art detectors are 

evaluated at the proposed TomatOD dataset. In detail, Faster 

RCNN with Inception v2, SSD with both Inception v2 and 

Mobilenet v2, PPN with Inception v2. RetinaNet (ResNet 101) 

and Yolo v3 are chosen, all of them pretrained on COCO dataset.  

In this section, the experimental set-up is described and the 

results of different detectors at TomatOD dataset, after 

hyperparameter fine-tuning, are listed.  

 

5.1 Experimental setup 

The training of the Faster RCNN, SSD and PPN was performed 

using the Tensorflow Object Detection API framework (Hung et 

al., 2017), the Detectron2 API was used for the training of 

RetinaNet while the Darknet framework (Redmon, Farhadi, 

2018) was used for the training of YoloV3. All models were 

trained and evaluated on a system with a modern Intel Core i7 

CPU paired with a GTX 1080ti GPU and 64 GB RAM. 

The detectors were trained on the train set for 450 epochs and 

were evaluated on the test set; the train/test split is described in 

Section 3.3. Furthermore, hyperparameter fine-tuning was 

performed for all of the networks in order to perform optimally 

on the TomatOD dataset. The Faster RCNN, SSD and PPN were 

trained on TomatOD images with fixed image size of 1000x1000 

pixels, while the Yolo v3 on resized images of size 608x608 

pixels and RetinaNet on the original images.   

All methods were trained using an initial learning rate of 2e-4 

with decay using the RMS Prop with momentum optimizer. Data 

augmentations techniques were applied to obtain better results. 

Such techniques included random horizontal flip, random adjust 

of brightness or contrast and random crop. For the SSD and PPN 

we adjusted their target scale range to [8%, 60%] to better fit the 

size distribution of the objects of our training data. 

 

5.2 Results 

In Figure 6 accuracy over epochs is illustrated for both the train 

and the test set for every model trained. Both train and test curves 

were used to select the optimal epoch for each model. RetinaNet 

yielded the best overall results with a mere 74.51% for the mAP 

metric, as shown in table 3. Regarding per class performance, the 

RetinaNet achieved the best performance for every single class. 

Among the rest detectors, the Faster RCNN yielded good results, 

as well as YoLo v3 and PPN. The SSD detectors, albeit very fast, 

performed the worst with a mAP of 47% and 52% for the 

Inception v2 and the MobileNet v2 backbone selection 

respectively. 

 

The precision-recall curve for each model in figure 8 confirm the 

results stated above. Given that in a pr-curve the bigger the area 

under curve the better, we observe that RetinaNet, Faster R-CNN 

and Yolo v3 yielded the best overall results. Furthermore, these 

models maintained good performance for various values of the 

IoU threshold. On the other hand, the two SSDs and the PPN 

models didn’t perform well, especially for class “semi-ripe” and 

“fully-ripe”. We observe that there is a significant tradeoff 

 
 

 
Figure 7. Detections of RetinaNet on two test images. The 

green outline indicates predictions and the yellow outline the 

ground truth. TP: green outline & fill; FP: green outline – 

red fill; FN: yellow ouline – blue fill 

 

 
Table 3. Average precision of each class and mean Average  

Precision over all classes 

 

unripe AP
semi-ripe 

AP 

fully-ripe 

AP
mAP

Faster-RCNN 89.29% 43.8% 66.9% 66.66%

SSD MNetv2 62.07% 44.68% 49.26% 52%

SSD Inc.v2 67.99% 30.39% 45.69% 47.02%

PPN 66.69% 48.04% 68.57% 61.1%

Yolo v3 85.09% 49.11% 57.57% 63.92%

RetinaNet 91.47% 55.28% 76.77% 74.51%
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between inference time per image and accuracy; as shown in 

table TT2, the SSD-based detectors need about 0.02 seconds per 

image, or about 50fps. Such performance suggests that these 

models can be deployed in real time systems. The other models 

however work on about 10fps for the Faster R-CNN and the 

RetinaNet. In our tests, YoLo v3 was the best tradeoff between 

accuracy and speed, however its overall accuracy might not be 

enough for deployment in  production.  

 

The behaviour of these OD algorithms on our dataset can also 

give us some valuable insight about the challenges of the specific 

use-case scenario supported by our dataset. The most serious 

challenge is undoubtedly the small-favouring size distribution of 

the objects in our dataset. Furthermore, we observe many mis-

classification cases were the two “extreme” classes (fully ripe 

and unripe) get confused with the “middle one” (semi- ripe) and 

vice versa. This difficulty in class discrimination confirms our 

estimate that such kind of information needs expert knowledge to 

ensure correctness in our ground truth data. 

 

6. CONCLUSION 

This work represents the first version of our dataset, namely 

TomatOD. We plan to actively enrich our dataset in the following 

months to contain even more data from a diversity of soilless 

cultivation greenhouses. Incorporating more greenhouse 

environments would allow models trained in our dataset to 

perform adequately well in a plug and play fashion facilitating 

their integration to operational systems. We also plan to augment 

our annotations by including even more experts, in order to be 

able to perform a statistically-sound comparison of their 

annotations. 

 

Current state of the art detectors fail to be characterized as 

production-ready in a use-case scenario similar to that of our 

dataset. While some two-stage detectors approach near-

acceptable detection accuracy level, they severely lack in real-

time inference capacity. On the other hand, “fast” single shot 

detectors don’t cope well with the singular object size 

distribution of TomatOD resulting in poor detection accuracy. 

Given the evaluation results of common state of the art OD 

algorithms in our dataset, it is clear that the main challenge is no 

other than the small size in which objects mostly appear in our 

 

 
Figure 8. Precision-Recall curves for each  OD algorithm and class: fully ripe (red), semi-ripe (orange), unripe (green) 

 

 
Table 4. Inference time of each OD algorithms 

 

Detector Inference time per image

Faster-RCNN 0.103secs

SSD MNetv2 0.021 secs

SSD Inc.v2 0.018 secs

PPN 0.017 secs

Yolo v3 0.048 secs

RetinaNet 0.105 secs
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data. To overcome this issue, OD research should focus on 

aligning the target scales of the models to better fit the overall 

object size distribution of our dataset in order to develop models 

that operate on an acceptable accuracy level while maintaining a 

near real-time inference performance. 
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