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ABSTRACT: 

 

In the lunar surface sampling mission, the drop operation that transferring the packaging container into the sample return container is 

a vital step. In this paper, for supporting the drop operation, we proposed a method to measure the coaxiality between the two containers 

based on the monocular vision pose measurement using ellipse and line features. The method first extracts ellipse and line features in 

the 2D image to calculate the initial parameters. Then, the initial parameters and the point set are used to fit the curve by the cylinder 

perspective contours fitting method, where the constraints between ellipse and line features are used to improve the robustness to 

varying noises. Next, given the fitting ellipse and camera parameters, the pose of the packaging container is solved by using circle-

based method. Finally, the coaxiality of the two containers is calculated based on the relative pose between them. Simulation 

experiments were carried out and the results show the effectiveness and reliability of the proposed method. 

 

 

1. INTRODUCTION 

The lunar mission in the third phase of the Chinese Lunar 

Exploration Program will perform the tasks of landing, sampling 

and returning to the earth (Ye et al., 2014). Transferring precisely 

the packaging container into the sample return container is the 

vital step in the whole sampling operation. To ensure that the 

packaging container is precisely dropped into the sample return 

container, the coaxiality between the two containers is used as the 

criterion for judging whether the packaging container can be 

transferred into the sample return container. 

 

Coaxiality measurement methods can be generally divided into 

three types: mechanical collimation method (Zhang et al., 1997), 

optical collimation method and laser collimation method (Li et 

al., 1998). These traditional measurement methods are unsuitable 

for deep space environment, because they have high 

requirements for equipment and have lower automation. With the 

development of optical sensors and image processing 

technologies, measurement methods based on computer vision 

have become an important means of coaxiality measurement. It 

has the characteristics of non-contact, high precision and high 

degree of automation. Applying computer vision technology to 

the coaxiality measurement system, the detection process is 

completely changed from manual measurement to automatic 

measurement, which is very suitable for the lunar surface 

sampling system. In addition, most of the existing methods of 

measuring coaxiality using computer vision techniques are 

carried out on a two-dimensional image space in pixels (Zou et 

al., 2006; Wang et al., 2015). In this paper, the computer vision 

technology is used to calculate the three-dimensional relative 

pose between space objects, and then the coaxiality is solved on 

the three-dimensional object space. 

 

 

*  Corresponding author.  

In the mission, the monitoring camera fixed on the upper surface 

of the ascent vehicle will take pictures during the process of pot 

dropping. Thus, the monocular vision pose measurement can be 

used to measure the pose between the packaging container and 

the sample return container (Wang et al., 2019). At present, 

monocular vision pose measurement methods are mostly based 

on point features (Zhang et al., 2018; David et al., 2004; Ning et 

al., 2018). Given a set of 3D points (e.g., marks and corners) and 

their corresponding 2D points, the pose of the target object can 

be solved. This is also called the PNP problem (Inaba et al., 2000). 

The point-feature-based method needs to consider the complex 

correspondence between spatial points and image points, which 

is a classic problem in computer vision. In addition, the point-

feature-based method might fail on the pose estimation of 

nonplanar objects, since few point features can be extracted from 

the image (Liu et al., 2014). The packaging container carried by 

lunar probe has no artificial target. During the dropping process, 

image quality may be poor with noise points or being affected by 

illumination conditions, it may be very hard to extract point 

features. Compared with point features, circle features are more 

abundant and stable in the image, and they have the advantages 

of easy recognition, anti-interference and anti-occlusion, but no 

complex matching problem. Therefore, the circle features of the 

cylindrical container are chosen to estimate the pose.  

 

In general, the shape of a circle projected on the image plane after 

perspective projection is an ellipse. Huang et al. (1996) used the 

projected ellipse on the bottom of a cylinder to estimate the pose 

of the cylinder. The accuracy of elliptical contour recognition 

will directly affect the accuracy of pose estimation in cylindrical 

space. Ying et al. (2016) developed a constrained implicit 

equation to enhance the robustness and precision of perspective 

contour extraction which consists of ellipse and line features for 

cylinders. In order to improve the accuracy of ellipse recognition 

and pose estimation, this method is used to obtain the equation of 
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image ellipse and derive the pose of the circle plane with respect 

to the camera frame. Based on the results of pose estimation, we 

can determine the relative pose of the containers and calculate 

their coaxiality in the three-dimensional object space, which can 

support the drop operation in the lunar surface sampling mission. 

 

The rest of this paper is organized as follows: Section 2 

summarizes the definition of coordinate systems; Section 3 

specifies the proposed method; Result of simulation experiments 

are shown in Section 4; Finally, conclusions are given in Section 

5. 

 

2. COORDINATE SYSTEM DEFINITION 

First, we establish the coordinate systems used in this paper. As 

shown in Figure 1, the coordinate frames are defined as follows: 

the packaging container coordinate system O-XYZ, the sample 

return container coordinate system Ob-XbYbZb and the camera 

coordinate system Oc-XcYcZc. 

 

The origin O of the packaging container coordinate frame is 

located at the center of the bottom circle of the container. The Z-

axis aligns with the central axis of the container. The O-XY plane 

is perpendicular to the Z-axis, and the X-axis points to the 

projection of the optical center of the camera on the O-XY plane. 

The Y-axis is determined by the right-hand rule according to the 

X-axis and Z-axis.  

 

The origin Ob of the sample return container coordinate frame is 

located at the center of the top circle of the container. The Zb-axis 

aligns with the central axis of the container. The Ob-XbYb plane is 

perpendicular to the Zb-axis, and the Xb-axis points to the 

projection of the optical center of the camera on the Ob-XbYb 

plane. The Yb-axis is determined by the right-hand rule according 

to the Xb-axis and Zb-axis.  

 

The origin Oc of the monitoring camera coordinate frame is 

located at the optical center of the camera. The Zc-axis is forward 

along the optical axis. The Oc-XcYc plane is perpendicular to the 

optical axis, and the Xc-axis and Yc-axis are parallel to the 

columns and rows of the image coordinate system, respectively. 

 

The image coordinate frame is a 2D frame. Its origin is located at 

the upper-left corner of the image. The horizontal axis u and 

vertical axis v are the number of columns and rows in the image 

array. 

 

 

Figure 1. Coordinate systems definition 

3. METHODOLOGY 

As shown in Figure 1, the cylinder perspective contours are 

composed of an ellipse and a pair of straight lines formed by the 

projection of its bottom surface and side. The flowchart of the 

calculation of coaxiality is illustrated in Figure 2. We first extract 

ellipse and lines in 2D images, and use their constraints to 

improve the accuracy of ellipse fitting. Based on the ellipse 

feature, the relative pose of the packaging container and the 

camera is solved. Finally, the coaxiality between the two 

containers is calculated. 

 

 

Figure 2. Flowchart of coaxiality calculation 

 

3.1 Feature Extraction 

The line and ellipse extraction process is based on the edge binary 

map of the image, which is obtained by Canny edge detector 

(Luckett, 2018). Hough transform is applied to detect the side 

straight line group and the bottom ellipse of the cylinder 

perspective contour quickly and roughly. Next, initial values of 

the parameters are calculated for the subsequent curve fitting. 

 

The equation of an ellipse is denoted by: 

 

𝐴𝑥2 + 𝐵𝑥𝑦 + 𝐶𝑦2 + 𝐷𝑥 + 𝐸𝑦 + 1 = 0, 
𝐵2 − 𝐴𝐶 < 0.                                  (1) 

 

The equation of a line is denoted by: 

 

𝐴𝑥 + 𝐵𝑦 + 1 = 0                                (2) 

 

3.2 Curve Fitting 

As shown in Figure 1, only one underside of the cylinder is 

visible. In that case, a quadric implicit equation is used to 

represent a cylinder perspective contours composed of an ellipse 

and two lines: 

 
(𝑞1𝑥 + 𝑞2𝑥 + 1)(𝑞3𝑥 + 𝑞4𝑥 + 1) · 

                (𝑞5𝑥
2 + 𝑞6𝑥𝑦 + 𝑞7𝑦

2 + 𝑞8𝑥 + 𝑞9𝑦 + 1) = 0          (3) 

 

The line group and the ellipse meet the tangent condition. Each 

line has only one intersection with the ellipse. We can get two 

equality constraints: 

 

𝛽
𝑖
2 − 𝛼𝑖𝛾𝑖 = 0, 𝑖 = 1,2                             (4) 

 

where 

𝛼𝑖 = 𝑞
5
− (𝑞

2𝑖−1
𝑞
6
) 𝑞

2𝑖
⁄ + (𝑞

2𝑖−1
2 𝑞

7
) 𝑞

2𝑖
⁄  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1099-2020 | © Authors 2020. CC BY 4.0 License.

 
1100



 

𝛽
𝑖
= 𝑞

8
− (𝑞

2𝑖−1
+𝑞

6
) 𝑞

2𝑖
⁄ + (2𝑞

2𝑖−1
𝑞
7
) 𝑞

2𝑖
2⁄  

𝛾
𝑖
= 𝑞

7
𝑞
2𝑖
2⁄ − 𝑞

9
𝑞
2𝑖

⁄ + 1 

 

Besides, the symmetry axis of the two lines is collinear with the 

short axis of the ellipse. This condition can be represented by 

another constraint equation: 

 
𝑐1+𝑐2

1−𝑐1𝑐2±√(𝑐1
2+1)(𝑐2

2+1)
− 𝑐 = 0                      (5) 

 

where  𝑐1,𝑐2 are the cotangents of the inclination angles of the 

lines, and c is the cotangent of the inclination angle of the ellipse's 

short axis 

 

This curve fitting problem can be described as a nonlinear 

optimization problem with constraints: 

 

𝑚𝑖𝑛∆(𝑞)                                          (6) 
𝑠. 𝑡.    𝑞6

2 − 𝑞5𝑞7 < 0; 

𝛽
𝑖
2 − 𝛼𝑖𝛾𝑖 = 0, 𝑖 = 1,2; 
𝑐1+𝑐2

1 − 𝑐1𝑐2 ±√(𝑐1
2 + 1)(𝑐2

2 + 1)
− 𝑐 = 0 

 

The objective function ∆(𝑞)  is the sum of squares of the 

distances from fitting points to the curve. The original problem is 

then converted into an unconstrained nonlinear optimization 

problem by constructing an auxiliary function. The accurate 

curve parameters are obtained by solving this unconstrained 

nonlinear optimization problem using penalty function method. 

 

3.3 Pose Estimation 

The equation of image ellipse and the method proposed by Huang 

et al. (1996) are used to find the normal vector and the 

coordinates of the centre of the circle plane with respect to the 

camera frame. Figure 3 shows the elliptical projection of space 

circle on the image plane. The backward projection of the ellipse 

of the image is the elliptical cone surface. In order to determine 

the pose of the space circle, it is necessary to find a plane in space 

that intersects the cone in circle with the same radius R as the 

cylinder bottom surface. Since the elliptical cone equation is too 

complex to calculate in the camera frame, we need to find a new 

reference frame in which the cone has the standard form. The 

pose parameters of the space circle can be decomposed from the 

plane equation, then transformed back to the camera frame. 

 

 

Figure 3. Elliptical projection of space circle on the image plane 

 

First, the camera model is denoted by: 

 

𝑢 =
𝑓0𝑥

𝑧
, 𝑣 =

𝑓0𝑦

𝑧
                                 (7) 

 

where  𝑓0 is the focal length of the camera 

 (𝑥, 𝑦, 𝑧) is the coordinate in the camera frame 

 

Substituting Equation (7) into Equation (1) and rearranging, we 

can get the equation of the cone:   

 

𝐴𝑥2 + 𝐵𝑦2 + 𝐶𝑥𝑦 + 𝐷𝑥𝑧 + 𝐸𝑦𝑧 + 𝐹𝑧2 = 0          (8) 
 

where  𝐴 = 𝑎𝑓0
2, 𝐵 = 𝑏𝑓0

2, 𝐶 = 𝑐𝑓0
2, 𝐷 = 𝑑𝑓0, 𝐸 = 𝑒𝑓0, 𝐹 =

𝑓. 
 

Equation (8) can be expressed in terms of a symmetric matrix Q: 

 

[𝑥 𝑦 𝑥] 𝑸 [
𝑥
𝑦
𝑧
] = 0,where  𝑸 =

[
 
 
 
 𝐴

𝐶

2

𝐷

2
𝐶

2
𝐵

𝐸

2
𝐷

2

𝐸

2
𝐹]
 
 
 
 

         (9) 

 

Next, we define a new frame of reference 𝑥′𝑦′𝑧′ whose origin is 

the same as that of the camera frame. Thus, we can guarantee that 

the transform matrix between the two frames is a pure rotational 

matrix. Let 𝑷 represents the rotation matrix: 

 

[𝑥′ 𝑦′ 𝑧′] 𝑷 [
𝑥′

𝑦′

𝑧′
]=0                            (10) 

 

Substituting Equation (10) into Equation (9), that is 

 

[𝑥′ 𝑦′ 𝑧′] 𝑷−𝟏𝑸𝑷 [
𝑥′

𝑦′

𝑧′
]=0                      (11) 

 

In order to express the elliptical cone surface in a standard form, 

𝑷 is required to be a diagonalizing matrix for 𝑸: 

 

𝑷−𝟏𝑸𝑷 = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, 𝜆3)                        (12) 

 

Thus, the standard elliptic cone equation is: 

 

𝜆1𝑥
′2 + 𝜆2𝑦

′2 + 𝜆3𝑧
′2 = 0                        (13) 

 

Based on the elliptic cone surface equation, the center and 

surface normal of the circle can be obtained as: 

 

(𝑥0
′ , 𝑦0

′ , 𝑧0
′ ) = 𝑅0(±√

|𝜆3|(|𝜆1| − |𝜆2|)

|𝜆1|(|𝜆1| + |𝜆3|)
, 0,√

|𝜆1|(|𝜆2| + |𝜆3|)

|𝜆3|(|𝜆1| + |𝜆3|)
) 

 

(𝑛𝑥
′ , 𝑛𝑦

′ , 𝑛𝑧
′ ) = (±√

(|𝜆1| − |𝜆2|)

(|𝜆1| + |𝜆3|)
, 0, −√

(|𝜆2| + |𝜆3|)

(|𝜆1| + |𝜆3|)
)  (14) 

 

The above solution is relative to the 𝑥′𝑦′𝑧′ frame. And the 

transform matrix 𝑷 will bring them back to the camera frame: 

 
(𝑥0, 𝑦0, 𝑧0) = 𝑷(𝑥0

′ , 𝑦0
′ , 𝑧0

′ ) 
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(𝑛𝑥, 𝑛𝑦 , 𝑛𝑧) = 𝑷(𝑛𝑥
′ , 𝑛𝑦

′ , 𝑛𝑧
′ )                     (15) 

 

3.4 Coaxiality Calculation 

The coaxiality is defined as the maximum distance between the 

top/bottom center of the packaging container and the axis of the 

sample return container.  

 

 

Figure 4. Schematic diagram of coaxiality 

 

As shown in Figure 4, the coaxiality is the maximum value 

between 𝑑1 and 𝑑2. After solving by the above steps, we have 

obtained the center 𝑂1(𝑥1, 𝑦1, 𝑧1)  and the normal 

𝒏𝟏(𝑛1𝑥 , 𝑛1𝑦 , 𝑛1𝑧)  of the bottom surface of the packaging 

container. According to the container’s dimensions, we can 

calculate the top center 𝑂2(𝑥2, 𝑦2, 𝑧2) of the packaging container 

in the camera frame.  

 

(𝑥2, 𝑦2, 𝑧2) = (𝑥1, 𝑦1, 𝑧1) + ℎ × (𝑛1𝑥 , 𝑛1𝑦 , 𝑛1𝑧)       (16) 

 

where  ℎ is the height of the packaging container 

 

As the relative position between the sample return container and 

the camera is fixed and known, we can obtain the center 

𝑂1
𝑏(𝑥1

𝑏, 𝑦1
𝑏 , 𝑧1

𝑏) and the center 𝑂2
𝑏(𝑥2

𝑏 , 𝑦2
𝑏 , 𝑧2

𝑏) with respect to the 

Ob-XbYbZb frame. 

 

(𝑥1
𝑏 , 𝑦1

𝑏 , 𝑧1
𝑏) = 𝑹(𝑥1, 𝑦1, 𝑧1) + 𝑻 

 

(𝑥2
𝑏 , 𝑦2

𝑏 , 𝑧2
𝑏) = 𝑹(𝑥2, 𝑦2, 𝑧2) + 𝑻                   (17) 

 

where  𝑹  represents the rotation matrix between Ob-XbYbZb 

and Oc-XcYcZc 

 𝑻 represents the translation matrix between Ob-XbYbZb 

and Oc-XcYcZc 

 

We use the axis 𝑳 of the sample return container as the reference 

axis, and its direction vector 𝒔 = (0,1,0). The intersection point 

of the reference axis 𝑳 and the XOZ plane is 𝑃0 = (0,0,0). Thus, 

the distances d1, d2 can be determined, d1 represents the distance 

between 𝑳 and the top center 𝑂1
𝑏, d2 is the distance between 𝑳 and 

the bottom center 𝑂2
𝑏 of the packaging container,  

 

𝑑1 = ‖
(𝑶𝟏

𝒃 − 𝑷𝟎) × 𝒔

‖𝒔‖
‖ 

 

𝑑2 = ‖
(𝑶𝟐

𝒃 − 𝑷𝟎) × 𝒔

‖𝒔‖
‖                          (18) 

 

Finally, the coaxiality 𝛿  between the two containers can be 

obtained: 

 

𝛿 = 𝑚𝑎𝑥{𝑑1, 𝑑2}                             (19) 

 

4. EXPERIMENT 

In this section, simulation experiments were performed to verify 

the method presented in this paper. In the experiment, a cylinder 

with known dimensions is given to simulate the packaging 

container. The radius and height of the cylinder are 50mm and 

100mm. A set of camera parameters were also given to simulate 

the camera model. The simulation intrinsic matrix of the camera 

is: 

 

𝑀 = [
1210.13042 0 640

0 1210.13042 512
0 0 1

] 

 

The poses between the packaging container frame/ the sample 

return container frame and the camera frame are listed in Table 

1. 

 

Pose parameter Packaging 

container pose 

Sample return 

container pose 

𝑇𝑥/mm 5 0 

𝑇𝑦/mm 300 270 

𝑇𝑧/mm 2000 1990 

𝛼/° 3 0 

𝛽/° 45 0 

𝛾/° 0 0 

Table 1. Pose parameters used in the simulation 

 

First, we project the cylinder onto the 2D image plane by the pose 

parameters based on the camera model. Figure 5 shows the 

projection result on the image plane.  

 

 

Figure 5. Simulation projection result 

 

We implemented the Hough transform method to detect the 

projected lines and ellipse. Simultaneously, the theoretical values 

of the curve parameters are calculated. And the data of point set 

was obtained based on the theoretical value of the curve 
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parameters. We added Gaussian white noise points to the point 

set for simulating the sampling error of image points. 

 

In order to verify the performance of the curve fitting method, we 

selected a set of parameters that deviate from the theoretical 

values as the initial estimated parameters. We first calculated the 

square of the approximate shortest distance 𝜀  from each point in 

the point set to the curve, then we selected the points whose 𝜀 are 

smaller than the threshold as the fitting points. Finally, we fitted 

the curve using the method in Section 3.2. The curve fitting result 

shows in Figure 6.  

 

 

Figure 6. Curve fitting result 

 

Figure 6 shows the initial curve and the fitted curve. The initial 

curve has certain distances from the theoretical curve points. In 

contrast, the fitted curve significantly reduces the distances from 

the theoretical curve points and improves the accuracy of the 

curve parameters. 

 

After the fitting process, we calculated the pose of the cylinder 

using the pose determination method in Section 3.3. The pose 

consists of the center coordinates 𝑂1
𝑏(𝑥1

𝑏 , 𝑦1
𝑏 , 𝑧1

𝑏)  and the normal 

vector 𝒏𝟏(𝑛1𝑥 , 𝑛1𝑦 , 𝑛1𝑧)  of the circle plane. In order to show the 

cylinder’s pose distinctly, we converted the normal vector to 

spatial angles. Since the rotation of the space circle around its 

normal vector has no effect on the projected ellipse formed in the 

image due to the symmetry of the circle, we can only get two 

spatial attitude angles measured by the circle, the pitch angle 𝜃 

and the roll angle 𝜑 : 

 

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑛𝑧

√𝑛𝑥
2 + 𝑛𝑦

2

  , 

 

𝜑 =

{
 
 

 
 𝑎𝑟𝑐𝑡𝑎𝑛

𝑛𝑦

𝑛𝑥
,                     𝑛𝑥 > 0, 𝑛𝑦 > 0

𝜋 + 𝑎𝑟𝑐𝑡𝑎𝑛
𝑛𝑦

𝑛𝑥
,            𝑛𝑥 < 0              

2𝜋 + 𝑎𝑟𝑐𝑡𝑎𝑛
𝑛𝑦

𝑛𝑥
, 𝑛𝑥 > 0, 𝑛𝑦 < 0

             (20) 

 

Based on the 3D pose and dimensions (l=100mm) of the 

cylinders, the coaxiality was calculated using the method in 

Section 3.4. Table 2 shows the initial estimates and the final 

results of the center 𝑂1
𝑏(𝑥1

𝑏, 𝑦1
𝑏 , 𝑧1

𝑏), the pitch angle 𝜃, the roll 

angle 𝜑 , the coaxiality 𝛿  and their respective absolute errors 

relative to the theoretical values.  

 

Figure 7 compares the errors ei of the initial estimations with the 

errors er of the final results. It can be seen that the er is smaller 

than ei under different conditions, indicating that the accuracy of 

the final results has been improved. 

 

 

Figure 7. Errors of pose and coaxiality 

 

 

Pose and 

Coaxiality 

theoretical 

values 

initial 

estimates 
final 

 results 

error ei of the initial 

estimation 

error er of the final 

results 

𝑥1
𝑏/mm 5 4.90 5.02 2.09% 0.46% 

𝑦1
𝑏/mm 300 293.66 299.11 2.11% 0.30% 

𝑧1
𝑏/mm 2000 1957.92 1994. 39 2.10% 0.28% 

𝜃/° 3° 2.82° 2.93° 0.23% 0.13% 

𝜑/° 30° 30.07° 30.03° 3.75% 2.33% 

𝛿/mm 60.41 19.50 54.91 64.50% 9.10% 

Table 2. Simulation experimental results 

 

5. CONCLUSION 

This paper presented a method for measuring the coaxiality 

between the packaging container and the sample return container 

based on the monocular vision pose measurement using ellipse 

and line features. This method can improve the accuracy of the 

results when the ellipse and line contours with certain errors 

extracted by conventional methods. Simulation experiments were 

carried out and the results show that the method is effective and 

reliable. The coaxiality calculated by this method can be 

employed and better support the lunar surface sampling mission. 
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