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ABSTRACT: 

 

The paper presents our efforts on CNN-based 3D reconstruction of the Martian surface using monocular images. The Viking colorized 

global mosaic and Mar Express HRSC blended DEM are used as training data. An encoder-decoder network system is employed in 

the framework. The encoder section extracts features from the images, which includes convolution layers and reduction layers. The 

decoder section consists of deconvolution layers and is to integrate features and convert the images to desired DEMs. In addition, skip 

connection between encoder and decoder section is applied, which offers more low-level features for the decoder section to improve 

its performance. Monocular Context Camera (CTX) images are used to test and verify the performance of the proposed CNN-based 

approach. Experimental results show promising performances of the proposed approach. Features in images are well utilized, and 

topographical details in images are successfully recovered in the DEMs. In most cases, the geometric accuracies of the generated 

DEMs are comparable to those generated by the traditional technology of photogrammetry using stereo images. The preliminary results 

show that the proposed CNN-based approach has great potential for 3D reconstruction of the Martian surface. 

 

 

1. INTRODUCTION 

3D reconstruction of the planetary surface is important for 

planetary exploration missions and scientific research. 3D 

surface models, such as digital elevation models (DEMs), can be 

used in a variety of applications including landing site evaluation 

(De Rosa et al., 2012; Wu et al., 2014; 2020), geomorphological 

study, and geological analysis (Head et al., 2010). Commonly 

used methods for image-based 3D surface reconstruction include 

photogrammetry and shape-from-shading (SfS). 

Photogrammetry has been widely used in planetary mapping and 

surface reconstruction (Wu et al., 2014; Beyer et al., 2018), 

which requires stereo or multiple images with appropriate 

imaging geometry for 3D reconstruction. However, high-

resolution stereo coverages of images on planetary surfaces are 

rare. SfS is a technique that can retrieve pixel-wise 3D 

information of the surface from a single image based on the 

photometric content of the image (Horn, 1990). SfS has been 

applied for lunar topographic mapping using orbital images and 

showed favorable performances (Grumpe et al., 2014; Wu et al., 

2018; Liu et al., 2018; Liu and Wu, 2020). However, the use of 

the SfS technique on Mars is more challenging due to its thin 

atmosphere. The atmospheric attenuation modifies the measured 

radiance and adds ambiguities to SfS. 

 

In recent years, convolutional neural networks (CNNs) based 

methods have been developed for 3D reconstruction. In these 

methods, the 3D information of the scene, and the corresponding 

images are utilized as training labels and samples, and multiple 

network architectures are developed. For example, Eigen et al. 

(2014) proposed a CNN architecture to predict depth maps from 

close-range images. They used a coarse prediction and a refined 

prediction to improve accuracy. Laina et al. (2016) proposed a 

fully convolutional network to estimate depth maps from images. 

They removed the fully connected layer and transposed the 
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convolution layers by fast up-convolution blocks, which up-

sampled features by combining multiple convoluted features. 

Cao et al. (2018) treated the regression problem as a classification 

and reduced the difficulty of solving regression tasks. Ma and 

Karaman (2018) not only used a single image to CNN to predict 

depth but also used a sparse depth corresponding to the image. 

Results with close-range images on Earth have shown promising 

performances of the CNN-based depth estimation. 

 

3D reconstruction of the Martian surface from monocular images 

by using SfS or CNN techniques is very different from the 

situations on Earth or the Moon. For Mars images collected from 

the orbit, they are usually contaminated by various noises such as 

atmospheric and camera noises. SfS normally relies on physical 

models, in which each parameter has an explicit physical 

meaning. However, SfS for Martian surface reconstruction 

requires additional atmospheric parameters and can be 

computationally expensive. CNNs analyzes and considers these 

elements implicitly and process them together, which simplifies 

the physical modeling and speeds up the processing. Thus, CNN 

based method might be a feasible solution for 3D reconstruction 

of the Martian surface using monocular images. 

 

This paper presents an endeavor for CNN based 3D 

reconstruction of the Martian surface. A CNN based approach 

that considers atmospheric influences and camera noises have 

been developed. The network contains two subnetworks. The 

first one removes noises, shadows, and albedo differences in the 

images. The second one focuses on predicting high-quality 

DEMs by concatenating results from the first subnetwork and 

sparse DEMs. Preliminary experimental analysis using images 

collected by the Context Camera (CTX) on Mars shows 

promising results of the proposed approach. 
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2. CNN MODEL FOR MARTIAN SURFACE 

RECONSTRUCTION 

2.1 Overview of the CNN Model 

The CNN model for Martian surface reconstruction requires an 

image and an existing sparse DEM (either from photogrammetry 

or laser altimetry) corresponding to the image coverage as inputs. 

After processing it generates a DEM with the same resolution of 

the input image. The network eliminates noises and extracts 

topographic details automatically from the inputs. 

 

2.1.1 Network Architecture 

As shown in Figure 1, the framework of the proposed approach 

consists of two networks. The first network devotes to remove 

non-Lambertian reflecting components, and the second network 

aims to predict DEMs with the same resolution of the input image. 

The input of the first network is pre-processed Martian surface 

images, and its output is the estimated Lambertian reflectance of 

the surface. The second network concatenates the sparse DEMs 

and the output of the first network as the input and generates 

high-resolution DEMs. Both the two subnetworks have the same 

architecture, i.e., the encoder-decoder networks. The encoder 

extracts features from the inputs, and then the decoder converts 

images to other types of images by utilizing these features. The 

Inception-Resnet-V2 (Szegedy et al., 2017) is employed as the 

encoder part, and the architecture of the decoder part is composed 

of five deconvolution layers. Concatenation paths are added 

between the encoder and decoder section to integrate both low-

level and high-level features (Ronneberger et al., 2015). The 

advantage of concatenation connections is to incorporate low-

level information from previous blocks and high-level 

information passed to the deconvolution blocks to generate better 

results. The original network of Szegedy et al. (2017) chooses 

ReLU as the activation function, while this proposed approach 

selects the simplified SReLU function (Jin et al., 2015). To keep 

the zero-centered property, hyparameters are replaced by 

constants. The function is defined by the formula below: 

 

SReLU(xi) = {

3 + 0.8(xi-3),                          xi ≥ 3

xi,                                          3 > xi > -3

-3 + 0.8(xi + 3),                       xi ≤ -3
   (1) 

 

where  ix  = features of the ith layer. 

 

Also, in the original network, padding methods include “SAME” 

padding and “VALID” padding. The “VALID” padding is 

removed because of the added concatenation connections. The 

prerequisite to add concatenation connections is to keep the same 

sizes of features among encoder and decoder blocks.  

 

After the last layer of the network, a scale recovery unit is added 

to recover the original elevations coordinated of predictions. 

Linear regression is applied to find the best scale and bias to fit 

for the coordinates of ground truth. The formula is defined below: 

 

G = αP + β                        (2) 
 

where  G = ground truth 

 P = prediction 

 α = scale 

 𝛽 = bias 

 

2.1.2 Loss Function 

The standard loss function for the regression problem is ℒ2 loss, 

which is also called the mean-squared-error. However, in our 

experimental analysis, we found that the Huber loss has better 

performance than the ℒ2 loss. The Huber loss is defined by the 

formula below: 

 

   Huber(ŷ, y) {

1

2
(ŷ-y)2 for|ŷ-y| ≤ δ

δ|ŷ-y|-
1

2
δ2 otherwise

.          (3) 

 

where δ is set to 0.1 in this research. When the loss is larger than 

0.1, the Huber loss equals to ℒ1  loss, which is also called the 

mean-absolute-difference. If the loss is less than 0.1, the Huber 

loss equals to ℒ2  loss, which penalizes large differences more 

than smaller differences and has better convergence property than 

the ℒ1 loss. 

 

In our network, a regularization term is used to decrease the 

overfitting phenomenon. It shrinks large numbers of parameters 

to constrain their ability of expression and decreases weights of 

final results. If the results are determined by many parameters 

rather than a small number of them, the probability of the 

happening of overfitting decreases. The ℒ2  regularization is 

defined by the formula below: 

 

Lreg = λ ∑ xi
2

i       (4) 

 

where  𝐿𝑟𝑒𝑔 = regularization loss 

 𝜆 = regularization term 

 xi = the ith parameter 

 

Eigen and Fergus (2015) proposed a first-order matching term in 

their loss function to encourage the network not only to minimize 

pixel differences, but also similar local structures. Assuming the 

ground truth and the prediction are ŷ and y , and d = ŷ-y, the 

first-order term loss is defined below: 

 

 𝐿𝑓𝑜(�̂�, 𝑦) =
1

𝑛
∑ [(𝛻𝑝𝑑𝑖)

2
+ (𝛻𝑞𝑑𝑖)

2
]𝑖   (5) 

 

where  Lfo = the first order form loss 

 ∇pdi = 𝜕𝑑/𝜕𝑥 

 ∇qdi = 𝜕𝑑/𝜕𝑦 

 

2.2 Training of the CNN Model 

The training dataset is from the Viking colorized global mosaic 

and Mar Express HRSC blended DEM. The illumination 

direction of all the data is uniformed with an azimuth of 270° 

and the elevation angle is kept as original. Paired training data 

are uniformed to the same spatial resolution of 400 m/pixel. The 

images are clipped into 224*224 sub-images and are regularized 

to follow the standard normal distribution. Sparse DEMs are built 

by sampling clipped DEMs. Each pixel of the sparse DEMs is 

chosen with an interval of 33 pixels along with columns and rows 

from clipped DEMs. Pixels without a value are set as zero. 

 

The simulated images with the Lambertian reflectance model are 

generated by inverting the DEMs. The formula of the Lambertian 

reflectance model is listed below: 

 

  L = I ⋅ cosα                (6) 
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Figure 1. The network architecture of the proposed approach. Each coloured box represents a block in the network. Numbers beside 

blocks represents the output dimensions of the block. 

 

 

where  L = simulated image 

 I = illumination intensity 

 𝛼 = the angle between the illumination direction and 

the surface normal 

 

The illumination direction is assigned with the azimuth of 270° 

and the elevation angle of 45°. The surface normal is calculated 

by the formula below: 

 

 Sn = g(x) ⊗ g(y)       (7) 

 

where   Sn  = surface normal 

 g(x)  = partial derivative along the horizontal direction 

 𝑔(𝑦) = partial derivative along the vertical direction 

 

The network is implemented on TensorFlow 1.14.0 platform and 

trained on two RTX 2080Ti graphic cards with 24GB of GPU 

memory (Abadi et al., 2016). Parameters are initialized by Xavier 

initialization (Glorot and Bengio, 2010). The Adam optimizer is 

used for optimization. The learning rate is 8e-5; Beta1 is 0.9; 

Beta2 is 0.999; Epsilon is1e-8. The batch size is assigned by 4, 

which balances the iteration efficiency and the network 

performance. The regularization term is set to be 0.0001. 

 

3. EXPERIMENTAL EVALUATION USING CTX 

IMAGES 

The performance of the trained network has been tested using 

monocular CTX images on Mars covering typical terrain types. 

Detailed information about the used CTX images is shown in 

Table 1. The Mars Orbiter Laser Altimeter (MOLA) DEM is used 

as the input sparse DEM. In order to provide a quantitative 

evaluation, reference DEMs are obtained from the USGS Mars 

dataset and used as ground truth for comparison. They were 

generated using photogrammetric techniques. Since those DEMs 

only have a spatial resolution of 20 m/pixel (about three times of 

the resolution of the CTX images), the input CTX images are 

down-sampled to 20 m for the subsequent comparison purpose. 

Other pre-processing procedures are the same as the training data. 

 

Patches from the four CTX images are chosen to show the results 

(Figure 2). Most of them include at least one crater in the images. 

According to the profile comparison, shapes of these craters are 

well recovered. Main differences exist at the edges of craters, 

where we speculate that the ground-truth DEM often contains 

sharper and higher edges than the results from our CNN approach. 

Edges without apparent image contrast are less well-recovered, 

which is a common problem in 3D reconstruction methods using 

monocular images (Wu et al., 2018). 

 

Shadows and spatial varying albedos do not affect the results 

obviously. Four CTX images were illuminated under different 

angles, and the surface albedo varies across different sections of 

images. Results reveal that such differences do not affect results 

significantly. The main reason is likely that the sparse MOLA 

DEMs helped the network to recognize and eliminate these errors, 

and the interpolation operation only happened around sparse 

DEM pixels. 

 

As can be noticed in Figure 2, the DEMs generated by our CNN 

model contain checkboard artefacts. It is produced during the 

procedure of upsampling. When up-convolution operates, each 

time images are doubled, and such operation introduces and 

accumulates subtle noises on images. The problem can be solved 

by well-designed transposed convolution. 

 

From Figure2, a few craters with a diameter of less than 10 pixels 

have not been successfully reconstructed, and small features that 
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have large contrast with the background are depicted better than 

in the reference DEM. Because of the selective responses, 

predictions generally are smoother than the reference DEM, 

which is a good character for images with severe noises. Table 2 

presents the RMSE of the differences between the DEMs 

generated by our CNN approach and the reference DEMs. RMSE 

values of 3.7 m - 13.5 m shows the promising potential of our 

proposed approach. 

 

Table 1. Information of the CTX images used for validation

 

Number Image ID Incidence 

Angle 

Resampled 

Resolution 

Center 

Latitude 

Center 

Lontitude 

Description 

1 B17_016219_1978_XN_17N282W 42.28° 20 m/pixel 17.87° 77.29° 

Candidate Mars 2020 

Landing Site Northeast 

Syrtis Center 

2 F21_043841_1654_XN_14S184W 59.27° 20 m/pixel -14.72° 175.43° 

Candidate Mars 2020 

Landing Site 

McLaughlin Center 

3 J03_045994_1986_XN_18N282W 47.59° 20 m/pixel 18.63° 77.44° 

Candidate Mars 2020 

Landing Site Jezero 

West 

4 P17_007556_2012_XI_21N285W 42.18° 20 m/pixel 21.41° 74.45° 

Candidate Mars 2020 

Landing Site Nili 

Fossae Center 

 

Figure 2. 3D reconstruction results and comparison. Numbers indicate patches selected from the CTX images listed in Table 1. 

Locations of profiles are depicted on images by red lines. 
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Table 2. Quantitative comparison between the DEMs generated 

by our CNN approach and the reference DEMs 

 

Image ID 
RMSE 

(m) 

B17_016219_1978_XN_17N282W 13.5 

F21_043841_1654_XN_14S184W 3.7 

J03_045994_1986_XN_18N282W 12.5 

P17_007556_2012_XI_21N285W 11.9 

 

4. CONCLUSION 

In this paper, we present an endeavor for 3D reconstruction of the 

Martian surface based on CNN using monocular images. The 

CNN model is trained by clipped samples from the Viking 

colorized global mosaic and Mar Express HRSC blended DEM. 

Image patches are input into the first subnetwork to generate 

noiseless results, and then sampled DEMs are concatenated with 

predictions of the first subnetwork as the input to the second 

subnetwork. Experimental analysis using typical CTX images 

show promising results, as compared with reference DEMs 

generated using the conventional photogrammetric technology. 

In addition, some favorable aspects of the proposed approach, 

such as feature-based interpolation and strong denoise ability are 

represented. 

 

The work presented in this paper shows the great potential for 

CNN based method for 3D reconstruction of the Martian surface 

from monocular images, which is of significance for Martian 

topographic mapping and scientific research. 

 

ACKNOWLEDGEMENTS 

The work described in this paper was funded a grant from the 

Research Grants Council of Hong Kong (Research Impact Fund 

– Project No: R5043-19) and a grant from the National Natural 

Science Foundation of China (Project No: 41671426). The 

authors also would like to thank all those who worked on the 

archive of the datasets to make them publicly available. 

 

REFERENCES 

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., 

Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., 

Levenberg, J., Monga, R., Moore, S., Murray, D.G., Steiner, B., 

Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., 

Zheng, X., 2016. TensorFlow: A System for Large-Scale 

Machine Learning. Presented at the 12th {USENIX} Symposium 

on Operating Systems Design and Implementation ({OSDI} 16), 

pp. 265–283. 

 

Beyer, R.A., Alexandrov, O., McMichael, S., 2017. The Ames 

Stereo Pipeline: NASA’s Open Source Software for Deriving and 

Processing Terrain Data. Journal of Geophysical Research: 

Planets 537–548. 

 

Cao, Y., Wu, Z., Shen, C., 2018. Estimating Depth From 

Monocular Images as Classification Using Deep Fully 

Convolutional Residual Networks. IEEE Transactions on 

Circuits and Systems for Video Technology 28, 3174–3182. 

 

De Rosa, D., Bussey, B., Cahill, J.T., Lutz, T., Crawford, I.A., 

Hackwill, T., van Gasselt, S., Neukum, G., Witte, L., McGovern, 

A., 2012. Characterisation of potential landing sites for the 

European Space Agency's Lunar Lander project. Planetary and 

Space Science 74, 224-246. 

 

Eigen, D., Fergus, R., 2015. Predicting Depth, Surface Normals 

and Semantic Labels with a Common Multi-scale Convolutional 

Architecture, in: 2015 IEEE International Conference on 

Computer Vision (ICCV). Presented at the 2015 IEEE 

International Conference on Computer Vision (ICCV), IEEE,  

 

Eigen, D., Puhrsch, C., Fergus, R., 2014. Depth Map Prediction 

from a Single Image using a Multi-Scale Deep Network, in: 

Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., 

Weinberger, K.Q. (Eds.), Advances in Neural Information 

Processing Systems 27. Curran Associates, Inc., pp. 2366–2374. 

 

Glorot, X., Bengio, Y., 2010. Understanding the difficulty of 

training deep feedforward neural networks, in: Proceedings of the 

Thirteenth International Conference on Artificial Intelligence 

and Statistics. Presented at the Proceedings of the Thirteenth 

International Conference on Artificial Intelligence and Statistics, 

pp. 249–256. 

 

Grumpe, A., Belkhir, F., Wöhler, C., 2014. Construction of lunar 

DEMs based on reflectance modelling. Advances in Space 

Research 53, 1735–1767. 

 

Head, J.W., Fassett, C.I., Kadish, S.J., Smith, D.E., Zuber, M.T., 

Neumann, G.A., Mazarico, E., 2010. Global distribution of large 

lunar craters: Implications for resurfacing and impactor 

populations. Science 329, 1504-1507. 

 

Horn, B.K.P., 1990. Height and gradient from shading. 

International Journal of Computer Vision 5(1), 37-75. 

 

Jin, X., Xu, C., Feng, J., Wei, Y., Xiong, J., Yan, S., 2015. Deep 

Learning with S-shaped Rectified Linear Activation Units. 

arXiv:1512.07030 [cs]. 

 

Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N., 

2016. Deeper Depth Prediction with Fully Convolutional 

Residual Networks, in: 2016 Fourth International Conference on 

3D Vision (3DV). Presented at the 2016 Fourth International 

Conference on 3D Vision (3DV), pp. 239–248. 

 

Liu, W.C., Wu, B., Wöhler, C., 2018. Effects of Illumination 

Differences on Photometric Stereo Shape-and-Albedo-from-

Shading for Precision Lunar Surface Reconstruction. ISPRS 

Journal of Photogrammetry and Remote Sensing 136, 58-72. 

 

Liu, W.C., Wu, B., 2020. An integrated photogrammetric and 

photoclinometric approach for illumination-invariant pixel-

resolution 3D mapping of the lunar surface. ISPRS Journal of 

Photogrammetry and Remote Sensing 159, 153-168. 

 

Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: 

Convolutional Networks for Biomedical Image Segmentation, in: 

Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (Eds.), 

Medical Image Computing and Computer-Assisted Intervention 

– MICCAI 2015, Lecture Notes in Computer Science. Springer 

International Publishing, Cham, pp. 234–241. 

 

Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A., 2017. 

Inception-v4, Inception-ResNet and the Impact of Residual 

Connections on Learning. AAAI’17: Proceedings of the Thirty-

First AAAI Conference on Artificial Intelligence 4278–4284. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1111-2020 | © Authors 2020. CC BY 4.0 License.

 
1115



 

Wu, B., Li, F., Ye, L., Qiao, S., Huang, J., Wu, X., Zhang, H., 

2014. Topographic Modeling and Analysis of the Landing Site of 

Chang’E-3 on the Moon, Earth and Planetary Science Letters, 

405, pp. 257-273. 

 

Wu, B., Hu, H., Guo, J., 2014. Integration of Chang'E-2 Imagery 

and LRO Laser Altimeter Data with a Combined Block 

Adjustment for Precision Lunar Topographic Modeling. Earth 

and Planetary Science Letters 391, 1–15. 

 

Wu, B., Liu, W.C., Grumpe, A., Wöhler, C., 2018. Construction 

of pixel-level resolution DEMs from monocular images by shape 

and albedo from shading constrained with low-resolution DEM. 

ISPRS Journal of Photogrammetry and Remote Sensing 140, 3–

19. 

 

Wu, B., Li, F., Hu, H., Zhao, Y., Wang, Y., Xiao, P., Li, Y., Liu, 

W. C., Chen, L., Ge, X., Yang, M., Xu, Y., Ye, Q., Wu, X., Zhang, 

H., 2020. Topographic and Geomorphological Mapping and 

Analysis of the Chang’E-4 Landing Site on the Far Side of the 

Moon. Photogrammetric Engineering & Remote Sensing 86(4), 

247-258. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1111-2020 | © Authors 2020. CC BY 4.0 License.

 
1116




