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ABSTRACT: 

Chang’e-4 lunar probe has successfully landed on the far side of the moon in Von Kármán crater inside the South Pole-Aitken (SPA) 

basin at 10:26 am on January 3, 2019. Due to the reduction of the coding rate, obvious block effects appear at the boundaries of 

descent images. Unblock, adaptive fast bilateral filtering, structure-texture enhancement and high-order Markov random field 

methods, are applied to remove the block effect of the descent images. Based on analysing the quality of descent images, quantitative 

comparison of four methods is performed using simulated compressed 1:64 descent images and real images. Comprehensive 

analysis was performed using typical measures such as PSNR, SSIM and NIQE. Experimental results show that adaptive fast 

bilateral filtering is better than other methods. The deblocked 1:64 image sequences have been used to assist localizing the landing 

point quickly during the mission. 

* Corresponding author.

1. INTRODUCTION

Chang’e-4 lunar probe has successfully landed on the far side of 

the moon in Von Kármán crater inside the South Pole-Aitken 

(SPA) basin at 10:26 am on January 3, 2019 (Di et al., 2019). 

As Chang'e-4 landed on the far side of the moon and was 

limited by the bandwidth of the “Queqiao” relay transmission 

link, the near-real-time, frame-framing, and compression 

method of the detector's power decline phase adopted a series of 

high-compression (1:64) JPEG compressed images. Due to the 

reduction of the coding rate, obvious block effects appear at the 

boundaries of image blocks. In order to perform subsequent 

lander localization and mapping, it is necessary to remove the 

block effect of descent camera images to improve the image 

quality.  

The deblocking algorithms mainly include image enhancement 

and image restoration. The methods based on image 

enhancement smooth the block effect by filtering the image 

(Foi et al., 2007; Yoo et al., 2014; Li et al., 2014; Gavaskar et 

Chaudhury, 2018). Costella (2006) proposed the UnBlock 

algorithm without requiring the encoded JPEG or MPEG source 

file and any tunable parameters. A parabolic model is used to 

extrapolate blocking discontinuity artifacts in the gradient of the 

intensity. Based on the shape-adaptive discrete cosine transform 

(SA-DCT), Foi (2007) used the SA-DCT in conjunction with 

the anisotropic local polynomial approximation for denoising 

and deblocking. Yoo et al. (2014) presented a post processing 

framework for blocking artifact reduction, in which the inter-

block DCT coefficients for the three lowest frequency  are 

smoothed to reduce blocking artifacts in the flat region, and 3-D 

filtering is applied to the edge region to reduce the remaining 

artifacts. Li et al. (2014) proposed a structure-texture enhancing 

method, which decomposes the input image into a structure 

layer and texture (high-frequency) layer, and contrast 

enhancement is then used for structural layer data. Gavaskar and 

Chaudhury (2018) proposed an efficient algorithm for adaptive 

bilateral filtering based on the observation that the concerned 

filtering can be performed purely in range space using an 

appropriately defined local histogram. In general, image 

enhancement approach aims at smoothing visible artifacts 

instead of restoring original pixel values, and it is somewhat 

heuristic in the sense that no objective criterion is optimized. 

The main advantage of this kind of approach is its relatively low 

computational complexity. 

The image restoration-based algorithm treats the removal of 

block effects as the reconstruction of the image, and combines 

the prior information in the image to restore the image under the 

constraint of the maximum posterior criterion (Yang et al., 

1995). Classical representative methods are iterative methods 

based on maximum posterior probability and algorithms based 

on convex set projection (Yang et al., 1997). Recently, learning-

based sparse representation has been used for image deblocking. 

Jung et al. (2012) obtained an over-completed dictionary using 

the K-Singular Value Decomposition (K-SVD) algorithm, and 

proposed a new method to automatically estimate the residual 

threshold for Orthogonal Matching Pursuit (OMP). The 

enhanced images are obtained after solving objective function. 

Instead of processing each image patch individually, Zhang et al. 

(2015) proposed Group-based Sparse Representation (GSR) and 

a novel image deblocking method that was based on GSR and 

Quantization Constraint (QC) prior. Similarly, Zhao et al. (2017) 

proposed Structural Sparse Representation (SSR) and a novel 

algorithm for image deblocking was introduced by combining 

SSR with QC prior. All of them demonstrated that sparse 

representation could effectively remove image artifacts and 

ensure the image visual quality. Methods of sparse 

representation are based on compressed images of standard 

image libraries. The computational complexity of these methods 

is high because of their iterative processes. 

Due to the lack of texture in lunar surface images, especially the 

Chang’e-4 descent images captured at high solar elevation angle, 

the performance of the deblocking method should be 

particularly considered. Therefore, in this paper, unblock 
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(Costella, 2006), adaptive fast bilateral filtering (Gavaskar and 

Chaudhury, 2018), structure-texture enhancement (Li et al., 

2014), and high-order Markov random field (Sun et al., 2007)  

are chosen to remove the block effects in the images, and the 

performances of these methods are compared. 

 

The rest of this paper is structured as follows: Section 2 

analyses the characteristics of the compressed descent images 

The chosen four methods are presented in Section 3. Section 4 

presents the experimental results. Finally, conclusions and 

suggestions for future work are given in Section 5. 

 

2. DATA 

A downward-looking descent camera identical to that on 

Chang’e-3 is mounted on the bottom of Chang’e-4 lander. The 

field of view (FOV) is 45.4° with the image size of 1024×1024 

pixels (Liu et al., 2015). The camera took a series of images 

during the descending process. However, because of the 

limitation of the communication bandwidth, the strategies of 

selective sampling and image compression with a ratio of 1:64 

were used when transferring the descent images to the ground 

teleopration center for a quick view. During the power down 

phase, 59 images with 1:64 compression ratio are downlinked. 

After the separation of the lander and rover successfully 

completed, the probe sent back about 5441 original images of 

the landing, including about 5,300 1:8 low compression ratio 

images. These data are used for accurate positioning of the 

landing point and high-resolution mapping of the landing site. 

Figure 1(a) show the first descent image of  3000 meters above 

the lunar surface, Figure 1(b) show the first landing image with 

a ratio of 1:8. 

 

 

  
(a) The first descent image 

(2019-01-03T10:23:03, 

Beijing time) 

(b) The first landing image 

(2019-01-03T11:44:33, 

Beijing time) 

 

Figure 1. The first descent image and landing image received by 

the ground teleoperation center 

 

In order to enhance the 1:64 compressed image effectively, four 

measurements including the average gray value, standard 

deviation (std) of image, entropy and anisotropy are calculated 

to analyse the quality of 87 descent images within 100 meters 

above the lunar surface. The entropy and anisotropy are defined 

as 
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where rel[i] represents the histogram, i represents the gray value 

in [0, 255], k is the smallest possible gray value with 

sum(rel[i])>=0.5. In general, higher entropy value represents 

higher image quality. The anisotropy describes the 

characteristics of gray value changing with different directions. 

The smaller of the anisotropy value, the poorer the texture is. 

 

The statistical results show that the minimum value of mean 

gray value is 100.9, the maximum value is 137.1, which show 

that the range of gray value is small. This is reflected in Figure 

1 that the descent images are of low texture. The entropy value 

reflects the image information, as the images are all near the 

landing site so that the entropy of descending images changes 

little. For the same reason, the difference between the minimum 

value and maximum value of anisotropy is also very low. 

 

 Mean 

gray 

std entropy anisotr

opy 

maximum 137.1 47.6 7.2 -0.489 

minimum 100.9 43.6 6.7 -0.529 

median 103.8 45.4 7.1 -0.515 

Table 1. Statistical results of descent images 

 

3. METHODS 

Four methods including unblock, fast adaptive bilateral filtering, 

structure-texture enhancing, and high-order Markov random 

field (MRF) and applied to compare the performance of 

deblocking. The first three methods are image enhancing 

algorithms, while the last one is an image restoration method. 

 

3.1 Unblock algorithm 

Being different of most deblocking methods which are 

mathematically complicated, unblock algorithm is a 

postprocessimg method without requiring the encoded JPEG or 

MPEG source file (Costella, 2006). It measures the 

discontinuity in each component's value across the boundary, 

and the discontinuity is smoothed out based on some criteria. 

Firstly, a linear variation of intensity on each side of a boundary 

is assumed, next the amount of compression is adapted to 

determine the distribution of the magnitudes of the block 

boundary discontinuity. By computing the distribution of 

boundary discrepancies across the entire image, and comparing 

it to that of the interior of the blocks, the amount to which the 

compression has introduced block artifact can be quantified 

statistically. Finally, the intensity values of the pixels near the 

adjacent boundaries will be changed, and the boundary 

discrepancies are adjusted.  

 

In order to measure the discrepancies at the central boundary, a 

parabolic model is used in each 8×8 pixels region to measure 

discrepancies. The intensity discrepancy u is defined as  

 9 8 10 7 11 615( ) 10( ) 3( )

8

i i i i i i
u

    
   (3) 

Moreover, the derivative discrepancy v is 
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By symmetrically dealing with the boundary pixels, the 

correction values of the sixteen pixel intensity are obtained. 
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3.2 Fast adaptive filter method 

Fast adaptive bilateral filtering (FABF) (Gavaskar and 

Chaudhury, 2018) is a fast algorithm for adaptive bilateral 

filtering, whose complexity does not scale with the spatial filter 

width. In addition, the concerned filtering can be performed 

purely in range space using an appropriately defined local 

histogram. The adaptive bilateral filter is  
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Ω is a window centered at the origin， i  is the local Gaussian 

range kernel. 
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The spatial kernel   is Gaussian function: 
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and the center ( )i  and width ( )i  are spatially varying 

functions. 

 

 

3.3 Structure-texture enhancing method 

Structure-texture enhancing method firstly decomposes the 

input image into a structure layer and texture (high-frequency) 

layer, contrast enhancement is then used for structural layer data 

(Li et al., 2014).  The input image can be considered as the 

superimposition of the two layers: 

 
i ii s TI I I    (10) 

where IS represents main large objects in the image, and IT 

represents fine details. 

 

Based on the total-variation (TV) regularization, the structure 

layer IS can be obtained by minimizing the following function 
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where i is the pixel index, λ is the regularization parameter and 

▽ is the gradient operator. 

 

Because texture layer data includes image details and block 

effects, block effects are removed from texture layer data. The 

objective function is defined as follows: 
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where η are locations of the 8×8 pixels block borders. Since 

the block artifacts mostly appear on the edges, the function is 

used to smooth the edges at the borders.  

 

The texture layer is enhanced by multiplication scale factor K, 

which is 

 e d

T TI K I   (13) 

where  
e

TI  is the enhanced texture layer.  

 

After proper scaling is completed, the processed texture layer 

data is added to the structural layer to generate the final 

enhanced image. 

 

3.4 High order Markov random field 

Sun et al. (2007) proposed a postprocessing method according 

to maximum a posteriori criterion. The image distortion is 

modeled as additive and spatially correlated Gaussian noise, and 

the original image is seen as high order Markov random field. 

After minimizing the energy function, the enhanced image can 

be obtained. The energy function is  
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where Ji is a filter of size n×n, kc includes n×n  pixels with k as 

center，
k

T

i cJ I is the inner product between the filter and the 

local image patch，S/ contains all the center pixels of the n1×n1 

cliques，αi is a parameter related to Ji , N is the number of used 

filter. λ≥0 represents regularization parameter，m is a block 

index, nq(m), Iq(m), I(m) represent quantization noise, the 

compression image and the original image respectively, where 

 ( ) (0, )q qn m     (17) 

Σq is a 64×64 invertible matrix, which can be determined 

from the DCT domain. 

 

  

4. EXPERIMENT 

To compare the performances of the deblocking methods, the 

experimental section consists of two parts: simulated images 

and real images. The simulated images are obtained by 

compressing the 1:8 descent images. In the quality assessment 

of the deblocking results, the original 1:8 image is used as 

reference image. The real images are chosen from 1:64 descent 

images, the corresponding experimental results are evaluated 

with several quantitative measures.  

 

4.1 Quantitative evaluation factors 

In order to evaluate the quality of the reconstruction image, we 

use the following five quantitative evaluation factors in the 

experiments: PSNR (peak signal-to-noise ratio), SSIM 

(structural similarity index), image contrast, image clarity and 

NIQE (Naturalness Image Quality Evaluator). 

 

PSNR is very commonly used in the quantitative evaluation of  

image deblocking results and is based on the mean square error 

between the enhanced image and the reference image, with 

relation to the logarithmic of (2t-1)2 (the maximum square of the 

signal), where t is the number of bits for each pixel value. We 

generally use eight bits to represent each pixel, so the formula is 
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A higher PNSR value indicates a better deblocking performance. 

 

SSIM is similar to the evaluation of the visual interpretation and 

is defined as 
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where xu  and 
x

u  are the mean values of the original image 

and the deblocked image, respectively. 
x and 

x
  represent the 

variance of the original image and the deblocked results, 

respectively. 
x x

 is the covariance between the original image 

and the deblocked image. C1 and C2 are constants to prevent the 

equation from being meaningless (numerator and denominator 

not equal to zero). SSIM is an evaluation factor used to 

characterize the contrast, brightness, and structural similarity of 

an image. It ranges from 0–1, and the closer to 1, the better the 

image quality is. 

 

For images without reference images, image contrast can be 

computed from the derivation between the value of each pixel 

and the mean gray value. The image clarity is defined as the 

gray value difference of neighbour pixels, which is  
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The higher of the value, the clearer of the deblocked image is. 

 

Furthermore, NIQE is also calculated to evaluate the non-

reference image quality. It is based on the construction of a 

‘quality aware’ collection of statistical features, which can be 

obtained from a simple and successful space domain natural 

scene statistic (NSS) model (Mittal et al., 2013). A smaller 

score indicates better perceptual quality. The score is expressed 

as the distance between the quality aware NSS (natural scene 

statistic) feature model and the MVG (multivariate Gaussian) 

model fit to the features extracted from the deblocked images, 
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where v1,v2 and Σ1, Σ2 are the mean vectors and covariance 

matrices of the natural MVG model and deblocked image’s 

MVG model. 

 

4.2 Experiments of simulatied images  

Simulated 1:64 compressed images are generated from 1:8 

descent images. Experiments were conducted using 50 

simulated 1:64 compressed images. Figure 2 shows an example 

of simulated image using four deblocking methods. The 

enlarged view of Figure 2(b) show distinct block effect, 

especially the edges between adjacent blocks in craters affect 

the image quality. Figure 2(c) and (d) show enhanced image 

while removing the edges. It is noted that details in Figure 2(e) 

are blurred compared with original image. The edges in Figure 

2 (f) are still distinct. 

 

 

  
(a) simulated 1:64 

compressed image 

(b) enlarged view of the 

area outlined by a 

rectangle in (a) 

  
(c)enhanced results 

using unblock method 

(d) enhanced results using 

FABF filtering method 

  
(e) enhanced results 

using structure-texture 

method 

(f) enhanced results using 

high-order MRF method 

 

Figure 2. Visual quality comparison of simulated 1:64 

compressed image 

 

 

Method contrast clarity PSNR SSIM 

unblock 45.550 3.291 27.935 0.839 

FABF 45.886 3.373 28.026 0.843 

structure

-texture 

44.682 3.182 27.764 0.837 

MRF 45.468 2.340 27.340 0.830 

Table 2.  Quality metrics of deblocked simulated images 

 

Table 2 lists the mean quality metrics of deblocked simulated 

images. The contrast of four kinds of results are close to each 

other, with the MRF deblocking method getting the lowest 

clarity. PSNR and SSIM are calculated based on the original 

1:8 compressed images, FABF shows the highest value. Overall, 

FABF method gets the best performance among the four 

methods. 

 

4.3 Experiments of real images  

Real data experiments were conducted using 87 Chang’e-4 

compressed 1:64 images. Figure 3 shows an example of descent 

images using four deblocking methods. Figure 3(b) shows an 

enlarged view of the area outlined by a red rectangle in (a). The 

artifacts located at the rim of crater are obvious. After applying 

the four methods, the image has been enhanced. However, there 

are still some edges in Figure 3(f). Figure 3 (c) and (d) show 

enhanced results, while Figure 3 (e) enhanced the image at the 

expense of smoothing the texture. 

  
(a) 1:64 descending 

image 

(b) enlarged view of the 

area outlined by a 

rectangle in (a) 

  
(c) enhanced results 

using unblock method 

(d) enhanced results 

using FABF method 
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(e) enhanced results 

using structure-texture 

method 

(f) enhanced results 

using high-order MRF 

method 

  

Figure 3. Visual quality comparison of 1:64 

compressed image 

 

 

Method contrast clarity NIQE 

unblock 45.259 2.477 5.379 

FABF 45.318 2.667 5.099 

structure-

texture 

44.464 2.050 5.030 

MRF 44.312 2.023 5.521 

Original 1:64 

descending 

image 

42.206 1.958 5.637 

Table 3.  Quality metrics of deblocked descent images 

 

 

Table 3 lists the mean quality metrics of deblocked descent 

images. As there is no reference image, NIQE is adopted instead 

of PSNR and SSIM. FABF gets the lowest value which 

represents best performance. Being similar with the results of 

simulated images, fast adaptive bilateral method gets the best 

performance among the four methods. The results of real data 

experiments show good agreement with that of simulated data.  

 

The deblocked 1:64 image sequences have been used to localize 

the landing point quickly during the mission (Wang et al., 2020), 

and the localization results are used as an initial value to get the 

final results based on playback 1:8 compressed images. 

 

5. CONCLUSION 

In this paper, an evaluation and comparison of deblocking 

methods for Chang’e-4 descent images have been presented. 

We focused on verifying the deblocking ability of different 

algorithms that could be used in enhancement of lunar images. 

Based on analysing the quality of descent images, quantitative 

analysis of four methods is performed using simulated 

compressed 1:64 descent images and real images. 

Comprehensive analysis was performed using typical measures 

such as PSNR, SSIM and NIQE. In experiments of simulated 

images, the results of PSNR and SSIM show that FABF is 

better than the other methods. Further experiments of real 

descent images verified the former conclusion. The results can 

be used as guidelines in the design of deblocking method for 

planetary images.  
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