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ABSTRACT: 

 

Most of the lunar surface area has been observed from different viewing conditions thanks to the on-orbit work of lunar orbiters, a 

large amount of images are available for photogrammetric three-dimensional mapping, which is an important issue for lunar exploration. 

Theoretically, multi-view images contain more information than a single stereo pair and can get better 3D mapping results. In this 

paper, the semi-global matching method is applied to the object space, and the steps of cost calculation, cost aggregation, and elevation 

calculation are performed to obtain the three-dimensional coordinates directly. Compared with the traditional image-based semi-global 

matching method, the object-based semi-global method is more easily extended to multi-view images, which is beneficial for applying 

multi-view image information. In addition, it does not require steps such as stereo rectification and forward intersection, that is, the 

overall pipeline is more elegant. Using the LRO NAC images covering Apollo 11 landing area as the experimental data, the result 

shows that the object-based semi-global matching is competent for the multi-view image matching and the multi-view image result 

achieves higher accuracy and more details than the single stereo pair. Furthermore, the experimental results of Zhinyu crater data show 

that this method can also alleviate the uncertainty of the lunar orbiter's positioning to some extent. 

 

 

1. INTRODUCTION  

Topographic reconstruction of the lunar surface is critical to 

engineering applications and scientific research (Karachevtseva 

et al., 2013; Wu et al., 2014). Generally, there are two types of 

data sources including laser altimetry data and stereo image data 

for lunar topographic reconstruction. Photogrammetrically 

derived DEM from stereo images can achieve better spatial 

resolution relative to laser altimetry data. 

 

In the past two decades, the United States, China, Japan, India, 

and other countries have carried out many lunar exploration 

missions and obtained a large amount of image data that can be 

used for lunar terrain reconstruction. With continuous data 

acquisition from lunar orbiters, many areas of the lunar surface 

have been observed repeatedly under different viewing 

conditions. Among the recent orbital data, the highest-resolution 

lunar orbital imagery is achieved by the Lunar Reconnaissance 

Orbiter Camera (LROC) Narrow-Angle Camera (NAC) 

(Robinson et al., 2010). Notably, the LROC NAC images have 

covered nearly the entire lunar surface with a resolution of 0.5–

2.0 m. 

 

Compared with the earth, the lunar surface changes little at long 

durations. Thus, LROC NAC images obtained at different times 

and from different views can be used for multi-view 

reconstruction; it also poses challenges to use those data to 

generate high-quality DEMs. 

 

The photogrammetric processing procedures of lunar orbital 

images mainly include camera geometric model construction, 

block adjustment, dense matching, 3D point generation through 

the forward intersection, DEM interpolation, etc. However, there 

 
*  Corresponding author 

 

exist many limitations on the lunar surface, such as the 

illumination changes, geopositioning uncertainty and so on. 

 

Semi-global matching (SGM) is a powerful stereo matching 

method which can achieve a good compromise between accuracy 

and efficiency (Hirschmuller, 2007), the matching problem 

caused by geopositioning uncertainty conditions can be solved by 

transferring semi-global matching from image space to object 

space. Moreover, semi-global matching in object space can be 

extended to multi-view images. In this paper, we use a semi-

global optimization strategy in object space for multi-view 

LROC NAC image matching to generate high-resolution DEM.  

 

2. RELATED WORKS 

2.1 Matching in Image Space and Matching in Object Space 

A large amount of in-house photogrammetric software was 

developed by various research institutions at home and abroad.  

The Intelligent Robotics Group (IRG) at the NASA Ames 

Research Center developed an open-source image matching 

program Ames Stereo Pipeline (ASP). In ASP, Normalized Cross 

Correlation (NCC) was regarded as the metric to calculate the 

matching cost, and WTA (winner takes all) strategy is used to 

find the disparity corresponding to the minimum matching cost 

as the final disparity. Finally, the 3D point cloud is obtained by 

space intersection. A DEM with 40m / pixel resolution was 

produced with 71 pairs of stereoscopic images obtained by 

APOLLO 15 selected (Broxton et al., 2009). The research team 

from the University of Parma in Italy developed a software called 

Dense Matcher to generate DEM. This software implements the 

NCC matching method, least-squares matching method, and 

other matching methods involving geometric constraints such as 
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Multiphoto Geometrically Constrained Matching (MGCM). 

Using HiRISE and LROC NAC images as the experimental data, 

the results show that the accuracies of the DEM generated by the 

least-squares matching method developed in DM and the DEM 

generated by ASP are similar (Re et al., 2012a, 2012b). In 2019, 

the research team of the Hong Kong Polytechnic University 

developed a photogrammetric software named PLANETARY3D 

software for processing planetary images, which uses semi-

global matching to find image correspondences. Experimental 

results using three planetary data sets, i.e., MRO-CTX, MRO-

HiRISE, and Chang'e-2, show that the software can generate 

high-quality planetary DEM (Hu et al., 2019). 

 

Because there is no atmosphere on the lunar surface, the image 

matching results are greatly affected by the change of 

illumination conditions. Besides, the texture information of most 

regions is weak. Therefore, matching strategies such as epipolar 

constraint, coarse to fine strategy, and triangular network 

constraint are often adopted in stereo matching to improve the 

success rate and accuracy of matching. Wu et al. (2014) 

integrated 7m-resolution Chang’E-2 imagery and Lunar Orbiter 

Laser Altimeter data to generate a digital elevation model (DEM) 

with a resolution of 20 m for the entire Sinus Iridum landing area 

and thus provided data support for the selection of Chang 'E-3 

landing site. In the process of terrain reconstruction,  the search 

range is constrained by using the triangle network. Li et al. (2018) 

used the area-based image matching method to find Chang’e-2 

image correspondences and finally produced a full-month DEM. 

 

As described abov，the methods used for lunar image matching 

are generally in image space. The applications of matching 

methods in object space are mainly for earth remote sensing 

images, but they should be applicable in planetary 3D 

reconstruction. Ji et al. (2009, 2011) extended the traditional 

stereo vertical line locus method (VLL) to multiple images, 

proposed an algorithm called MVLL (multi-image VLL) which 

is suitable for multi-view image matching. Zhang et al. (2007) 

used the average value of the multi-image pair window 

correlation coefficient as a metric, and indirectly used epipolar 

constraints to perform multi-view matching in object space, 

effectively integrating the information of different stereo image 

pairs. Yuan et al. (2009) proposed a method for multi-image 

matching by integrating image and space information. Matching 

methods in object space usually uses a matching window of a 

certain size to find image correspondences. There is no global 

constraint in the matching process, which will influence the 

reliability of matching to some extent. 

 

2.2 Global Methods and Local Methods 

Stereo matching methods can be subdivided into two categories, 

global optimization algorithms, and local window algorithms. 

Some researchers use the local matching method to find lunar 

orbital image correspondences, e.g. the NCC and the LSM (Least 

Squares Matching) (Re et al., 2012b). However, local methods 

lack global constraints, which will result in poor matching quality 

in occlusion and insufficient texture area. 

 

Global methods often can achieve a better result than local 

methods due to global constraints. Typical global methods 

include matching methods using Markov model, semi-global 

matching, etc. Peng et al (2014) proposed an adaptive Markov 

random Field (aMRF) model for the dense matching, real rover 

images from the Mars Exploration Rover mission and Chang’e 

lunar orbiter images experiments demonstrate the effectiveness 

of the method, but the method is computationally expensive. 

Semi-global matching applies two parameters P1 and P2 to 

impose smoothing constraints on different disparity changes and 

uses multi-path one-dimensional constraints to approximate the 

two-dimensional constraints, which greatly improves efficiency 

while ensuring accuracy. Semi-global matching has been widely 

used in many software and algorithms to generate Lunar DEM. 

For example, the algorithm used in the dense matching module 

of PLANETARY3D is based on the semi-global matching 

method. Besides, ASP also introduced semi-global matching in 

its recent versions (Hirschmuller et al., 2007; Beyer et al., 2018). 

Bethmann et al. (2015) applied semi-global matching in object 

space, which essentially simplified the multi-view matching 

process and used indoor and aerial images for experiments. 

However, they didn't perform quantitative analysis on aerial 

image reconstruction results.  

 

As far as lunar images are concerned, there is little research on 

integrating semi-global matching with stereo matching in object 

space. when there exist geopositioning uncertainty conditions 

such as a small overlapping condition, the in-house software may 

not be available. Additionally, it’s hard to find lunar image 

correspondences due to insufficient texture and other difficulties. 

However, those problems can be alleviated to some extent by 

applying semi-global matching in object space with constraints 

such as height search range constraint imposed by initial DEM 

and a global constraint imposed by semi-global matching 

optimization strategy. 

 

3. METHODOLOGY 

3.1 Overall Workflow 

The overall workflow of lunar terrain reconstruction from multi-

view images is shown in Figure 1. The inputs for the method are 

multi-view lunar images and their corresponding rational 

polynomial coefficients (RPCs) and an initial low-resolution 

DEM. RPCs are used to establish the relationship between image-

space coordinates and object-space coordinates with ratios of 

polynomials (Liu et al., 2018). Having subdivided the object 

space into dense voxels, the coordinates of each voxel are back-

projected to images to get corresponding positions in image space. 

By using pre-defined correlation coefficient window size and its 

window-side length, the correlation coefficient between these 

image points can be calculated, the maximum value of the results 

is denoted as ρmax , and (1 − ρmax)  can be assigned to the 

corresponding voxel, which is the so-called voxel cost in this 

paper. After that, semi-global optimization is used to aggregate 

cost in object space, and the spline function of the cost values of 

specific planar coordinates is fit to find the final height 

corresponds to the minimum cost. Finally, the final DEM is 

obtained after outlier rejection. 

 

 
Figure 1. Workflow of the lunar terrain reconstruction from 

multi-view images. 
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3.2 Traditional Semi-global Matching 

The main idea of the traditional semi-global matching method is 

the approximate minimization of the global 2D energy function: 

 

                E(D)  =∑ 𝐶(𝑝,𝐷𝑝)  +
𝑝

 

  ∑ 𝑃1𝑇[|𝐷𝑝 − 𝐷𝑞| = 1] +
𝑞∈𝑁𝑝

 

∑ 𝑃2𝑇[|𝐷𝑝 −𝐷𝑞| > 1] 
𝑞∈𝑁𝑝

  (1) 

 

where ∑ 𝐶(𝑝, Dp)p  is the data term, which represents the sum of 

all pixelwise matching cost when the disparity map is D. The 

second term and the third term of the right side in Eq.1 are the 

2D smoothness terms, which are used to add penalties for all 

pixels q in the neighborhood Np of p. T[] is a logical operator, 

which returns 1 when the condition is satisfied and 0 otherwise. 

P1 and P2 represent small penalty and large penalty respectively, 

which are used to penalize small disparity changes and large 

disparity changes. 

 

However, the minimization of this energy function is NP-hard 

(Boykov et al., 2001). Thus, SGM aggregates costs along several 

different 1D paths to approximate all directions. The cost 

Lr(p, d) along the path r is defined recursively as:  

 

              Lr(p, d) = C(p, d) + 

𝑚𝑖𝑛

{
 
 

 
 Lr(p − r, d)

Lr(p − r, d − 1) + P1
Lr(p − r, d + 1) + P1
min
i
Lr(p − r, i) + P2}

 
 

 
 

−min
i

Lr(p − r, i) (2) 

 

The first term is the data term, which means the matching cost. 

The second term is the smoothness term, which equals to the 

lowest cost of the previous p-r of the path, including the 

appropriate penalty for discontinuities. The remainder of the 

equation subtracts the minimum path cost of the previous pixel 

to make Lr(p, d)  not too large. The so-called path can be 

understood as a pixel at a specific position in the neighborhood 

of the pixel p (x, y). Figure 2 shows the way that SGM aggregates 

costs from several 1D paths. In Figure 2, the number of paths is 

16. Generally, the more the number of paths, the greater the time 

consumes, but the result is relatively better. It’s necessary to 

choose an appropriate number of paths. 

 

 
Figure 2.  Aggregation of costs 

 

Finally, the results of the cost aggregation from several paths are 

fused as: 

 

S(p, d) =∑Lr(p, d) 

r

(3) 

 

The final disparity will be derived from 𝑆(𝑝, 𝑑) by searching the 

minima of S(p, d) for each pixel p. 

 

3.3 Cost Calculation in Object Space 

When transferring image-based SGM to object-based SGM, the 

first step is to subdivide the object space into dense 3D voxels. 

And the energy function was modified correspondingly: 

 

   𝐸(𝑍) =∑ 𝐶(𝑋, 𝑌, 𝑍)
X,Y

+ 

   ∑ 𝑃1𝑇[|𝑍 − 𝑍𝑞| = 𝑍𝑡𝑜𝑙] + 
𝑞∈𝑁𝑃

 

∑ 𝑃2𝑇[|𝑍 − 𝑍𝑞| > 𝑍𝑡𝑜𝑙] 
𝑞∈𝑁𝑃

(4) 

 

The first term is the sum of the matching cost of each voxel. The 

second and the third term are the smoothness terms, used to add 

penalties for all voxel q in the neighborhood 𝑁p of p, similar to 

Eq.1. T[]  is a logical operator ，which returns 1 when the 

condition is satisfied and 0 otherwise. P1 and P2 represent small 

penalty and large penalty respectively, used to penalize small 

height changes and large height changes instead of disparity 

changes. 

 

The purpose of calculating cost for each voxel is to get data term 

𝐶(𝑋, 𝑌, 𝑍). 
 

3.3.1 Determining Adaptive Height Search Range: Before 

calculating cost, object-based SGM should subdivide the object 

space into dense voxels. The size of voxel (∆𝑋, ∆𝑌, ∆𝑍) should 

be predefined considering mean ground sampling distance and 

base-to-height ratios. It’s necessary to constraint the height 

search range because calculating cost for voxels will consume 

large memory and time. Lunar global DEM such as SLDEM2015 

(a combined product of Lunar Reconnaissance Orbiter Laser 

Altimeter (LOLA) and a DEM generated by the Japanese 

Selenological and Engineering Explorer (SELENE) terrain 

camera) (Barker et al., 2016) can be used as initial DEM to 

constraint the height search range. 

 

Erosion and dilatation operators can be used to find local 

maximum and minimum values. Accordingly, the height search 

range can be determined by applying erosion and dilatation 

operators. As shown in Figure 3, after using the initial DEM to 

constraint the height search range, the number of voxels needed 

to be calculated is greatly reduced. 

 
Figure 3. Height search range for dense voxels 
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3.3.2 Cost Function: There are many cost functions often 

used in photogrammetric processing, such as Census or NCC. 

Correlation coefficient is widely used as a similarity measure for 

lunar image matching due to its robustness. Therefore, in this 

work, correlation coefficient is used as the foundation of a cost 

function which is defined as: 

 

𝜌 =
𝑆𝑔𝑔′ −

𝑆𝑔𝑆𝑔′

𝑛

√(𝑆𝑔𝑔 −
𝑆𝑔

2

𝑛
)(𝑆𝑔′𝑔′ −

𝑆𝑔′
2

𝑛
)

 (5)
 

 

where 𝑔  and 𝑔′  represent reference window and matching 

window respectively，𝑆𝑔𝑔 means the sum of the squares of the 

grey values of each pixel in the reference window ，𝑆𝑔′𝑔′ is the 

sum of squares of the grey values of each pixel in the matching 

window，S𝑔𝑔′  is the sum of the product of the grey value of the 

pixel at the corresponding position in the window to be matched 

and the corresponding position in the reference window，𝑆𝑔 and 

𝑆𝑔′ are the sum of the grey values of the pixels in the respective 

windows. The larger the correlation coefficient, the stronger the 

correlation between the images. A series of correlation 

coefficient values will be obtained by calculating the correlation 

coefficient between reference image windows and matching 

image windows. The window size and window-side length are 

predefined, e.g. window size can be set as 45 and window-side 

length can be set as 0.3 pixels, thus the length and width of the 

window equal 45*0.3=13.5 pixels. It helps to catch the small 

changes in image space caused by Z value change in object space 

by setting window-side length as a subpixel value. The grey 

values of the windows are interpolated using the bilinear 

interpolation method. Considering that there may be mismatches, 

results may be affected if the series of correlation coefficients are 

directly averaged.  Therefore, the maximum value of the 

correlation coefficients between the reference image and 

matching images is chosen as the similarity metric for multi-

images, denoted as ρmax and the matching cost of the voxel is 

further denoted as 1 –  ρmax . So far, the matching cost of the 

voxels can be calculated, providing a data basis for the cost 

aggregation step. 

 

3.4 Cost Aggregation in Object Space 

The calculation of voxel cost aggregated from different paths in 

object space was modified as:  

 

       𝐿𝑟(𝑋, 𝑌, 𝑍) = 𝐶(𝑋, 𝑌, 𝑍) + 

𝑚𝑖𝑛

{
 
 

 
 𝐿𝑟(𝑃 − 𝑟, 𝑍)

𝐿𝑟(𝑃 − 𝑟, 𝑍 − 𝑍𝑡𝑜𝑙) + 𝑃1
𝐿𝑟(𝑃 − 𝑟, 𝑍 + 𝑍𝑡𝑜𝑙) + 𝑃1
min
𝑖
𝐿𝑟(𝑃 − 𝑟, 𝑖) + 𝑃2 }

 
 

 
 

− min
𝑖

𝐿𝑟(𝑃 − 𝑟, 𝑖) (6) 

 

The costs after aggregating from several different paths directly 

influence the final 3D point determination. Being similar to 

traditional SGM, the cost aggregation from several different 

paths can be fused as:  

 

𝑆(𝑋, 𝑌, 𝑍) =∑𝐿𝑟(𝑋, 𝑌, 𝑍)

𝑟

(7) 

 

The final 3D point position can be derived from Eq.7 by 

searching the minimum in 𝑆(𝑋, 𝑌, 𝑍) for each voxel.  

 

3.5 Height Calculation 

The last step of object-based SGM for lunar terrain 

reconstruction leading to final DEM generation is calculating and 

refining the height value of each voxel. After cost aggregation, 

the struct 𝑆(𝑋, 𝑌, 𝑍)  was generated, which can be used to 

determine the final DEM. WTA was a choice to find the final 

height, it’s also an easy and effective way to get the final 3D point 

position. However, fitting a spline function for each position 

(𝑋, 𝑌) is helpful to find the subpixel Z value. Therefore, in this 

study, we fit the spline function for every planar position (𝑋, 𝑌) 
to find its corresponding height value. 

 

3.6 DEM Assessment 

The performance of object-based SGM for lunar terrain 

reconstruction is assessed by evaluating the accuracy of the 

produced DEM. Since there is no control point on the lunar 

surface, it’ s not possible to set several checkpoints to evaluate 

reconstruction precision. Also, it’s hard to get a true lunar DEM 

as a reference. However, lunar orbiters have obtained a large 

number of high-resolution images in some areas, which have 

been used to derive high-resolution and high-precision DEM 

products. Those products can be used as reference DEM. The 

statistics of differences between produced DEM and reference 

DEM are applicable metrics to evaluate the produced DEM. 

Meanwhile, some subjective image quality evaluation metrics 

like Naturalness Image Quality Evaluator (NIQE) and 

Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) 

are widely used because they don’t need a true reference (Mittal 

et al., 2012a; Mittal et al., 2012b). To evaluate the accuracy of 

DEM generated from multi-view images, the root-mean-square 

error (RMSE) is used between produced DEM and reference 

DEM, subjective image quality matrices NIQE and BRISQUE 

are also used as evaluation metrics. 

 

On the other hand, to prove the accuracy of object-based semi-

global matching method for stereo pairs with small overlapping, 

the produced DEM will be compared with those produced by 

commercial photogrammetric software and widely used image-

based stereo matching method, respectively. Quantitative 

matrices may not be needed in this evaluation because visual 

effects are enough to show a difference. 

 

4. EXPERIMENTAL EVALUATION 

Two experimental datasets have been used to evaluate the 

proposed method in this study. The SLDEM (Barker et al., 2015) 

was selected to provide initial values. As for the reconstruction 

evaluation, for the areas where there exist high-precision and 

high-resolution DEM products, we use the DEM product which 

generated by images whose resolution is higher than 

experimental images as a reference. Moreover, the statistics of 

the differences between reference and produced DEM and image 

quality evaluation criteria, NIQE and BRISQUE, are used as 

evaluation criteria.  

 

4.1 Evaluation Using Zhinyu Crater Data  

Zhinyu Crater is a fresh crater located inside the Von Kármán 

Crater, the landing site of Chang’e-4 probe. This evaluation aims 

to prove the advantages of the object-space semi-global matching 

method in handling small ratio conditions than commercial 

photogrammetry software and image-based matching method. A 

stereo pair of LROC NAC images involving four individual 

images (see Table 1) covering Zhinyu Crater are used as 

experimental data. These images can form three overlapping 
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conditions, which are m184732140re and m184724991re, 

m184732140le and m184724991le, M184732140LE and 

M184724991RE. Among them, M184732140LE and 

M184724991RE form small overlapping stereo images, which 

may influence the completeness and correctness of generated 

DEM, thus becomes a problem in generating DEM. We regard 

these images as multi-view images rather than a stereo pair that 

require three stereo models according to the image overlap 

situation when we use the object-based semi-global matching 

method to generate DEM. And the resultant DEM is compared 

with the product generated from the four images by commercial 

photogrammetry software PCI and a DEM generated by a widely 

used matching method based on the triangle constraint, 

respectively (Peng et al., 2014). Table 1 lists the imaging 

conditions. 

 

Table 1. Imaging and illumination conditions of  

the NAC images. 

ID Image 

Resolution 

(m) 

Incidence 

angle  

(°) 

Emission 

Angle  

(°) 

m184732140re 0.639 51.15 9.97 

m184732140le 0.644 51.48 11.29 

m184724991re 0.636 51.2 7.12 

m184724991le 0.639 51.15 9.97 

 

Figure 4 (a) shows the DEM produced by PCI. In Figure 4 (a), 

there exists a visible gap because the software didn’t fully use the 

information between stereo pairs with small overlapping areas. 

 

 
  

 

(a) 

 

(b) 

 

(c) 

 

Figure 4. Comparison of the DEMs generated by different 

methds (a) PCI (b) a matching method based on triangle 

constraint (c) the object-space semi-global matching. 

 

The DEM generated by a matching method based on the triangle 

constraint is shown in Figure 4(b). M184732140LE and 

M184724991RE are used to fill the gap area in figure 4(b). Figure 

4(c) depicts the DEM produced by the object-space semi-global 

matching. Caused by orbit and attitude determination error, 

height inconsistency exists even when the matching result is 

correct, as shown in Figure 4(b). Nevertheless, applying semi-

global optimization in object space can guarantee the 

effectiveness of matching to some extent. Meanwhile, the height 

search range constrained by initial DEM helps to solve the small 

image overlapping ratio problem, as shown in Figure 4(c). 

 

4.2 Evaluation Using Apollo-11 Landing Site Data 

This investigation uses three LRO NAC images covering the 

Apollo-11 landing site as experimental data. To evaluate the 

advantages of multi-view images than a single stereo pair, we 

first choose a stereo pair with the best geopositioning precision 

from all the dual-image combinations, which are 

M1114021499R and M1126972080L. Meanwhile, the third 

image M1126986303R is added, which forms the best three-

image precision combination with M1114021499R and 

M1126972080L (Liu et al., 2018). Table 2 lists the detail 

information about these three images. 

 

For the Apollo 11 landing site, the LROC team generated a 2m 

grid spacing DEM product using M150361817 L/R and 

M150368601 L/R, which can be used as a reference for precision 

evaluation due to that the pixel scales of M150361817 L/R and 

M150368601 L/R are about 0.5m, much higher than the images 

we used in the experiment. The product can be downloaded from  

http://wms.lroc.asu.edu/lroc/view_rdr/NAC_DTM_APOLLO11. 

 

Table 2. Experimental images in the Apollo-11 landing area 

ID Image 

Resolution 

(m) 

Incidence 

angle  

(°) 

Emission 

Angle  

(°) 

m1114021499re 1.055 44.56 22.43 

m1126972080le 1.083 72.36 20.51 

m1126986303re 1.078 74.5 20.2 

 

Figure 5 illustrates the shade relief maps of the DEMs generated 

by dual-image combination and three-image combination. Table 

3 lists the experimental parameters, where “planar grid 

refinement times” equals the value that initial DEM’s spatial 

resolution over the generated DEM’s spatial resolution and thus 

controls the generated DEM’s spatial resolution, “Correlation 

coefficient window (pixel)” is the window size when calculating 

the similarity between the image points projected by some voxel, 

“Window-side length (pixel)” is the size of the correlation 

coefficient window (the value of the window was resampled 

using bilinear interpolation), “The interval of Z” as the name 

suggests, controls how many meters the Z value changed each 

time, “Small penalty” and “Large penalty” are the parameters 

used to penalize small Z value changes and large Z value changes. 

 

  
 

(a)  (b)  

Figure 5. Shaded relief maps of the DEM generated from dual-

image combination (a) and three-image combination (b), 

respectively. 

 

Table 3. The parameters for 

both DEMs generated by dual-image combination and three-

image combination. 

Planar grid  

refinement 

times 

Correlation 

coefficient window 

 

Window-side 

length (pixel) 

5 45 

 

0.3 

The interval of   

Z (m) 

Small penalty Large penalty 

1  2 16 
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Table 4 lists the RMSE of height differences, NIQE, BRISQUE 

and inliers of dual-image and three-image combinations. The 

statistical results show that the three-image combination is 

slightly better than the dual-image combination and thus further 

demonstrates the advantages of multi-view images to some extent. 

 

Table 4. Evaluation of different combinations 

Combination RMSE NIQE BRISQUE Inliers 

m1114021499re

+ 

m1126972080le 

 

3.974 7.908 44.747 781097 

m1114021499re

+ 

m1126972080le

+ 

m1126986303re 

3.901 7.834 44.743 780872 

 

5. CONCLUSIONS 

In this study, we applied object-based semi-global matching 

method for lunar terrain reconstruction from multi-view LROC 

NAC images. The experimental result using Zhinyu Crater data 

demonstrates that the method could alleviate the matching 

problem caused by the uncertain conditions of multi-view image 

geometric positioning to some extent. The experimental result 

using Apollo-11 landing site data demonstrates the advantages of 

multi-view images relative to a single stereo pair. 

  

Further research will be performed to improve the computational 

efficiency of our method based on GPU. Moreover, more 

planetary data will be used to test the effectiveness and accuracy 

of the method. 
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