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ABSTRACT  

This study developed a novel deep learning oil spill instance segmentation model using Mask-Region-based Convolutional Neural 
Network (Mask R-CNN) model which is a state-of-the-art computer vision model. A total of 2882 imageries containing oil spill, 
look-alike, ship, and land area after conducting different pre-processing activities were acquired.  These images were subsequently 
sub-divided into 88% training and 12% for testing, equating to 2530 and 352 images respectively. The model training was 
conducted using transfer learning on a pre-trained ResNet 101 with COCO data as a backbone in combination with Feature Pyramid 
Network (FPN) architecture for the extraction of features at 30 epochs with 0.001 learning rate. The model’s performance was 
evaluated using precision, recall, and F1-measure which shows a higher performance than other existing models with value of 
0.964, 0.969 and 0.968 respectively. As a specialized task, the study concluded that the developed deep learning instance 
segmentation model (Mask R-CNN) performs better than conventional machine learning models and semantic segmentation deep 
learning models in detection and segmentation of marine oil spill. 

1. INTRODUCTION 

The occurrence of oil spill has increased over time, due to 
the growth in global population resulting into intensive oil 
exploration and transportation (Yu et al., 2018, Yekeen et al., 
2019, Balogun et al., 2020). Which has caused severe 
environmental, health and social-economic phenomenon 
(Jiao et al., 2019). Evidence to this, is the differences in 
major oil spill between 1970s, 1980s and 1990s with one 
million, 661,000, and 702,000 tons of oil spills respectively 
and 2000 with 74,000 tones (Chen et al., 2019). The world 
at large has suffered several oil spills which includes, 
Canada Atlantic Empress (2,100,000-2,400,000 Barrels), 
Angola ABT Summer (1,800,000 -1,900,000 barrels) , 
France Amoco Cadis oil Tanker (1,600,000-1,700,000 
Barrels), South African ship tank fire of Castillo De Bellver 
(1,850,000 barrels), West Indies Fergana Valley (2,000,000 
plus Barrels), Mexico Ixtoc (3,300,000  Barrel),  Persian 
Gulf Iran –Iraq War (1,900,000 Barrels),  Italy, Uzbekistan 
and Kuwait first gulf war in 1991 (240,000,000 gallons) 
(Balogun et al., 2020). Thus, the causes of the oil spills can 
be categories into ship collision, grounding, hull failure, 
explosion/fire, and oil rig explosion (Michel and Fingas, 
2015, Balogun et al., 2020). The effects of oil spill becomes 
more extreme due to the inability to rapidly identify the 
source and extent of the spill due to the predominant use of 
traditional methods like site visitation and camera etc which 
have limited area coverage. 

Considering this limitation, remote sensing technologies has 
appear to be more promising, particularly since it can be 
deployed at any time (Robbe and Hengstermann, 2006, 
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Fingas, 2016, Ozigis et al., 2019b). The use of remote 
sensing technology for detecting and monitoring oil spill in 
marine environment have been well defined and documented 
in literature (Fingas and Brown, 2018), with Synthetic 
Aperture Radar (SAR) being the most prevalent, due to its 
ability to operate at any period of the day and under different 
weather conditions (Migliaccio et al., 2008). Despite the 
successes of remote sensing in this regard, a major drawback 
remains the similar visual appearance of oil spill and other 
elements such as natural films, wind front areas, wind 
shadow at areas close to island, ship wake, sea grass which 
are refers to as look-alike in the satellite imagery (Fingas and 
Brown, 2018, Leifer et al., 2012, Fingas and Brown, 2014). 
So as to overcome the false visual appearance of look-alike 
as oil slick, different classification models for discrimination 
of oil spill and look-alike have been developed over time.  
These models follows a three step approach of dark-spot 
identification, feature extraction and dark-spot classification 
using adaptive threshold (Vyas et al., 2015), statistics 
(Skøelv and Wahl, 1993), machine learning classifiers like 
SVM (Wan and Cheng, 2013) , decision tree  and ANN 
(Singha et al., 2012, Singha et al., 2013). Limited accuracy 
and non-reliability due inconsistence in feature selection, 
likely false identification of non-oil slick feature during dark 
spot identification as well the inapplicability of the model 
when the oil slick appears thin in the imagery are major 
challenge of this model. In addition to the inability to apply 
an end-to-end trainable framework.  

Due to these shortfalls, in recent time, deep learning models 
are also been developed for the discrimination of oil spill and 
look-alike as a result of its ability to accurately and 
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adequately extract features in addition to its autonomous 
learning (Zeng and Wang, 2020, Zhao et al., 2020). 
However, past studies in this direction has being limited to 
mainly semantic segmentation model (Krestenitis et al., 
2019, Gallego et al., 2019), which are not able to localize 
and segment accurately and simultaneously. Thus, in order 
to provide a model that is capable of detecting and 
segmenting oil spill and look-alike in addition to other 
features that are included within the surrounding of the oil 
spill like ship and land area. This study has developed an 
instance segmentation deep learning model using Mask-
Region- based Convolutional Neural Network (Mask R-
CNN) with the aim of achieving a high precision detection, 
recognition and segmentation model, that can learn from the 
shape and texture for localization and target detection of oil 
spill, lookalike, ship and land area. To the knowledge of the 
authors, this is perhaps the first study that implements deep 
learning instance segmentation model to SAR imagery for 
marine oil spill detection.  

For flow of readership, other sections of the study are 
organized as follows: Section 2 entails the materials and 
methods used stating the type and sources of data used, the 
pre-processing techniques and the processed involved in the 
development of the model. Section 3 gives detail result and 
discussion of the model output, in addition to comparison of 
the model with other existing models. The Section 4 
therefore give a conclusion remark and also states the future 
outlook to improving the model accuracy.    

2. MATERIALS AND METHODS  

2.1 Data Pre-Processing  

To achieve the aim of this study, a two section 
methodological approach was developed. The first section 
entails the pre-processing that starts with the acquiring of the 
oil spill location, time and causes inventory for the year 2012 
to 2017. It was based on this list that sentinel 1A and B 
imagery for this period were acquired from SAR Capernicus 
database with 250km coverage and pixel spacing 10 X 10 
meters. The vertical polarization transmitted-vertical 
polarization received (VV) from the acquired imagery with 
dark spot was subjected to confirmation as oil slick using the 
oil spill incidents list.  

The areas with identified oil spill was sub-settled/cropped 
and rescaled to 1200 X 1200 pixels. This is in the bid to so 
reduce the computation and running time of the proposed 
model. Radiometric calibration and single layer spackle 
filter was also applied to de-noise to images. And a linear 
transformation was also done using decibel (dB) (Eq. 1) to 
luminous the value conversion.  

σ0 (dB) = 10*log10 (abs (σ0))        (1) 

Where σ0 (dB) = Value of image Backscattering in dB 

A total of 2882 imageries that contains oil spill, lookalike, 
land area and ships. Although the proportion of the elements 
differs since it is not all the oil spill that are close to the land 
area, and some oil slick were clearly standing without look-

alike or ship and vise-versa. In other word it is not all the 
images that contain oil spill, look-alike, ship, and land area.  

2.2 Mask R-CNN Oil Spill Detection and Segmentation 
Model Development  

The second section constitute the training, validation and 
testing of the model using Mask R-CNN. The images were 
all labeled with the ground truth data and subsequently 
divided into 88% training and 12% for testing amounting to 
2530 and 352 images respectively to have a substantial 
training and testing data.  

The Mask R-CNN model involves a three stage processes as 
presented in Figure 1, with the first been the backbone 
network extraction feature map from the input imageries 
(training data) using ResNet 101 deep neural network model 
which has being trained on the COCO data by Abdulla 
(2017) in addition to the Feature Pyramid Network (FPN) 
architecture that enables extraction of feature at different 
scale because of the variation in size of the different 
elements. Second stage was the sending of the output from 
the feature map backbone to the Regional Proposal Network 
(RPN) to generate regions of interest (RoI). RoI output 
mapped from RPN which has extract the equivalent target 
features in the shared feature maps and output from Fully 
Convolutional and Fully Convolutional networks for 
classification and instance segmentation of oil spill, loo-
alike, land area and ship. The model was trained using a 
learning rate of 0.001 and 30 epoch with 1 image per batch 
(See Table 1 for Model configuration Parameters). 

 

Backbone [4, 8, 16, 32, 64] 
Batch size 0 
Batch size [0.1 0.1 0.2 0.2] 

Detection maximum instance 100 
Detection minimum confidence 0.7 

Detection NMS threshold 0.3 
FPN Class IF FC layers size 1024 

Gradient clip norm 5.0 
Image channel count 3 

Image maximum dimension 1024 
Train_BN False 

Image MATA Size 93 
RPN anchor ratios [0.5, 1, 2] 
RPN anchor scales <32, 64, 128, 256, 512> 

RPN_Train_Anchors_Per_Image 256 
USE_Mini_Mask True 
USE_RPN_ROIS True 
Validation steps 50 

Learning rate 0.001 
Learning momentum 0.9 

Training Epochs 30 
RPN NMS threshold 0.7 

Table 1: Mask R-CNN Parameters Configuration 
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3. RESULT AND DISCUSSION                      

3.1 Model Accuracy Evaluation 
 
The model was evaluated using 352 testing images that 
includes oil spill, lookalike, ship, and land area at different 
proportion. This accuracy were measured using three 
different performance indices that includes precision, recall 
and F1 measure value all of which were derived from the 
confusion matrix.  
F1 accuracy is represented by (Eq.2) which connote the 
harmonic mean of precision and sensitivity recall that 
ascertain the out of bag error of the model (Ozigis et al., 
2019a). In other term, this means the extent at which the 
predicted detection mask boundary generated of the Mask R-
CNN aligns well with the ground truth boundary. 
 
F1 accuracy= 2* Precision*Recall

Recall + Precision
   (2)  

 
The Precision is the division of the true positive pixels (TP) 
by the sum of true positive pixels and false positive (FP) 
pixels (Eq. 3).  While the recall is the division of true positive 
pixels by the sum of true positive pixel and false negative 
(FN) pixel (Eq. 4). 
 
Precision = TP

TP + FP
    (3)  

       
Recall = TP

TP + FN
    (4) 

 
The result revealed that the model was able to adequately 
detect and segment oil spill, look-alike, ship and land area 

with a precision, recall and F1 measure value of  (0.987, 
0.976 and 0.982) for oil spill as against the (0.927, 0.966 and 
0.946) for lookalike. Ship measured (0.988, 0.994 and 0.991) 
and land area measures (0.955, 0.941, and 0.948). Although 
the model accuracy measure for the ship class outperforms 
other classes which was as a result of the fact that ship has a 
more definite shape than other elements understudy. The 
matter of concern which are oil spill and look-alike were 
adequately detected and segmented with high accuracy value 
from the evaluation indicators as illustrated on Table 2. 
Although, the lower accuracy of the look-alike in 
comparison to the oil spill can be largely linked to the 
complexity in the shape and variation in the size of the look-
alikes.  

Class Precision Recall F1 

Oil Spill 0.987 0.976 0.982 

Look-alike 0.927 0.966 0.946 

Ship 0.988 0.994 0.991 

Land Area 0.955 0.941 0.948 

Mask R-CNN Average 
Accuracy 0.964 0.969 0.968 

Table 2: Result of Model Performance Evaluation from 
confusion matrix 

 

 

Figure 1: General Architecture of the Deep Learning Oil Spill Detection and Segmentation Model with Mask RCNN

3.2 Model Quantitative Assessment and Comparison 
with Existing Methods and Models 

The visual output performance of the model are presented in 
Figure 2.The assessment of the model indicated that the 
ground truth mask of the different classes ship (yellow), 
look-alike (cyan), oil spill (purple) and land area (pink) 

under study were adequately detected and segmented by the 
model in the SAR imagery.  Although, Ship depicts to be 
relatively better segmented and detected than other due to its 
definite shape. Never the less, oil spill was well detected and 
segmented by the model, taking into consideration the higher 
performance as represented in Table 2 compared to look-
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alike which are likely due to the more complex appearance 
of look-alike.   

In comparison with existing models like statistical, 
traditional machine learning, and other semantic deep 
learning models (Topouzelis et al., 2007, Liu et al., 2010, 
Singha et al., 2013, Ma, 2016, Mera et al., 2017, Gallego et 
al., 2018, Krestenitis et al., 2019, Zhang et al., 2020) this 
study has incorporated other elements that has significant 
influence on the detection of oil spill, which include ship and 
land area, that were absent in other studies. The earlier and 
existing methods have been affected by the errors caused by 
speckle noise and the global gray unevenness in SAR 
imagery, leading to a reduction in the dark spot identification 
thereby affecting the statistical feature selection and 
classification of oil spill and look-alike (Gallego et al., 

2018). As a means of eradicating these errors, sparkle 
filtering and calibration as well as dB conversion to aid 
global gray unevenness in the images used in the pre-
processing stage of this study were employed before it was 
later used for the model training and validation. Also, the 
statistical methods and the machine learning models do not 
possess an end-to-end training framework that reduced their 
accuracy and reliability, which the Mask R CNN model 
developed has overcome, thereby giving a more accurate and 
precise detection and segmentation. 

Figure 2. Examples of Qualitative Output of the Mask R-CNN model, the Ground truth and SAR Imagery 

4. CONCLUSION 

A rapid, accurate and reliable mechanism for oil spill 
detection is a fundamental aspect of marine oil spill pollution 
decision support system. Bearing in mind the complex 
nature of marine oil spill detection, a sophisticated model 
that enables learning from past scenes in term of shape and 
texture for rapid and accurate recognition and segmentation 
is required. This study has developed an instance 
segmentation deep learning model for oil spill detection and 
segmentation using Mask R-CNN in a two sectional 

methodological approach which is advanced and different 
from other exiting methods as it uses pixel value for 
inference. Comparison of the Mask R-CNN model with 
other machine learning, deep learning and statistical models 
indicates that the Mask R-CNN outperforms other exiting 
models in oil spill detection and segmentation. As a future 
direction, there is need for the development of a large 
database for oil spill SAR imagery data this is with the view 
to further improve the accuracy of the model and enable 
development of oil spill deep learning framework.  

Legend  
Oil Spill Purple  
Look-alike Cyan 
Ship Yellow 
Land area Purple 
A SAR Imagery 
B Grand truth 
C Mask R-CNN 

A B C 
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