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ABSTRACT: 
 
Landslides are one of the most diffused hazard events in the world, they can occur in different locations under different triggering 
factors. As such, they are also one of the most studied hazards, while the mechanism of an event is known to the scholars, more 
difficulties are found in forecasting the location and time of the following event. However, scholars are putting great effort into 
modelling the phenomena through various tools, as such susceptibility mapping is one of the initial and key steps in the hazard 
assessment. While effort is put on producing such maps, less is put on the evaluation of those outcomes. The current work aims to 
analyse the behaviour of two validation metrics – Receiver Operating Characteristics (ROC) and Precision Recall Curve (PRC). The 
former is widely used in susceptibility modelling, while the latter not so much utilized. However, scholars are highlighting a drawback 
of the ROC – it is not able to discriminate imbalanced datasets and is providing unreliable outcomes, and as an alternative is proposed 
the PRC which does not exhibit such flaws. In order to test the performance of both metrics, they were applied to three susceptibility 
models produced using Statistical Index, Logistic Regression and Random Forest for the area of Val Tartano, Northern Italy. As a 
result, it was determined that when the metrics are applied to balanced datasets they exhibit similar behaviour; on the contrary when 
imbalanced classes are introduced PRC is depicting the model performance in a more precise manner. 
 

1. INTRODUCTION 

Landslide phenomena are widely spread hazards all over the 
world, they are occurring due to various factors, on various 
geomorphological conditions and spatial extent, as in different 
magnitudes (Guzzetti et al., 2006; Van Den Eeckhaut and Hervás, 
2012). As a huge geohazard issue, scholars are putting enormous 
efforts in developing new and reliable methodologies for hazard 
mapping and mitigation approaches. As such, landslide 
inventories are considered as crucial for any further hazard 
assessment, followed by determining the susceptibility levels. 
Landslide susceptibility is heavily related to the knowledge of 
past events (Guzzetti et al., 2012), since it is determining the 
probability of a hazardous event, based only on the conditions 
and properties of the locale. In recent years, susceptibility 
modelling undergoes constant progress; researchers are 
implementing new modelling approaches that have not been used 
until now for hazard assessment. As a result, numerous 
methodologies with various input parameters are proposed to the 
public with outcomes that not always can be considered as 
reliable. A recent study (Reichenbach et al., 2018) shows that 
there are more than 15 modelling strategies that are used to 
determine landslide susceptibility levels. The majority of studies 
are relying on statistically based models such as logistic 
regression, neural networks, data overlay and index-based 
methods. On the other hand, less attention is paid on the 
procedures related to validating the outputs of susceptibility 
maps. In the literature, if any validation metrics are implemented, 
authors are mostly relying on Receiver Operating Characteristics 
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(ROC) curve to evaluate model fitting and prediction 
performance, in most cases without going further in details.  

This paper has the task to discuss and evaluate the 
implementation of the ROC curve as a validation metric for 
susceptibility maps and to compare it to Precision-Recall Curve 
(PRC), another metric that is considered more sensitive to 
imbalanced datasets and can represent a more accurate 
evaluation. For that purpose, a case study in Northern Italy was 
chosen - Val Tartano, a relatively small valley with a catchment 
area of 51 km2. Despite its small area, the landslide phenomena 
are quite abundant: an inventory lastly updated in 2017, exhibits 
more than 750 records of mass movements, which makes the area 
very suitable for the current task. For creating the landslide 
susceptibility maps, three statistical models – statistical index-
based (SI), logistic regression (LR) and random forest (RF), were 
used. The before mentioned landslide inventory was used as 
training and test datasets divided in ratios as such 50/50, 70/30 
and 90/10. In total 12 thematic variables were used into the 
susceptibility modelling, each of them divided into relevant 
classes. As a result, 79 susceptibility maps were produced 
incorporating different model implementations as well as a 
combination of variables and training/test ratios. 

For validating susceptibility maps, a highly adopted metric is the 
Receiver Operating Characteristics  (Fawcett, 2006; Reichenbach 
et al., 2018), which relies on the sensitivity and specificity derived 
from a confusion matrix. Even though the models were not 
considered as randomly generated by the performed validation, 
some of the produced maps could not be accepted as plausible 
from a geomorphological point of view.  

Another validation metric for classifiers that is not so popular 
among landslide hazard studies are the PRC plots. They have 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1277-2020 | © Authors 2020. CC BY 4.0 License.

 
1277



 

similarities with the ROC plots and can be constructed in a 
similar manner. In fact, some studies (Saito and Rehmsmeier, 
2015) are suggesting that PRC can be more sensitive and accurate 
for validation purposes (compared to ROC) in cases when natural 
imbalance can occur between classes. 

The current work aims to compare the before mentioned 
evaluation metrics for the purposes of landslide susceptibility 
mapping to investigate the suitability and reliability of ROC and 
PRC when implemented for modelling such phenomena.  

As it was mentioned before, overall 79 landslide susceptibility 
maps were produced and as for the current paper, only three maps 
produced from three different models will be presented and 
discussed. However, the same trends were depicted in the rest of 
the models. 

The current work is structured as follows: in the following 
Section 2 the susceptibility mapping strategies will be discussed, 
including the case study, data used, modelling approaches and 
briefly the outcomes. In Section 3 we will deepen into details of 
the validation metrics and the results from their implementation 
will be discussed in Section 4, concluding on the findings in 
Section 5. 

2. LANDSLIDE SUSCEPTIBILITY MAPPING 

2.1 Case Study 

Located in the Northern of Italy, Val Tartano (Figure 1) covers 
an area of 51km2 and it is characterized by steep slopes and an 
elevation ranging from 250 to 2250 m a.s.l.  

Geologically speaking, the valley represents a huge interest to 
scholars from  different backgrounds (Colombera and Bersezio, 
2011; Longoni et al., 2016); of particular interest is the presence 
of numerous faults accompanied by shear zones, prone to 
instabilities. Coupling the zones with the river network turns the 
area into suitable terrain for hosting landslides of different types. 
In fact, a local landslide inventory exhibits numerous entries of 
different types. 

2.2 Data Used 

During the landslide susceptibility modelling various 
combinations and approaches were applied to obtain the most 
suitable and acceptable map from both modelling and 
geomorphologic points of view. For this reason, three 
classification models, three sampling strategies and twelve 
terrain variables were implemented. The different combinations 
of the inputs highlighted the sensitivity of the model outcomes 
towards the inputs. In the following sections, the used 
susceptibility inputs will be briefly discussed, while the focus 
will be on the combinations implemented for the results 
discussed in Section 2.5. 

2.2.1 Landslide Inventory: An exhaustive landslide inventory 
was obtained from Lombardy region. The database was created 
by the  IFFI (Inventario dei Fenomeni Franosi in Italia) project 
(Scienze et al., 2007; Trigila and Iadanza, 2008), where mass 
movements were recorded at a scale of 1:10,000 and categorized 
according to the widely accepted landslide classification 
proposed by Varnes (1978) and then revised by Cruden and 
Varnes (1996). 

The most distributed types in the current case study are: debris 
flow, rockfall, toppling and translational/rotational sliding. As 
mentioned before, the area of Val Tartano is abundant of slope 

failures, more than 750 landslides entries, with a landslide 
density of approximately 14.70 landslides/km2. Mostly the area 
is affected by channelled debris flows (Colombera and Bersezio, 
2011) that can reach 300 m in length. In addition, shallow 
landslides are also present in almost all parts of the valley.  

One of the most well-known and studied landslide in the Val 
Tartano is ‘Pruna’ (Ballio et al., 2010; Longoni et al., 2016), a 
deep-seated gravitational slope deformations (DSGSD) with a 
surface area of around 1 km2 and a depth that can reach 100m. 

The landslide susceptibility analyses for the current study were 
focused only on debris flows and slidings, while rock falls and 
DSGSDs were omitted (Figure 2). 

2.2.2 Terrain variables: For producing landslide 
susceptibility maps it is crucial to define a set of suitable, for each 
case study, factors that can be considered as predisposing or 
controlling (Trigila et al., 2015), which then will be used as input 
variables in the models. Twelve factors were chosen to be 
investigated and included as inputs. A digital terrain model 
(DTM) from 2015 with a spatial resolution of 5 meters is freely 
available via a dedicated geoportal of the Lombardy region 
(GeoPortale Lombardia, 2019). From the DTM five of terrain 
variables were derived, namely: aspect, elevation, slope angle, 
plan and profile curvature. Road and river networks were 
obtained from OpenStreetMap (2017). For deriving the 
normalized difference vegetation index (NDVI), three years of 
Sentinel 2 A/B data (Copernicus, 2019) was downloaded and 
processed. Rainfall map was obtained using the data of 37 
stations around the area of Val Tartano for the same period and 
interpolated using two methods: Kriging and Inverse Distance 
Weighting. Land use, lithology and the location of geological 
faults were obtained from the local Italian catalogues (GeoPortale 
Lombardia, 2019). 

 
Figure 1. Val Tartano, Northern Italy 

Upon geological expertise, for the area of Val Tartano, were 
included no landslide zones into the model training process. The 
zones represent areas that are unlikely to host a landslide due to 
some terrain conditions. The no landslide zonation included areas 

Pruna 
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where the slope angle is less than 20° and more than 70°. In 
addition, from lithological point of view bare intact rocks were 
also considered as stable enough to be included in the no 
landslide delimitation. However, in the current case study, they 
are overlapping with the highly inclined areas (>70°). To verify 
the reliability of such no landslide zonation, it was compared to 
the existing landslide inventory and less than 2% of error was 
measured, which can be explained with the prolonged 
dimensions of some mass movements and their material 
deposition especially in the flat areas. Since the discussed outputs 
in Section 2.5 included the no landslide zonation in the training 
process, the slope angle was omitted as an input variable for those 
models because its contribution was considered as already 
biased. Moreover, the experience of previous modelling 
combinations showed a low contribution of the precipitation to 
the output maps, due to low value variability. Therefore, 
precipitation was also excluded from the current modelling. 

 

Figure 2. Input datasets for the training/testing the models 

2.3 Susceptibility Models 

The landslide susceptibility represents the probability for a region 
to be affected by landslides (Brabb, 1985; He and Beighley, 
2008). For determining the probability of a landslide event, in the 
current study, three methods – statistical index, logistic 
regression and random forest- had been implemented.  

2.3.1 Statistical Index (SI): The method exploits the 
relationship between the spatial distribution of landslides and the 
terrain conditions (Lee and Talib, 2005; He and Beighley, 2008; 
Chalkias et al., 2014; Aditian et al., 2018;). The statistical weight 
for each class is computed as a natural logarithm (Equation 1) of 
the ratio of the landslide density for the particular class over the 
landslide density for the whole area: 

 

ln /i T

i T

N NSI
M M

    (1) 

 
   jSusceptibility map FC x SI     (2) 

 
where  Ni = the landslide area of the i-th variable class 
 Mi = the total area of the i-th variable class 
 NT = the total landslide area of the AOI 
 MT = the total area of the AOI 
 FCj = the i-th variable class 
                AOI = Area of Interest 
 
The output weights are clearly highlighting positive and negative 
correlation of a terrain variable to landslides. Therefore, high 
positive values highlight high landslide density for the particular 
class and vice versa. 

2.3.2 Logistic Regression (LR): The approach has been 
already discussed and implemented in the domain of 
susceptibility mapping (Bai et al., 2010; Mancini et al., 2010; 
Trigila et al., 2015). It is a great tool to create a regression model 
when dealing with dependent variables (in the current case 
presence or absence of a landslide event) and independent ones 
(terrain variables). The relationship between the variables is done 
through contribution coefficients (Equation 4) and the final 
output is an event probability between 0 and 1 (Equation 3). 

1 ;  [0,1]
1 1

Z

R RZ Z
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             (3) 

0 1 1 2 2 ... n nz X X X             (4) 
 

2.3.3 Random Forest (RF): The machine learning algorithm 
is used for classification and regression, based on single decision 
trees that are working in a group (Breiman, 2001). The idea of 
using multiple decision trees is based on the fact that a single 
decision tree can produce high variance or bias, while in a group 
the decision on the final classification will be based on the most 
voted class among the forest. In order words, n-number of trees 
will balance the error and output higher precision classification 
through uncorrelated models (Breiman, 1996). 

2.4 Train/test datasets and terrain variable sampling 

Except for the modelling techniques, it is an important aspect to 
determine suitable sampling approach and training/test partitions. 
The landslide inventory has a crucial role (Guzzetti et al., 2012) 
since it provides knowledge of the phenomena to the model 
(training) and can be used for testing the performance of a 
classification model. Along with the combinations of the 
modelling approaches and input variables, three approaches for 
creating the training and test partitions – 50/50, 70/30 and 90/10 
were tested.  

For sampling the terrain variables another three approaches using 
10,000, 100,000 and 200,000 training points to evaluate how 
their increase will affect the output susceptibility maps were 
applied.  

The maps presented in this paper were created through the 70/30 
ratio since it provides a sufficient amount of data for good 
training and testing purposes. The variables were sampled with 
100,000 training points, due to the better performance compared 
to the 10,000 cases and the less computational demand compared 
to 200,000. Moreover, no significant improvement was noticed 
in the latter cases. 
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2.5 Susceptibility Outputs 

In Figures 3, 4 and 5 the three outcomes using SI, LR and RF as 
classification models are reported. The input variables, 
training/test ratios and sampling approaches were kept the same 
for all of them, as described in the previous sections. 

 
Figure 3. Susceptibility map produced with Statistical Index 

As it can be seen from a visual inspection of the susceptibility 
maps, there are some fundamental differences among them. It is 
more obvious the huge contrast between the map produced via 
the statistical index and the other two (LR, RF). For the SI the 
class weights are directly related to the landslide density and the 
analysis of the indices depict a high significance for the plan 
curvature variable, which can explain the pattern visible on the 
map (Figure 3). From a geomorphological point of view, the 
current map cannot be considered as an acceptable and true 
representation of the reality, as it depicts more than 65% of the 
area as highly and very highly susceptible. 

On the other hand, logistic regression and random forest maps 
exhibit more similarities. The no landslide zonation, especially 
in the valleys’ bottoms, is easily depicted – more visible is in the 
low susceptibility levels in the RF case, while in LR they are 
classified as medium. Both maps have an ‘agreement’ on low 
susceptibility to what concerns the no landslide areas on high 
slope gradients. It is an interesting fact, that even though the 
models were not trained for DSGSD, LR and RF models 
produced maps that are recognizing the area of ‘Pruna’ as highly 
susceptible to landslides. 

 

Figure 4. Susceptibility map produced with Logistic Regression 

 
Figure 5. Susceptibility map produced with Random Forest 

3. VALIDATION METRICS 

In recent years, a great attention is paid on building and 
implementing more complicated models to obtain more accurate 
results (Xie et al., 2011; Reichenbach et al., 2018). However, less 
attention is paid on evaluating model performance, whether 
fitting or predictive. In a review carried out by Reichenbach et al. 
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(2018), high percentages (16.3% and 20.0%) of the analysed 
articles (565) did not implement fitting or performance 
evaluation metrics. In the meantime, they have noted an increase 
after the year of 2000 of the implemented metrics used for 
validation purposes of susceptibility maps. As most diffused 
among scholars, they have highlighted the use of success 
/prediction rates (Chung and Fabbri, 1999, 2003) and the ROC 
curves (Ayalew and Yamagishi, 2005). This could be explained 
with the fact that ROC curves are easy to build and to interpret 
(Fawcett, 2006).  

On the other hand, Saito and Rehmsmeier (2015) discussed the 
use and suitability of Area Under The Curve ROC (AUCROC) 
and the (PRC) plots when validating imbalanced binary datasets. 
An imbalanced dataset is considered when there is a difference 
between the positive and negative cases in a binary classification 
(Saito and Rehmsmeier, 2015). The focus of their work is on the 
performance evaluation of a model after the classification is 
carried out.  The reason for that is that, even though the testing 
set is created according to the class distribution as in the training 
set, a natural inequality in the classes can arise due to the 
phenomena under consideration. They suggest that class 
inequality (imbalance) is not often taken into account and 
evaluation outcomes are usually misinterpreted. The work of 
Saito and Rehmsmeier (2015) highlights the use of PRC plots as 
much more sensitive over ROC when datasets under 
consideration exhibit high inequality between the positive and 
negative classes.  

3.1 Receiver Operating Characteristics (ROC) curves 

The ROC plots have been used for a long time in various 
applications for visualising and determining suitable classifier 
based on their performance (Fawcett, 2006). The evaluation 
metric is widely used for classification problems due to its 
simplicity and straightforward interpretation. 

When dealing with binary classification, the instances are 
distributed into two main classes – positives and negatives. The 
applied classifier is then putting the outcomes into the possible 
classes of positives and negatives. All the outcomes can be 
summed into a confusion matrix, which is visually representing 
the performance of the algorithm (Figure 6). The construction of 
a ROC plot is based on the information contained in a confusion 
matrix. 

    Actual values 
    Positive Negative 

Pr
ed

ic
te

d 
va

lu
es

 Positive True 
Positive 

False 
Positive 

Negative False 
Negative 

True 
Negative 

Figure 6. Confusion matrix 

To build the ROC plot two parameters are needed, which are 
easily computed from the confusion matrix: sensitivity (true 
positive rate) and specificity (true negative rate), described in 
Equations 5: 

,  TP TNsensitivity specificity
TP FN TN FP

      (5) 

 
Visually analysing a ROC plot is not sufficient enough. To 
measure a classifier performance is more meaningful to assign a 
qualitative value. As such, computation of the Area Under the 
Curve of ROC plot acts as a valuable interpretation of the ROC 
plot and model behaviour. An area larger than 0.5 is accepted as 

a classification produced on a model basis, while less than 0.5 is 
considered as a random classification. A perfect classification is 
considered when the area is equal to 1. 

3.2 Precision Recall Curve (PRC)  

Similarly to ROC curves, the PRC relies on the confusion matrix 
and the sensitivity (which is equal to the recall). On the other 
hand, the PRC is a quantifier of the positives classes. The 
precision is computed through Equation 6: 

TPprecision
TP FP

    (6) 

 
As it can be seen from the way it is constructed, it is clear that 
PRC is not using the TrueNegative, which in most of the 
classification models are the majority of the classification 
outputs. Therefore, even when introduced imbalanced datasets, 
the metric is not affected by them. 

To use PRC as an evaluation, again the area under the curve can 
be computed and area of 1 is considered as a perfect classifier. In 
the case of AUCROC, the threshold for a classifier is 0.5, 
however, in the case of AUCPRC the threshold is computed 
based on the ratio between the predicted positives and negatives 
(Equation 7). Only in the cases where the input data is balanced, 
0.5 is actually the threshold. Therefore, the interpretation of the 
AUCPRC is not as straightforward as in the case of ROC. 

THRESHOLD
PPRC

P N
    (7) 

4. VALIDATION RESULTS 

From the modelling point of view, the visual interpretation of 
susceptibility maps is not a sufficient approach to determine the 
performance of the classification models. The metrics discussed 
in  Section 3 were applied for all the susceptibility maps (Figures 
3-5). In addition, to AUCROC and AUCPRC, the Cohen’s kappa 
coefficient and the overall accuracy were computed. A summary 
of the obtained results is represented in Figure 7, where the fitting 
and predictive performances are reported. 

An initial comparison of the AUCROC and AUCPRC model fit 
evaluations can note that all of the metrics are in overall 
agreement among them. Moreover, they are highlighting the 
poorer performance of the model produced through SI 
(AUCROC=0.59; AUCPRC=0.52), while the visual uncertainty 
between the LR (AUCROC=0.67; AUCPRC=0.80) and RF 
(AUCROC=1.00; AUCPRC=1.00) is disproved, and RF is 
exhibiting excellent results. Those findings are confirmed also by 
the kappa and overall accuracy, where the kappa’s extremums 
are at SI (-0.013) and RF (1.00). 

As expected, the predictive performance metrics exhibit lower 
values than the model fit. However, the overall trend in the model 
performances is kept – the worst case being the SI 
(AUCROC=0.61; AUCPRC=0.61), and the best using RF 
(AUCROC=0.89; AUCPRC=0.89). 

To verify the model performances, the ROC and PRC metric 
values should be compared to their actual threshold – whether the 
classification is done on a model basis or at random chance. For 
the case of AUCROC the threshold is 0.5, while in the case of 
AUCPRC it should be computed according to Equation 7 for each 
case. The PRC thresholds are reported in Figure 9 for the relevant 
cases. 
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Figure 7. Summary of the model evaluations 

 
All of the produced models exhibit AUCROC > 0.5, therefore 
they can be considered as successful outputs (disregarding the 
level of performance). Again, the worst performance corresponds 
to SI (AUCROC=0.59 Figure 7a) and on the opposite 
AUCROC=1.00 is yielded by RF. 

On the other hand, the conclusions on the model performances 
differ when analysing the AUCPRC. The two classifications 
done through LR and RF are above their thresholds, which is in 
agreement with AUCROC. While in the case of SI, the model fit 
is not above the threshold of 0.65 and the predictive performance 
is exactly on it (0.61). Combining these results with the values of 

kappa, overall accuracy and the geomorphologic plausibility, the 
conclusion is that the classification done through SI cannot be 
accepted as a landslide susceptibility map.  

The explanation for the different conclusions between the 
AUCROC and AUCPRC, can be found in the ratios between the 
positives and negatives values in the classifications, represented 
as pie charts. In the cases of LR and RF the classes are almost 
balanced, with the exception of the predictive performance of the 
RF (Figure 7f), where the higher portion is covered by the 
negatives. On the other hand, the pie charts for SI (Figures 7a, b) 
are highlighting imbalance but with a higher weight of the 

  

  

  

64.95%

35.05%

a) Statistical Index - Model Fit Performance

Positives
Negatives

Kappa = -0.13
Acc = 0.43

AUCROC = 0.59
AUCPRC = 0.52

PRC Threshold = 0.65

61.27%

38.73%

b) Statistical Index - Model Predictive 
Performance

Positives
Negatives

Kappa = 0.22
Acc = 0.61

AUCROC = 0.61
AUCPRC = 0.61

PRC Threshold = 0.61

47.87%
52.13%

c) Logistic Regression - Model Fit Performance

Positives
Negatives

Kappa = 0.61
Acc = 0.81

AUCROC = 0.67
AUCPRC = 0.80

PRC Threshold = 0.48

52.54%
47.46%

d) Logistic Regression - Model Predictive 
Performance

Positives
Negatives

Kappa = 0.58
Acc = 0.79

AUCROC = 0.79
AUCPRC = 0.80

PRC Threshold = 0.53

49.99%
50.01%

e) Random Forest - Model Fit Performance

Positives
Negatives

Kappa = 1.00
Acc = 1.00

AUCROC = 1.00
AUCPRC = 1.00

PRC Threshold = 0.50
41.23%

58.77%

f) Random Forest - Model Predictive 
Performance

Positives
Negatives

Kappa = 0.78
Acc = 0.89

AUCROC = 0.89
AUCPRC = 0.89

PRC Threshold = 0.41
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positives. As mentioned before, the last two observations are 
important because the PRC is a quantifier of the positive class 
and therefore the positives will have more influence. On the other 
hand, the ROC is not influenced by such inequalities and it is 
considering the SI output as a successful classification. 

The confusion matrices in Table 1 are providing clearer 
explanation of the imbalance in the positives and negatives. 

  Model Fit   Model Predictive 
SI Actual values   Actual values 

Pr
ed

ic
te

d 
va

lu
es

 29134 35813   36257 25011 

20866 14187   13743 24989 

LR Actual values   Actual values 

Pr
ed

ic
te

d 
va

lu
es

 39186 8681   40787 11752 

10814 41319   9213 38248 
RF Actual values   Actual values 

Pr
ed

ic
te

d 
va

lu
es

 49981 6   40037 1190 

19 49994   9963 48810 

Table 1. Confusion matrices for the three models 

The imbalance of the positives in the SI model is due to the high 
count of FalsePositives, coupled with high FalseNegatives and 
then it is even clearer the incapability of the current model to 
classify correctly the area under study. 

The imbalance in the model prediction of the RF can be easily 
explained also through the related confusion matrix and the 
TrueNegatives. The landslides are natural phenomena that even 
though they are widely spread and can occur in different 
locations, under different conditions, they are still affecting 
minor percentage of Earth’s surface; the areas that are not 
affected by landslide or that will not be, are much larger. 
Therefore, such an imbalance where the instances are classified 
as TrueNegatives, is more natural to be expected and correct. 

As mentioned in Section 1, in total 79 susceptibility maps were 
produced, using different modelling approaches and input 
combinations. While in the current paper just a fraction of them 
were discussed, an overall average modelling behaviour for the 
rest of the models is summarized in Figure 8. It should be noted 
that the insensibility  

 
Figure 8. Average Model Fit Performance 

 

of AUCROC towards the imbalanced datasets was more evident 
in the SI produced models, rather than LR and RF. The effect is 
notable both in the detailed validations of the current work 

(Figure 7a, b) and in the overall model performance comparison 
in Figure 8. 

It should be noted that even though the SI example in this study 
did not exhibit positive outcomes (ref. Figure 7a, b), other maps 
produced with SI under different conditions and included in the 
overall model comparison (Figure 8), yielded more positive 
results. Consequently, SI should not be definitely excluded as a 
suitable model and can be used for susceptibility mapping, even 
if taking into account its lower performance compared to LR and 
RF.  

5. CONCLUSIONS 

In the current work three modelling approaches for mapping 
landslide susceptibility were presented. They were assessed by 
means of two different evaluation metrics: ROC and PRC. The 
ROC is widely implemented in hazard mapping, in most of the 
cases without further in-depth analysis of the evaluation values. 
It is an accepted metric and it is used mainly due its simplicity in 
interpreting its output. However, it was criticized as an approach 
due to it  insensitiveness (Fawcett, 2006; Saito and Rehmsmeier, 
2015) to imbalance between positive and negative instances of 
datasets. This inequality often arises due to the natural setting of 
phenomena under consideration. Therefore, the misinterpreting 
of the outcomes, which sometimes noticeably do not represent 
the truth, can lead to a false sense of secure and success, which is 
in the domain of risk mitigation can be considered as a huge error.  

In the meantime, the work highlighted the use of PRC plots that 
can be considered as even more suitable for susceptibility 
mapping, by themselves or in combination with other indices. In 
the paper, the misinformation that the use of the ROC could 
provide in landslide susceptibility mapping was highlighted and 
the PRC, which yields more accurate results disregarding 
whether the dataset is perfectly balanced or imbalanced, was 
proposed as an alternative. 

Far from saying that the PRC metric can be seen as the only and 
most accurate metric, the suggestion provided as a conclusion of 
our work is rather to use a set of tools and analyses to correctly 
evaluate susceptibility maps. In the presented study additional 
metrics and geomorphologic analyses of the produced 
susceptibility maps were included and it was highlighted the 
advantage of PRC over ROC for evaluating landslide hazard 
maps, even though its interpretation is not as straightforward as 
for the ROC. 
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