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ABSTRACT: 

 

Images with large volumes are generated daily with the advent of advanced sensors and platforms (e.g., satellite, unmanned 

autonomous vehicle) of data acquisition. This incurs issues on the storage, processing, and transmission of images. To address such 

issues, image compression is essential and can be achieved by lossy and/or lossless approaches. With lossy compression, a high 

compression ratio can usually be achieved but the original data can never be completely recovered. On the other hand, with lossless 

compression, the original information is well reserved. Lossless compression is very desirable in many applications such as remote 

sensing, geological surveying. Shannon's source coding theorem has defined the theoretical limits of compression ratio. However, 

some researchers have discovered that some compression techniques have achieved a compression ratio that is higher than the 

theoretical limits. Then, two questions naturally arise, i.e., “When this happens?” and “Why this happens?”. This study is dedicated to 

giving answers to these two questions. Six algorithms are used to compress 1650 images with different complexities. The experimental 

results show that the generally acknowledged Shannon’s coding theorem is still good enough for predicting compression ratio by the 

algorithms with consideration of statistical information only, but not capable of predicting compression ratio by the algorithms with 

consideration of configurational information of pixels. Overall, this study indicates that new empirical (or theoretical) models for 

predicting lossless compression ratio can be built with metrics capturing configurational information. 

 

 

1. INTRODUCTION 

Images with large volumes are generated daily with the advent of 

advanced sensors (e.g., high spatial and spectral resolutions) and 

platforms (e.g., satellite, unmanned autonomous vehicle, and 

mobile devices) of data acquisition. This incurs a big headache 

on the storage, processing, and transmission of images. To solve 

such a problem, image compression is essential and thus has 

become an essential research topic in the remote sensing 

community. In General, image compression can be achieved by 

lossy and/or lossless approaches. Lossy compression usually 

achieves a high compression ratio, while the original data can 

never be completely reconstructed. On the other hand, with 

lossless compression, information is completely reserved though 

a lower compression ratio is achieved. Compared with lossy 

compression, lossless compression is very desirable in many 

applications such as remote sensing, geological surveying, 

cartography, and medical imaging. 

 

Owing to the remarkable efforts devoted by researchers from 

different fields, lots of lossless compression techniques have 

been developed. Those techniques are various in terms of 

performances (e.g., compression ratio, compression cost, 

compression time). It is interesting to point out that the 

compression ratio has attracted much attention from investigators 

of compression techniques. Shannon’ source coding theorem 

(Shannon 1948) originated in the field of telecommunication has 

already defined the upper and lower limits of compression ratio. 

From the theoretical point of view, Shannon’s coding theorem 

works well for some early compression techniques based on 

statistical coding principles. That is, the statistical information 
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(i.e., the proportion & values) of image pixels is utilized to 

compress an image. However, some researchers (Tavakoli, 1993, 

Larkin, 2016) have discovered that some compression techniques 

have achieved a compression ratio that is higher than the 

theoretical limit defined by Shannon's source coding theorem. In 

this respect, two questions naturally arise, i.e., “When this 

happens?” and “Why this happens?”. As a result, this study is 

dedicated to giving answers to these two questions and indicating 

the implausible research topics in the future. 

 

2. SHANNON’S CODING THEOREM AND IMAGE 

COMPRESSION 

Traditionally, Shannon source coding theorem (Shannon, 1948) 

clearly states that the average code length (refers to Lav) we can 

best achieve is as follows: 

 

𝐻 ≤ 𝐿𝑎𝑣 < 𝐻 + 1 (1) 

  

where H represents the Shannon entropy of an image.  

 

Shannon entropy measures the uncertainty in a random variable 

and is calculated with the occurrence probability of individual 

gray level. 

 

𝐻 = −∑ 𝑃(𝑟𝑖) log 𝑃(𝑟𝑖)

n

𝑖=1

(2) 

 

Where 𝑟𝑖 denotes the gray level; P(𝑟𝑖) is its occurrence probability 

within an image; log(∙) denotes the logarithm to base (e.g., 2, 10).  
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In practice, the units of information are decimal units when the 

logarithm to bases 10 is used; that of information become bits 

when the logarithm to base 2 is used. For a binary image, the 

logarithm base to 2 shall be employed. 

 

Regarding the average codeword length, its calculation formula 

is as follows: 

 

𝐿𝑎𝑣 = −∑ 𝑃(𝑟𝑖) × 𝑙(𝑟𝑖)

n

𝑖=1

(3) 

 

Where l(𝑟𝑖) is the length of the codes for gray level 𝑟𝑖. 

 

To explain Shannon entropy and average codeword length, an 

example shown in Table 1 is employed, in which H is 2.2 bits per 

pixel and Lav is 2.4 bits per pixel. This case complies with 

Shannon’s coding theorem. 

r𝑖 P (𝑟𝑖) Code l (𝑟𝑖) P (𝑟𝑖)× l (𝑟𝑖) 

12 0.36 11 2 0.72 

15 0.24 01 2 0.48 

16 0.15 10 2 0.30 

17 0.13 111 3 0.39 

18 0.12 1110 4 0.48 

Table 1 An example of average codeword length 

Shannon’s coding theorem is graphically shown in Figure 1. We 

can easily find that the range between the upper bound and the 

lower bound is unchanged along with the increase in the Shannon 

entropy value. 

 

Figure 1. Shannon’s source coding theorem on the average 

codeword length 

In practical compression projects, it is not always able to 

calculate the average codeword length. However, the 

compression ratio (refers to CR) can be easily calculated. 

Therefore, when Shannon’s coding theorem is applied to image 

compression, supposing each pixel of the original image is 

encoded with a byte (8 bits), it can be converted into as follows: 

 
8

𝐻+1
<  𝐶𝑅 ≤

8

𝐻
(2) 

  

where CR is the ratio of bytes for storing the original data and that 

for storing the compressed data. 

 

At this point, the plots shown in Figure 1 are thus converted into 

plots shown in Figure 2. It is obvious that the theoretical upper 

and lower limits are inversely proportional to Shannon entropy 

of an image. This is dependent on the amount of information 

contained in an image. Moreover, we can easily find that the 

range between the upper bound and lower bound of CR become 

wider and wider along with the reduction in the Shannon entropy 

value. According to Shannon’s coding theorem, when the 

Shannon entropy value approaches 0, the theoretical maximum 

compression ratio is infinitely large. 

 

Figure 2. Shannon’s source coding theorem on compression ratio 

3. METHODS AND DATA 

In this study, a preliminary investigation is reported into the 

validity of Shannon's source coding theorem for predicting 

lossless compression ratio by different lossless image 

compression techniques. To conduct such evaluation 

experiments, typical compression techniques are selected in 

accordance with two categories, i.e., (a) with consideration of 

statistical information only and (b) with consideration of 

configurational information, based on our assumption that 

Shannon’s source coding theorem will become invalid in the 

prediction of compression ratio when an algorithm takes into 

account not only the statistical information but also the 

configurational information of image pixels in that the Shannon 

entropy is able to capture only the statistical information of image 

pixels but not the configurational information (Gao et al. 2018). 

At this sense, we selected three algorithms, i.e., Shannon coding 

(Shannon, 1948), Huffman coding (Huffman 1952), and 

Arithmetic coding (Rissanen, Langdon, 1979) from category (a), 

and three algorithms, i.e., LZMA (Ziv, Lempel, 1977), JPEG-LS 

(Richter, Ogawa, 1999 Weinberger et al. 2000) and Deflate (Ziv, 

Lempel, 1977, Deutsch, 1996) from category (b).  

 

Figure 3 shows the general processes for generating data sets by 

those algorithms. More specifically, a total of 1650 images with 

 

Figure 3 The flowchart of generating data sets 
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different complexities were extracted from the open accessed 

image dataset called “NWPU-RESISC45” (Cheng et al., 2017). 

Concretely, the first 150 images were extracted in accordance 

with each of the first 11 scene classes in this dataset. Only 

grayscale images were involved in this study. Thus, red bands of 

those images were used and compressed to generate the 

compression ratio datasets which were then compared with the 

theoretical upper bound defined by Shannon’s coding theorem. 

4. RESULTS AND ANALYSIS 

This section shows the experimental results by all selected 

techniques. Concretely, Figure 4, Figure 5 and Figure 6 

respectively show the scatter plots of Shannon entropy against 

compression ratio obtained by Shannon coding, Huffman coding 

and Arithmetic coding. 

 

Figure 4. Theoretical bounds of Shannon’s theorem and the 

scatter plot of H against CR obtained by Shannon coding 

 

Figure 5. Theoretical bounds of Shannon’s theorem and the 

scatter plot of H against CR values obtained by Huffman coding 

We can easily find that Shannon’s source coding theorem is good 

enough for predicting such lossless compression ratio. 

Concretely, a high correlation between H and those compression 

ratios can be easily discovered. The compression ratios by 

Shannon coding fall within the upper bound and the lower bound 

defined by Shannon entropy. Note that Huffman coding achieves 

compression ratios that are very closed to the upper bound. It is 

worth noting that Arithmetic coding is the most powerful in 

comparison with the other three algorithms from category (a) in 

that its resulted achieved compression ratios have reached 

Shannon’s coding bound. As far, all experimental results comply 

with Shannon’s coding theorem. 

 

Figure 6. Theoretical bounds of Shannon’s theorem and the 

scatter plot of H against CR values obtained by Arithmetic coding 

However, when algorithms (i.e., LZMA, Deflate and JPEG-LS) 

considering structural information of pixels are utilized to 

compress images, the resulting compression ratio values 

significantly surpass the upper bound given by Shannon’s coding 

theorem. This can be seen in Figure 7, Figure 8, and Figure 9. 

Moreover, some compression ratio values are much higher than 

the upper bound as LZMA, JEPG-LS and Deflate utilize the 

structures of image pixels to achieve compression. This means 

that Shannon’s coding theorem is invalid when contexts and 

structures of image pixels are considered to compress an image. 

Meanwhile, we can discover that no obvious relationships 

between H and CR by JEPG-LS can be discerned. It is noticed 

that JPEG-LS and Deflate are not able to completely exceed the 

bounds by Shannon’s coding theorem since some compression 

ratio values fall within the upper and the lower bound. This is 

true as the same compression technique perform differently upon 

different images.  

 

As mentioned above, Shannon’s coding theorem is ineffective for 

predicting lossless compression ratio by those techniques that 

consider the structural information of pixels. In fact, those 

techniques utilize the inter-pixel redundancy to compress data, 

achieving a high compression ratio that is higher than Shannon’s 

coding bound.  

 

Figure 7. Theoretical bounds of Shannon’s theorem and the 

scatter plot of H against CR obtained by LZMA  
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Figure 8. Theoretical bounds of Shannon’s theorem and the 

scatter plot of H against CR obtained by JPEG-LS 

 

Figure 9. Theoretical bounds of Shannon’s theorem and the 

scatter plot of H against CR obtained by Deflate 

To further decipher the distribution pattern of compression ratio 

obtained by LZMA, JEPG-LS and Deflate, Kernel Density 

Estimation (KDE) (Terrell, Scott, 1992, Botev et al. 2010) is 

employed here. Three such plots are shown in Figure 10, Figure 

11 and Figure 12. Indeed, most compression ratio values are 

located within an interval, i.e., 1.0 to 2.5. This is due to the range 

 

Figure 10. Distribution plot of CR obtained by LZMA  

 

Figure 11. Distribution plot of CR obtained by JPEG-LS  

 

Figure 12. Distribution plot of CR obtained by Deflate. 

of Shannon entropy values of images is not enough wide. 

The generally acknowledged Shannon entropy is also called first-

order Shannon entropy since it is calculated with the occurrence 

probability of individual grey level. In fact, Shannon (1948) has 

already proposed the definition of different order Shannon 

entropies. The definitions of first- and second-order Shannon 

entropies are as follows: 

First-order approximation has independent symbols with 

different probabilities. 

Second-order approximation has symbol pairs with known 

probabilities. 

For the image shown in Figure 13, its second-order Shannon 

entropy is calculated as 2.9 bits per pixel according to the gray-

level pair probabilities tabulated in Table 2. 

 

Figure 13 A 6×6 grayscale image 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1313-2020 | © Authors 2020. CC BY 4.0 License.

 
1316



 

Gray-level pair Count Probability 

(11, 11) 8 8/30 

(11, 10) 4 4/30 

(10, 10) 1 1/30 

(10, 11) 5 5/30 

(254, 254) 3 3/30 

(254,109) 1 1/30 

(109, 109) 1 1/30 

(109, 254) 1 1/30 

(244, 244) 5 5/30 

(254, 11) 1 1/30 

Table 2 Occurrence probabilities of gray-level pairs for the image 

shown in Figure 13 

With the definition of higher-order Shannon entropies, 

corresponding upper bounds are shown in Table 3 where NA 

means “unavailable”. Higher-order Shannon entropies consider a 

few structures of pixels. Thus, they are more powerful than first-

order Shannon entropy.  

Order Symbol Upper bound Lower bound 

 

1 

 

H 
8

H
 

8

H + 1
 

 

2 

 

H2 
16

  H2
 

 

NA 

 

3 

 

H3 
24

  H3
 

 

NA 

 

n 

 

Hn 
8 × n

  Hn
 

 

NA 

Table 3 Higher-order Shannon entropies and bounds for an 8-bits 

image 

When the second-order Shannon entropy is utilized to evaluate 

Shannon’s theorem in the prediction of lossless compression 

 

Figure 14 The upper bound by H2 and scatter plot of H2 against 

CR obtained by LZMA 

 

Figure 15 The upper bound by H2 and scatter plot of H2 against 

CR obtained by JPEG-LS 

 

Figure 16 The upper bound by H2 and scatter plot of H2 against 

CR obtained by Deflate 

ratio, the results are graphically described in Figure 14, Figure 15 

and Figure 16. Obviously, second-order Shannon entropy is more 

powerful than first-order Shannon entropy as more compression 

ratio values are below the upper bound, as shown in Figure 16. 

Nevertheless, second-order Shannon entropy is still invalid for 

predicting lossless compression ratio. From the theoretical point 

of view, higher-order Shannon entropies are not able to 

completely capture structure information of pixels as they only 

consider the 1D structure of pixels, not the 2D structures and 

contexts. Thus, they are destined to be ineffective for predicting 

compression ratio by techniques considering structures or 

contexts of pixels 

5. DISCUSSION 

Shannon’s coding theorem is based on Shannon entropy. As a 

kind of entropy capturing the statistical information of pixels, 

Shannon entropy is not useful for describing structural 

information. Four images shown in Figure 17 are with the same 

composition. Thus, the same Shannon entropy values (i.e., 7.6 

bits per pixel) are calculated for four images shown in Figure 17. 

In this respect, we can discover that Shannon entropy is 

questionable for distinguishing images. This can be used to 

explain why Shannon’s source coding theorem is ineffective for 
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predicting lossless compression ratio by techniques that consider 

structure information of pixels. 

   

(a)                                          (b) 

   

(c)                                          (d) 

Figure 17 grayscale images with the same composition 

information (i.e., same Shannon entropy values), but different 

configurational information. 

However, it is noted that Shannon’s source coding theorem is 

always effective when it applies under the circumstance that 

redundancies between pixels have been well removed or 

modelled. Nevertheless, we are not likely to completely remove 

redundancies before using techniques (e.g., Huffman coding, 

Shannon coding) that consider compositional information to 

fulfil the requirement of applying Shannon’s theorem. In 

practical projects, the bandwidth and storage sources are limited. 

In this respect, we need to know the theoretical maximum 

compression ratio for a specified image in order to allocate 

feasible storage sources. Based on the results and analysis 

described in Section 4, we can infer that image metrics capturing 

configurational information of image pixels, e.g., Boltzmann 

entropy (Gao et al. 2017) can be investigated upon whether they 

can be used to predict lossless compression ratio. 

In this study, mosaic images and black-white images are not 

involved. It is noted that gray-level values are homogeneous 

within a region of such images. Figure 18 (a) shows an image 

composed of blocks of pixels. In each block, gray-level values 

are the same. When we use techniques to compress those images, 

the calculation of compression ratio is an issue. Moreover, the 

information content of such images should be quantitatively 

measured. Of course, Shannon entropy is not suitable for such a 

task. We need to employ other metrics to measure the 

compositional and configurational information contained in such 

images. Regarding the image shown in Figure 18 (b), the 

structures of pixels are not regular. Issues of measuring the 

information content of such images are also needed to be 

addressed. In the meantime, theoretical models for predicting 

lossless compression ratios of such images are also required. 

 

(a) 

 

(b) 

Figure 18 Two images from USC-SIPI-Textures data set (Weber 

2004) 

6. CONCLUSION 

This study first introduces the Shannon’s source coding theorem 

and image compression. Thereafter, methodologies and data used 

for evaluating the performance of Shannon’s theorem are 

presented. Experimental results and analysis show that 

Shannon’s coding theorem is not effective anymore for 

predicting lossless compression ratio obtained by techniques 

considering configurational information of pixels. This is true in 

the context where inter-pixel redundancies are not been removed 

or well modelled. Shannon entropy is calculated with only 

consideration of the occurrence frequency of individual gray-

level. This means that Shannon entropy is blind to the contexts 

and structures of image pixels, whereas they are very important 

to help achieve a high compression ratio. At this sense, new 

empirical (or theoretical) models based on image metrics 

capturing configurational information can be built to guide the 

development of compression techniques and to help users choose 

suitable techniques for compressing images in order to save the 

storage space. 
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