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ABSTRACT:

The current study focuses on the estimation of cloud-free Normalized Difference Vegetation Index (NDVI) using the Synthetic Aperture
Radar (SAR) observations obtained from Sentinel-1 (A and B) sensor. South-West Summer Monsoon over the Indian sub-continent
lasts for four months (mid-June to mid-October). During this time, optical remote sensing observations are affected by dense cloud
cover. Therefore, there is a need for methodology to estimate state of vegetation during the cloud cover. The crops considered in
this study are Paddy (Rice) from Punjab and Haryana, whereas Cotton, Turmeric, and Banana from Andhra Pradesh, India. We have
considered, observations of Sentinel-1 and Sentinel-2 sensors with the same overpass day and non-cloudy pixels for each crop. We used
Google Earth Engine to extract surface reflectance for the Sentinel-2 and Ground Range Detected (GRD) backscatter for Sentinel-1.
The Red and NIR bands of Sentinel 2 were used to estimate NDVI. Sentinel-1 based VV, and VH backscatter was used for estimation of
Normalized Ratio Procedure between Bands (NRPB). Regression analysis was performed by using NDVI as an independent variable,
and VV, VH, NRPB, and radar incidence angle as dependant variables. We evaluated the performance of Linear regression with tuned
Support Vector Regression (SVR) as well as tuned Random Forest Regression (RFR) using the independent data. Results showed that
the RFR produced the lowest RMSE for all the crops in the study. The average RMSE using the RFR was 0.08, 0.09, 0.11, and 0.10
for Rice, Cotton, Banana, and Turmeric, respectively. Similarly, we have obtained R2 values of 0.79, 0.76, 0.69, and 0.71 for the same
crops using the RFR. A model with 80 trees produced the best results for Rice and Cotton, whereas the model with 90 trees produced
the best results for Banana and Turmeric. Analysis with NDVI threshold of 0.25 showed improved R2 and RMSE. We found that for
grown crop canopy, SAR based NDVI estimates are reasonably matching with the optical NDVI. A good agreement was observed
between the actual and estimated NDVI using the tuned RFR model.

1. INTRODUCTION AND STATE OF THE ART

Continuous regional crop mapping and monitoring is essential es-
pecially in countries like India to keep a track on spatio-temporal
coverage of various crops. This information can be consumed
by various stakeholders like the government for the planning of
various import-export activities, agri-input companies for facili-
tation of various fertilizers/chemicals, farmers to get the status of
their crop in real-time (Mohite et al. (2018)). Satellite based re-
mote sensing sensors are being effectively used over the years for
continuous crop mapping and monitoring. Such methods are al-
ways preferred over manual surveys due to efficiency in terms of
time, accuracy, spatial coverage, etc. Space exploration agencies
such as the Indian Space Research Organization and international
agencies such as the National Aeronautics and Space Adminis-
tration (NASA), European Space Agency (ESA) have launched
multiple Optical (IRS, Landsat 5,7,8, MODIS Terra, Aqua, Sen-
tinel 2) as well as Synthetic Aperture Radar (RISAT-1, Sentinel
1) satellites. These satellites are extensively being used for crop
mapping and monitoring.

Optical satellites provide rich spectral information in multiple
wavelength bands which offer advantages for various agricul-
ture applications such as crop type identification (Mohite et al.
(2018)), crop monitoring, crop loss assessment (Sawant et al.
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(2019)), yield estimation (Mohite et al. (2019)), etc. Various
methods based on the vegetation indices have been proposed in
the past for agricultural applications. The Normalized Difference
Vegetation Index (NDVI) is one of the widely used vegetation in-
dex (Rouse et al. (1974)). NDVI is derived using the Red and
Near Infrared (NIR) bands of optical satellites such as Sentinel-
2, Landsat-8, MODIS Terra and Aqua, etc. However, loss of
information due to the presence of clouds in the optical dataset
restricts its utilization to its maximum extent. In India, Kharif
season is the main cropping season which starts in mid-June with
the onset of the Indian Summer Monsoon (ISM) and extends up-
to November. During this season Indian sub-continent is mostly
covered with the dense clouds.

Numerous attempts have been made for the cloud removal and
cloud induced gap filling in the optical data using the time-series
information and information available in the neighborhood pix-
els (Roerink et al. (2000); Padhee and Dutta (2019); Adam et
al. (2018)). Nonetheless, the cloud removal process is useful in
the presence of thin clouds and can be performed effectively but
such process can not be considered successful in the case of thick
clouds. Also, these methods can not be very useful in India dur-
ing the Kharif season (June-October) when there is thick cloud
cover over most of the season. Alternatively, the Synthetic Aper-
ture Radar (SAR) sensor can collect continuous data in cloudy
conditions as well as during day/night. Hence, synergistic use
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of optical and SAR sensor observations can generate the con-
tinuous stream of NDVI time-series for vegetation monitoring.
Studies have attempted to estimate the NDVI using SAR obser-
vations (Capodici et al. (2013); Davidse (2015); Filgueiras et al.
(2019); Mazza et al. (2018); Navarro et al. (2016); Vreugdenhil
et al. (2018)). Capodici et al. (2013) have shown that temporal
changes of HV backscatter acquired with off-nadir angle greater
than 40 degree best correlates with variations in the vegetation
index from optical data. The study has a dependency on histor-
ical optical and SAR observations. Frison et al. (2018) showed
a strong relationship between Sentinel-1 backscatter and vege-
tation phenology derived from Landsat-8. Mazza et al. (2018)
have developed a CNN based model to derive NDVI from SAR
data. Filgueiras et al. (2019) established the regression-based re-
lationship between Sentinel-1 SAR and NDVI from Sentinel-2
to derive the continuous cloudless NDVI for Soybean and Maize
(Corn). The study was focused on adjacent fields from a small
area. Limitations of the research studies are a) the dependency
on data from optical sensors for model development, b) methods
are limited to certain incidence angles, c) heterogeneity in the
spatial and temporal resolution of the SAR and Optical observa-
tions and d) geographical coverage for the model development.
The current study focuses on the estimation of cloud-free NDVI
using the SAR observations obtained from Sentinel-1 sensor. The
proposed method explores the Linear Regression (LR), Support
Vector Regression (SVR) and Random Forest Regression (RFR)
for estimation of NDVI using SAR observations. The study was
conducted during the Kharif season of the year 2019 for two re-
gions of India.

2. MATERIALS AND METHODS

2.1 Study Area

The analysis was performed over two Indian regions namely, Andhra
Pradesh and Punjab-Haryana. The study regions are situated in
India’s southern and northern parts respectively. The crops con-
sidered in this study are Paddy from Punjab and Haryana state.
Punjab and Haryana are one of the major paddy producing belt
in India. Cotton, Turmeric and Banana crops considered from
Andhra Pradesh, India. Figure 1 shows the two locations where
the geotagged field data has been collected.

Figure 1. Study Area

2.2 Datasets Used

In this study we have used Sentinel-1 and Sentinel-2 satellite im-
agery, ground truth data collected from the field visits.

2.2.1 Sentinel-2 Data and Preprocessing ESA launched the
constellation of optical satellite Sentinel-2 A and B which pro-
vides the earth observation in 10, 20 and 60 meter spatial res-
olution at five days repeat period (ESA (2020b)). Observations
provided by Sentinel 2 are available in the 13 spectral bands
mainly visible and NIR at 10 meters, red edge and SWIR at
20 meters, and atmospheric bands at 60 meters spatial resolu-
tion, respectively. For research purposes, Google Earth Engine
cloud platform (Gorelick et al. (2017)) provides the collection
of time-series Sentinel 2 Level-2A orthorectified atmospherically
corrected surface reflectance data. In the present study, the data
in Red and NIR bands was accessed from GEE to estimate the
NDVI. Table 1 shows the location specific availability of Sentinel-
2 data overlapping (or 1 day difference) with the Sentinel-1 over-
pass date. First number in the pair (1) shows the Sentinel-1 over-
pass date, however second number represents Sentinel-2 overpass
date. Pixels with no cloud cover were considered for model de-
velopment. NDVI threshold is used for obtaining the cloud-free
pixels.

2.2.2 Sentinel-1 Data and Pre-processing Sentinel-1 satel-
lite mission launched by ESA also has a constellation of two
satellites 1-A and 1-B (ESA (2020a)). Data has been captured
in dual-polarization by C-band Synthetic Aperture Radar. Satel-
lite provides the observations at 5 meter in range and 20 me-
ter in azimuth direction with 6 days repeat period. GEE (Gore-
lick et al. (2017)) has a collection of S1 Ground Range Detected
(GRD) scenes, processed using the Sentinel-1 Toolbox to gener-
ate a calibrated, ortho-corrected product. The GRD product has
been generated by pre-processing the scenes for thermal noise re-
moval, radiometric calibration and terrain correction (Filipponi
(2019)). Sentinel-1 C-band SAR has all weather, day-night ca-
pability hence all the observations available during the growing
season are useful for the analysis. We have accessed backscatter
information in VV, VH polarization along with local incidence
angle. Normalized Ratio Procedure between Bands (NRPB) was
estimated using VV and VH backscatter using equation 1 and
used in the analysis as one of the variables.

NRPB =
σV H − σV V

σV H + σV V
(1)

2.2.3 Ground truth data from field visits We have devel-
oped an android mobile application RuPS (Mohite et al. (2015))
for collection of field geo-coordinates and reporting various agri-
cultural activities and events. For the current research, geo-tagged
locations of the fields, crop cultivated on the field, its sowing or
planting date and estimated harvest date were collected using the
RuPS. Table 2 shows the number of plot boundaries collected for
each crop and the total number of pixels associated with those
crops.

2.3 Overall Approach

Each crop has a different crop season length therefore based on
crop sowing and estimated harvest date concerning the region, we
have considered NDVI and SAR data. For each crop and plot, we
have identified the same satellite overpass dates and data with 1
day difference for Sentinel-1 and 2 and only that data was consid-
ered in the analysis. Data on all other dates were ignored to avoid
noise and have the same reference. Plots were scattered all over
the region to account for the regional variations of crop growth.
The problem was devised as a regression analysis to establish
the relationship between NDVI as an independent variable using
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SN Month Cotton/Banana/Turmeric Rice

1 June 17-18, 29-30 -

2 July - 12, 16-17, 23-22, 28-27

3 Aug 4, 28-29 5-6, 12-11, 16, 21, 28

4 Sept 9-8 5, 10, 14-15, 21-20, 26-25

1 Oct 3, 27-28 -

Table 1. Month and crop-wise availability of Sentinel-1 and 2 observations

SN Crop No.of
Fields

Total Pixels

1 Cotton 56 14988

2 Banana 58 16438

3 Turmeric 37 11352

4 Rice 78 24544

Table 2. Summary of crop-wise field observations

the dependant variables from SAR data. VV, VH backscatter, lo-
cal incidence angle and NRPB were considered as the dependant
variables. We tested the two scenarios (Table 3) using the Linear,
Support Vector and Random Forest regression. Support vector
and Random Forest regression models were tuned to get the best
performance on validation data.

Scenario Features Used NDVI

Sc1 VV, VH, Incidence An-
gle, NRPB

All NDVI

Sc2 VV, VH, Incidence An-
gle, NRPB

NDVI greater
than 0.25

Table 3. Various Scenarios Considered for Regression Analysis

3. RESULTS AND DISCUSSION

To carry out the regression analysis, we have extracted the data of
NDVI, VV, VH, incidence angle and NRPB for all the pixels as-
sociated with individual crops. Crop-wise models are developed
for NDVI estimation. For each crop, data was divided into 80%
data for model training and 20% data for independent validation
of the developed model. We evaluate the performance of Linear
Regression (LR), Support Vector Regression (SVR) and Random
Forest Regression (RFR). For models such as SVR, RFR there
are hyperparameters which could be tuned to obtain the optimum
performance. Hence we carried out 3 fold cross-validation on the
training data to obtain the best parameters for SVR and RFR.

SVR is tuned for C at 0.1,1,10,100, Sigma at 1, 0.1, 0.01, 0.001
and type of kernel tried were Linear and Radial Basis Function.
The model with best parameters (out of 32 models) was deter-
mined using 3 fold cross validation. Performance of the best
model was evaluated using a 20% validation dataset. RMSE was
used as a performance measure to decide the best model. Model
with the lowest RMSE was considered as the best model. The
same strategy was applied for RFR by tuning the parameters such
as number of Trees. The number of trees were varied from 10 to
100 with an interval of 10. A total of 10 models were evaluated

Figure 2. Overall Analysis Approach

to find out the model with optimum trees. In the case of LR, we
simply train the model on a random 80% dataset and tested of
remaining 20% dataset. To avoid the bias in the random selection
of dataset and noise, we ran the LR model 10 times and averaged
the RMSE. Table 4 shows the performance of various models for
all crops. The LR model shows the average RMSE and RSQ,
however the performance of best models was shown for RFR and
SVR. The obtained results shows that the RFR produced the low-
est RMSE for all the crops in the study. The RMSE using the
RFR was about 0.08, 0.09, 0.11, 0.12 for Rice, Cotton, Banana
and Turmeric respectively. Similarly, we have obtained R2 val-
ues of about 0.79, 0.76, 0.69 and 0.71 for the same crops using
the RFR. The model with 80 trees produced best results for Rice
and Cotton whereas, it is observed that the model with 90 trees
produced best results for Banana and Turmeric. Also, we have
observed that, SVR with RBF kernel was good for all crops when
comparing the Linear vs RBF kernel of SVM. The performance
of linear regression was poor among all models. Non-linear mod-
els such as SVR with RBF kernel and RFR performed well.

Overall modeling was repeated considering NDVI values greater
than 0.25. This is to verify whether there is any influence of soil
background on the overall model performance. Table 5 shows the
performance of various models for the data with NDVI greater
0.25.

We can clearly see the improvements across all the models (both
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SN Crop LR rmse LR rsq SVM rmse SVM rsq RF rmse RF rsq

1 Rice 0.11 0.59 0.08 0.69 0.08 0.79

2 Cotton 0.17 0.51 0.14 0.64 0.09 0.76

3 Banana 0.24 0.37 0.15 0.58 0.11 0.69

4 Turmeric 0.16 0.5 0.11 0.67 0.10 0.71

Table 4. Performance of Various Models for Scenario 1 (Sc1)

SN Crop LR rmse LR rsq SVM rmse SVM rsq RF rmse RF rsq

1 Rice 0.12 0.66 0.09 0.8 0.05 0.83

2 Cotton 0.17 0.49 0.12 0.67 0.06 0.78

3 Banana 0.21 0.54 0.15 0.62 0.10 0.71

4 Turmeric 0.18 0.52 0.1 0.72 0.09 0.77

Table 5. Performance of Various Models for Scenario 2 (Sc2)

linear as well non-linear) when considering the NDVI greater
than 0.25. We observed decrease in the RMSE and improvement
in R2 values for all the crops using the RFR models. Such re-
sults show that, the soil background available during initial crop
growth period was responsible for poor relationship between NDVI
and SAR data.

3.1 Temporal analysis of few pixels

For continuous monitoring of vegetation, it is important to get the
temporal and continuous data of NDVI. To check the temporal
feasibility of the developed models, we applied the best models
(Linear, SVR, RFR) on unknown fields for each crop. We did
not consider this field for model development as well as for val-
idation. For each crop, we have chosen one field and plotted the
time-series of NDVI estimated using the best model and actual
time-series of median NDVI for that field.

Figure 3 shows the time-series pattern for cotton where we can
see the RFR model predicts the NDVI which closely matches the
actual NDVI for almost all the dates. Also, there was a cloud
during the month of July, August and September so there was a
drop in the actual NDVI but RFR model predicted NDVI which
closely follows the actual temporal NDVI pattern. In the case of
Banana crop time-series (Figure 4), although the crop is present
throughout the year, we have plotted the time-series between July
to Dec 2019. The banana field was mostly affected by clouds
during July- September. RFR model predicted NDVI which is
closely following the pattern of actual NDVI wherever the ac-
tual cloud-free NDVI values are available. Figure 5 shows the
time-series pattern for Turmeric. The field is covered by clouds
towards the end of August and September. However, RFR pre-
dicted NDVI was in good agreement with actual NDVI and pre-
dicted the values at cloudy dates which followed the pattern of
actual NDVI. Figure 6 shows the time-series of actual and pre-
dicted NDVI for rice. All the models were good to follow the ac-
tual NDVI however, RFR followed the actual NDVI pattern more
accurately among all.

4. SUMMARY AND CONCLUSIONS

We have attempted to establish a relationship between NDVI de-
rived from Sentinel-2 and Sentinel-1 based VV, VH backscatter,

Figure 3. Actual vs Temporal NDVI predicted by Various
Models for Cotton

Figure 4. Actual vs Temporal NDVI predicted by Various
Models for Banana

Figure 5. Actual vs Temporal NDVI predicted by Various
Models for Turmeric

Local Incidence Angle and NRPB. The study has been carried out
at two different locations considering the variety of crops during
Kharif 2019. The crops considered in this study are Paddy from
Punjab and Haryana whereas Cotton, Turmeric and Banana from
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Figure 6. Actual vs Temporal NDVI predicted by Various
Models for Rice

Andhra Pradesh, India. Regression analysis was carried out for
NDVI estimation using SAR derived variables. We evaluated the
performance of various linear (Linear Regression and SVR with
Linear Kernel) as well as Non-Linear (SVR with RBF Kernel and
RFR) models. Parameter tuning was done for SVR and RFR to
get the best results. The Root Mean Square Error (RMSE) and
R-Square (R2) were used as the performance indicators. The ob-
tained results shows that the RFR produced the lowest RMSE for
all the crops in the study. The average RMSE using the RFR was
about 0.08 0.09, 0.11, 0.10 for Rice, Cotton, Banana, Turmeric,
respectively. Similarly, we have obtained R2 values of about 0.79,
0.76, 0.69 and 0.71 for the same crops using the RFR. The model
with 80 trees produced best results for Rice and Cotton whereas,
it is observed that the model with 90 trees produced best results
for Banana and Turmeric. Further, we have considered data with
NDVI greater than 0.25 and carried out a similar analysis. We ob-
served a decrease in the RMSE and improvement in R2 values for
all the crops using the RFR models. We found that, RMSE was
decreased to 0.05, 0.06, 0.10 and 0.09 for Rice, Cotton, Banana
and Turmeric respectively. Moreover, R2 was increased to 0.83,
0.78, 0.71 and 0.77 respectively for these crops. We found that
the estimation of NDVI was good for high canopy density com-
pared to crop in the early stages with soil background. Further,
we have also plotted the time-series of actual vs estimated NDVI
using all the models for various crops. NDVI predictions made
by the RFR model were closely matching with actual NDVI for
almost all temporal instances. This was followed by SVR and
LR.

5. FUTURE WORK

As a part of future work, we plan to implement the method on
every cloudy pixel with respective crop and generate the cloud-
less NDVI images. This will basically help us to carry out the
comparison between the actual and generated NDVI images on a
spatial level. In addition to this, we plan to collect more data on
other crops cultivated during Kharif season and develop models
for those crops.
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