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ABSTRACT:

This paper introduce a new method for validating the precision of an airborne or a mobile LiDAR data set. The proposed method
is based on the knowledge of an a Combined Standard Measurement Uncertainty (CSMU) model which describes LiDAR point
covariance matrix and thus uncertainty ellipsoid. The model we consider includes timing errors and most importantly the incidence
of the LIDAR beam. After describing the relationship between the beam incidence and other variable uncertainty (especially attitude
uncertainty), we show that we can construct a CSMU model giving the covariance of each oint as a function of the relative geometry
between the LIDAR beam and the point normal. The validation method we propose consist in comparing the CSMU model (predictive
a priori uncertainty) t the Standard Deviation Alog the Surface Normal (SDASN), for all set of quasi planr segments of the point
cloud. Whenever the a posteriori (i.e; observed by the SDASN) level of uncertainty is greater than a priori (i.e; expected) level of
uncertainty, the point fails the validation test. We illustrate this approach on a dataset acquired by a Microdrones mdLiDAR1000

system.

1. INTRODUCTION

The validation of LiDAR data is an area of interest for most or-
ganization that order surveys and apply quality assurance pro-
cesses to check the consistency of the data against contractual
clauses. The most classical quality assurance procedure con-
sists in comparing LiDAR data on Ground Control Points to
check the accuracy of the georeferenced LiDAR data in a geo-
detic system and with respect to a given projection. This pro-
cedure is based on the identification of a geometric target or
an intensity sensitive target (photogrammetry like chess mark
GCP) and checks the LiDAR georeferenced points on a partic-
ular location.

However, checking GCP only gives a local accuracy informa-
tion which may not be representative of the whole survey area.
To overcome this difficulty, GCP sampling can be done, but
multiplying GCPs significantly affects the survey cost.

Another method can be applied in checking the overlaps
between survey strips, like in a strip adjustment approach. Strip
adjustment purpose is to correct the platform trajectory and at-
titude to minimize the strip inconsistencies within the overlap
area. However, strip adjustment is an active method that cor-
rects navigation parameter without identifying areas of conflicts
within the data set.

The method we propose analyses the whole data set and do not
rely on the presence of overlaps between LiDAR strip. In com-
paring two uncertainty models, we can detect areas where ab-
normal errors occurred without the need for LiDAR data over-
lap.

2. RELATED WORK

2.1 Survey data validation methods

The use of Ground Control Point is a classical method to detect
inconsistencies between the LiDAR data point cloud and a geo-

detic point monumented either by an intensity sensitive mark
(like in photogrammetry) or a geometrical target. In [1], the
author defines an hexagonal retro-reflexive target made of 6 re-
flectors. The target can be identified in the LiDAR point cloud
and an accurate estimate of its centre can be done by matching
the local point cloud data on a geometric model of the target.
In comparing the target centre coordinates with the actual co-
ordinates of the GCP, the local accuracy can be obtained.

More recently, in [3], a generalization of GCP analysis by
planes intersection was proposed as well as a method to select
appropriate planes to get a reliable virtual GCP.

The purpose of the LiDAR survey data validation we propose is
to determine if the level of observed uncertainty due to system-
atic errors and random errors is compatible with a model of the
a priori uncertainty of the system. We shall not consider here
the presence of outliers and will focus on the contribution of
systematic and random error to the uncertainty level of LIDAR
data.

2.2 Uncertainty models

The precision and accuracy of a point issued by a mobile
LiDAR mapping system depend on the system components
characteristics that can be propagated through a point georefer-
encing model. This model is the relationship used to generate
LiDAR point clouds from raw sensors measurements, includ-
ing the LiDAR itself, an Inertial Navigation System (INS) and a
positioning system based on a Global Navigation Satellite Sys-
tem (GNSS). The derivation of points uncertainty by a standard
deviation, as a function of all components and integration para-
meters standard deviation can be done by propagating variance-
covariance matrices of each parameter submitted to uncertainty
through a linearized approximation of the point geo-referencing
model. This type of approach leads to a Combined Stand-
ard Measurement Uncertainty (CSMU) model, as defined in
the International Vocabulary of Metrology (JCGM, 2008) by
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the Bureau International des Poids et Mesures (BIPM). In
(JCGM, 2008), the Combined Standard Measurement Uncer-
tainty (CSMU) of a measurement device is defined as ”’standard
measurement uncertainty' that is obtained using the individual
standard measurement uncertainties associated with the input
quantities in a measurement model”.

A simplified and decoupled model of CSMU can be found in
(Baltsavias, 1999), and more comprehensive 3D models are de-
velopped in (Goulden, Hopkinson, 2010) and (Glennie, 2007).
In (Shaer et al., 2007), a model including uncertainty due to the
grazing angle and to the divergence of the LiIDAR beam is taken
into account. The energy level of the LiDAR beam is projected
on its footprint, which defines an additional uncertainty in the
map frame coordinates. This uncertainty level is added to the
CSMU model defined by a variance propagation.

To be relevant, a CSMU model should take into account all
sources of errors. Most models take into account the standard
uncertainty of each sensors (position, attitude, LiDAR range
and beam angle). Integration parameters (boresight angles,
lever-arms) are also taken into account by using their stand-
ard deviations as long as they can be estimated and returned by
calibration methods (see for instance (Skaloud, Litchi, 2006,
Hebel, Uwe, 2012, Keyetieu, Seube, 2019)).

3. POINT GEOREFERENCING MODEL

The geometry of a LIDAR system (see figure 1) can be defined
by:

e A Local Geodetic Frame (denoted by (n)) and a Terrestrial
Reference Frame;

e A Positioning Reference Point (PRP): this is the point
which position is computed by the GNSS system.

e A Body frame associated to the IMU/INS (bI) and the
LiDAR (bS);

e The lever-arm vector a from the PRP to the optical center
of the LiDAR.

e The three boresight angles that defines the mis-alignment
between the IMU/INS body frame and the LiDAR body
frame;

In the LiDAR body frame (bS) = (Xss, Yss,Zvs)), the
LiDAR return vector is:

0
rvs = [ pcosy
psin-y

where p is the returned distance and ~ the beam angle.

We shall denote by CPL the boresight transformation matrix
between the (bS) frame and the (b]) frame. This transformation
can be estimated by specific techniques like the ones described
in (Skaloud, Litchi, 2006), (Hebel, Uwe, 2012) or (Keyetieu,
Seube, 2019). The vector CPLrys is the LIDAR return coordin-
ated in the IMU frame.

! Let us recall that a standard measurement uncertainty is a measurement
uncertainty expressed as a standard deviation.

Figure 1. Geometry of a mobile LiDAR system. The positioning
system is supposed to compute the position of the PRP, denoted
by RP. The lever-arm is denoted by @, (bS = (Xss, Yss, Zbs))
is the LiDAR body frame, and (bI = (X1, Yor, Zbr))is the
IMU/INS body frame.

We consider the location of the PRP, denoted by P,,. The po-
sition of the LiDAR return, denoted by X, in the (n) frame
is:

Tn
Xn_< Yn >_Pn+cl?1 (Cli)érbs+ab1) (1)

We consider that time-stamping errors may produce a latency dt¢
between the different sources of sensor information (Seube et
al., 2012). And in the following model, we suppose that there is
a latency between the LiDAR and the GNSS-IMU system (i.e;
the INS system).

Xn(t) = Pu(t — dt) + Ofy(t — dt) (Cp§ res(t) + anr) (2)
4. COMBINED STANDARD MEASUREMENT
UNCERTAINTY MODEL
Let us denote the attitude by = = ¢, 0,1, the boresight by
B = d¢, 60, 6, the distance and beam angle by T = p,y and
lever arms by a = (az, ay, a-). In equation (2), we can separate

the different terms, in order to analyze the effect of positioning,
lever arms and LiDAR uncertainties. Let us denote by

rn(E.t,6,T) = Ci1(E,1) Cys(8) ms(T) 3)
the term due to the ranging device and by
an(E,t,a) = Cir(E,t) a” @)
the term due to lever arms.
From (2), we have:
Xn = Po(t) + an(E,t,a) + 7o (5,8, 8,7) 5)
The covariance matrix of X,, can be written by:

3sx, = L6P, + Lsan + Zsrn (6)
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Figure 2. Range bias dp; due to an attitude error affecting the
beam pointing direction. Here, we represented the effect of a roll
error 6. This bias depends on the local terrain morphology.

The covariance terms of P,, a, and 7, can be derived by ap-
plying the variance propagation law to linearized models. For
the sake of simplicity we skip this classical step, but we mention
that the Jacobian matrices involved in this computation may de-
pend on the latency to capture timing errors.

4.1 Uncertainty due to the incidence angle of the LiDAR
beam

The error equation (6) describes the ranging term covariance as
a function of all variables =, 3, dt, T , but it does not relate the
dependencies that may exist between the ranging system meas-
urement parameters p, the terrain slope and all angular paramet-
ers. Indeed, any orientation error of the beam (due to pointing
or attitude errors) may produce a range error due to the terrain
geometry, as shown in figure (2).

Equation (6) describes the range error coordinated in the (n)
frame due to uncertainties in all parameters. But it ignores the
effect due to the LiDAR as the consequence of a beam pointing
error. Indeed, whenever the attitude, the boresight or the launch
angle are submitted to uncertainty, the LIDAR beam will be ori-
ented along a different vector than the expected one. As a con-
sequence, the actual LiDAR range measurement will be biased
and this bias will depend on the incidence angle between the
LiDAR beam and the terrain.

In order to take into account the LiDAR range bias due to the
terrain morphology around the actual LiDAR point, we can de-
scribe the variation of the LiDAR ranging information due to
other parameters variations. We shall distinguish two terms in
the range error:

where dp; is the term due to the beam incidence and the term
0 pm is the measurement error.

If we suppose that on a neighborhood of X,,, the terrain can
be represented by a planar surface, then it can be shown that
dp; is a linear function of 6=, 63, dt, § Y, and the coefficients of
the linear mapping depends on the normal vector to the LIDAR
point. Note that this normal vector can be determined by PCA.

4.2 Ranging error uncertainty due to the beam incidence
angle
Let us denote by u, = HT—"H, the unit vector of the LiDAR
Tn
return, coordinated in the (bs) frame. The measured range p,
the true range p and the range uncertainty Jp are related by:

p+ép
P+ 0pi + 6pm

Pm =

For this analysis, let us suppose that §p,, = 0. Indeed, this is
already taken into account in the standard approach of uncer-
tainty model.

From the direct geo-referencing equation we know that (see fig-
ure (2) for the definition of the notations used here)

Xn = X’n + 6377,
where ds, = dp; un. The covariance matrix of ds,, is
T
Y5, = Osp, Untls, @)

with u,,, the unit vector from the LiDAR optical center to the
measured point.

As explained in section (4.1), the ranging error uncertainty
depends on attitude, boresight or launch angle uncertainties.
Hence, the variance of dp; can be expressed as follows:

2 _ 22 2 2 2 2 2 2
Osp; = G105, + Q305 +a305, + a105

2 _2 2 _2 2 2 2
+(15U§¢,b + (160'5917 + a705¢b + ago'(g,y

with o2, the variance of the parameter i.

4.3 Expresssion of the CSMU model

The final CSMU model is defined by the covariance matrix of
the positioning, lever-arm, LiDAR return, and ranging due to
the incidence angle. The final model can be defined by the fol-
lowing equation

Ysx, = L6P, + Ysan + Lor, + Losy, (8)

It takes into account the range, the orientation, the terrain incid-
ence angle coupling and the possible presence of timing errors.

4.4 LiDAR error model

In order to supplement the CSMU model with an accurate
LiDAR range error model, some static tests were made on a
fixed target (wall) at different distance. For these tests, we used
a SICK LiDAR, mounted on a tripod and located at various
distance from a concrete wall. In analysis the time series of
each beam return, we fitted a quadratic model of both range
and beam angle. The resulting model is plotted in Figure (3).

4.5 The CSMU ellipsoid

We can associate to each raw data the Combined Standard
Measurement Uncertainty (CSMU) ellipsoid associated to the
point. To use the CSMU, we also need to define the incidence
angle of the beam with the terrain (or planar cell). Thus, from
the knowledge of the normal and raw data set, we can compute
the CSMU ellipsoid.
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Figure 3. Standard deviation of the LiDAR range return as a
function of the range (p) and of the beam angle ().

Definition 1 The ellipsoid of uncertainty of a point M; is the
set of points M such that:

(M — M;)"Cov ™ (M — M;) = x3(1 — p)

where p is a probability level and Cov is the covariance matrix
representing the CSMU.

The 95% ellipsoid is obtained with p = 0.05, leading to

x3(0.95) = 7.81

5. STANDARD DEVIATION ALONG THE SURFACE
NORMAL

To analyze the a posteriori point cloud produced by a LiDAR
system, we can evaluate the standard deviation along surface
normals on a regular grid.

Let us suppose that the point cloud has been segmented in
planar areas, and that each of those has been divided into regu-
lar cells (in the local segment frame) over a grid. We consider a
grid of a segmented planar area and the point cloud on a partic-
ular cell of the grid.

We can estimate the standard deviation of a cell point cloud by
a PCA. Indeed the smallest eigenvalue (to which corresponds
an eigenvector defining the normal vector v to the cell) is the
variance of the set of orthogonal distances of the point cloud
along the normal vector. Thus, this quantity that we shall denote
by o, is the variance of a 1D quantity. This quantity is the
orthogonal distance of a point to the plane passing through the
centroid C' = (&, g, ) of the cell point cloud, and orthogonal
to the normal vector v.

For a point M = (z,y, z), the orthogonal distance to the cell

plane P is
d(M, P) = (v7,CM)

The property of the PCA we use here is the following:

Proposition 1 Consider a point cloud of points M;. The smal-
lest eigenvalue Amin as given by the Principal Component Ana-
lysis of the set C = {M;}; is the variance of the orthogonal

distance to the plane 11 passing through the centroid C of the
point cloud and orthogonal to the eigenvector T associated to
)\min-.

Var(d(Mi, H)) = )\min (9)

This result can be used to estimate the standard deviation of the
point cloud along the PCA fitted plane normal, and we shall call
it the Standard Deviation Along the Surface Normal (SDASN).

Definition 2 The SDASN of a cell C; from a point cloud is

SDASN(C;) = v/ Amin(Cy) (10
where Amin (C;) is the smallest eigenvalue of the PCA of the cell
Cj.

6. A PRIORI AND A POSTERIORI UNCERTAINTY
ANALYSIS

6.1 Selection of points

The comparison of the CSMU (a priori uncertainty) and of the
SDASN (a posteriori uncertainty) cannot be done in all regions
of a point cloud. It should be irrelevant in vegetation areas or
on objects having irregular shapes. Indeed, we need a minimum
level or regularity in the point cloud (to estimate properly the
local geometry a points) to conduct a fair comparison of the two
types of uncertainties. Note that these two models (CSMU and
SDASN) require the knowledge of the normal vector to each
point. Thus we should at least be sure that a local PCA can
achieve properly this task.

For this purpose, we segment the point cloud in quasi planar
areas using the approach presented in (Welhan et al., 2015).
This apporach is a region growing method that uses a similarity
criterion between point based on the local normal and the ortho-
gonal distance between points. In tuning these parameters we
can segment the point cloud with a more or less strict planarity
criterion, enabling the clustering of quasi-planar regions. In-
deed, we seek for a point cloud with neither major irregularities
nor vegetation. Segmenting the point cloud in relaxing the sim-
ilarity parameters seems to be a good option.

6.2 Comparison of uncertainty models

For each segment found in the point cloud the estimate of local
normal to point can be considered as reliable. Therefore, we
can conduct the comparison of uncertainty model over each seg-
ment. To do so, we define a grid on each local segment (local
plane) and we can conduct the analysis on each segment grid
cell. Note that this approach enable us to achieve the uncer-
tainty model comparison on all segment whatever the orienta-
tion of their normal is. In particular, this enable us to analyze
vertical segments.

Whenever a segment of points is found, we can defined he
CSMU ellipsoid for each point and compare it to the SDASN on
each grid cell. The SDASN as computed on the grid cell defines
the level of a posteriori uncertainty that we obtain in using the
redundancy of points within the cell. The a priori uncertainty, as
defined by the CSMU defines the uncertainty of isolated points.
In general, adding redundancy should decrease the level of un-
certainty of a cell since all points of the cell contribute to the
measurement of a piece of planar area.
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Thus the CSMU uncertainty (uncertainty prediction for a single
point) will be consistent with the observed SDASN (uncertainty
observation of a local group of points with a planar segment) if
the CSMU ellipsoid is “greater” than the SDASN level. From a
geometric point of view, the extrema value of the CSMU should
lie outside of the SDASN boundaries for each point.

6.3 Maximum distance of an ellipsoid from a plane

We consider here the CSMU ellipsoid &£, represented by its
cartesian equation, and whose center belongs to the cell plane.
To compare the CSMU ellipsoid with the SDASN, we have to
consider the maximum distance from the plane to the ellipsoid.
This is to say that we need to solve the following optimization
problem:

max d(M, IT)

Meég

max d(M,11) = \/x3(1 —p) (7, Cov?)  (11)
€

where £ is the CSMU ellipsoid, II is the local planar segment
to which belong the point M, v is the local normal vector to the
plane II and Cov is the CSMU covariance matrix.

6.4 The SDASN-CSMU comparison criterion

For a given cell C| of a planar segment, we know the stand-
ard deviation of the orthogonal distances to the plan IT, which
is the square root of the smallest eigenvalue of the covariance
matrix of points, as given by equation (10). This quantity is the
SDASN of the cell j, denoted by SDASN(C)).

On the other hand, we know the maximum distance of the
CSMU ellipsoid of all points lying on the plane II of the cell
C.

Definition 3 We shall say that a cell C; is validated whenever
the following inequality holds:

SDASN(C;) < maxd(M,II) (12)
Me&

where & is the CSMU ellipsoid.

The interpretation of this definition is the following: If the
CSMU ellipsoid is "larger” than the SDASN means that indi-
vidual points have a greater uncertainty than the one formed by
a subset of point forming the cell plan. In other words, the con-
sistency of the underlying plan over the cell is smaller than the
uncertainty of each individual points. This definition matches
with the notion of cell validation we were seeking for.

7. NUMERICAL RESULTS

We made a test on a dataset acquired at the HIEG-VD with a
Microdrones mdLiDAR1000 UAV system. This system com-
prises a md4-1000 UAV on which is integrated a SICK LiDAR
and an Applanix APX15 INS. The CSMU model includes the
model of the range uncertainty of the SiCK LiDAR. The un-
certainty level of the IMU (attitudes) and of the GNSS (posi-
tion of the PRP) is determined from the Applanix data sheet.
The CSMU model was shown to be consistent with the Micro-
drones mdLIDAR1000 performance level. Indeed, the (1-0)
precision of individual points measured by this system is about

Figure 4. Result of the validation algorithm on the HEIG dataset.
We can observe a straight line of non validated point, tagged in
red. All segments are represented in various levels of green

5.5cm which was shown to be consistent with the prediction of
our model. Once the CSMU model is validated from test data,
we can conduct the analysis on any point cloud acquired by the
mdLiDAR1000.

We first segmented the data set from the HEIG-VD building
which had the effect of removing all vegetation and irregular
shapes. Only quasi planar segment were kept to conduct the
survey data validation analysis.

Figure (4) shows the point cloud segmented in planar areas. The
different level of green indicate the several segments that were
found by the region growing algorithm.

After griding each segment (inducing the vertical segments cor-
responding to walls), we applied the validation test as defined
by inequality 12

In each circle point, we colorized in green validated points and
in red non validated ones. On a different view (see Figure (5)),
we can see that the non validated points are not lying on the
planar surface. Actually, we checked that these points (forming
a straight line in the horizontal plane) are from a gutter located
below the ground and partially hidden by a metallic grid. It ap-
pears that some LiDAR points reached the bottom of the gutter
due to the relatively low beam divergence and multiple returns
capabilities of the mdLiDAR1000.

These points were not validated by our algorithm as the ob-
served SDASN is not consistent with the a priori CSMU level.
This illustrates the relevance of our approach since the points
tagged as non validated can be presented to the user to further
analysis or validation.

Another possible application of this validation system is the de-
tection of systematic (lever-arm or boresight errors): Whenever
a mismatch between some part of a point cloud (not horizontal
to enable the effect of boresight or lever-arms errors to be ob-
servable), the SDASN level becomes not consistent with the a
priori CSMU model.
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Figure 5. View of the non validated point which seems to be non
consistent with the ground.

8. CONCLUSION

We presented an new CSMU model which includes timing ef-
fect and LiDAR beams incidence angle. We studied a particular
UAV LiDAR system (the mdLiDAR1000 from Microdrones) in
doing static tests of the LiDAR to provide a Standard Deviation
model depending on range and beam angle.

A new methodology to validate airborne LiDAR data was pro-
posed. Itis based on the comparison of the uncertainty level that
we observe from the point cloud and the level of uncertainty we
can expect from the system we use (i.e; the predictive CSMU
model). Whenever the a priori CSMU model is lower than the
observed local uncertainty model, we conclude that the system
gathered point with an abnormal level of uncertainty and we tag
it as non validated.

This approach enabled us to detect an inconsistency in the data
set that should not have been detected otherwise. Moreover,
further analysis of non validated point can reveal non regular
behavior of the system or, in case of the survey realized with the
mdLiDAR1000 non regular features (the underground gutter),
as all point were validated.

Another possible application of this method can be the detec-
tion of the presence of a systematic error within the LiDAR
system. Indeed, any calibration error can create local discrep-
ancies between survey lines and thus make the SDASN to be
greater than the CSMU. In this case, the validation tool will
return unvalidated points in areas where systematic errors are
observable. This could facilitate the data analysis for clients of
LiDAR surveys in order to validate the relative consistency of
point cloud delivered by contractors.
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